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Abstract

Let rðnÞ denote the number of integral ideals of norm n in a cubic extension K

of the rationals, and define SðxÞ ¼
P

npx rðnÞ and DðxÞ ¼ SðxÞ � ax where a is the

residue of the Dedekind zeta function zðs;KÞ at 1: It is shown that the abscissa of

convergence of Z
N

0

DðeyÞ2e�2ys dy

is 1
3
as expected.
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1. Introduction

Let K be an algebraic extension of the rationals of degree k; rðnÞ denote the
number of integral ideals whose norm is the rational integer n; and define

SðxÞ ¼
X
npx

rðnÞ:
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Then zðs;KÞ; the Dedekind zeta function for the field K satisfies

zðs;KÞ ¼
X
ga0

1

NðgÞs ¼
XN
n¼1

rðnÞ
ns

;

where the first sum is over the integral ideals g of K : Moreover,

SðxÞ ¼ ax þ DðxÞ;

where a is the residue of zðs;KÞ at its simple pole at s ¼ 1 and DðxÞ satisfies DðxÞ ¼
oðxÞ as x-N: The question of the order of magnitude of DðxÞ as x-N is a natural
generalisation of the problem of Gauss concerning the number of lattice points in a
large circle centred at the origin. Landau [9] proved that

DðxÞ{xZ

with Z ¼ 1� 2=ðk þ 1Þ; improving the classical result Z ¼ 1� 1=k (see [17]). More
recently, Huxley and Watt [6] (see [5] for the special case of the Gauss lattice point
problem) have established that when k ¼ 2

DðxÞ{x
23
73 ðlog xÞ

315
146;

Müller [12] has shown that when k ¼ 3

DðxÞ{x
43
96þe

and Nowak [13] has obtained

DðxÞ{xZðlog xÞx

with

Z ¼ 1� 2

k
þ 8

kð5k þ 2Þ; x ¼ 10

5k þ 2
when 4pkp6;

Z ¼ 1� 2

k
þ 3

2k2
; x ¼ 2

k
when kX7:

There are a couple of questions that could be considered as generalisations or
analogues of the above. The most well known is the Dirichlet divisor problem and its
generalisation, the Piltz divisor problem. There one is concerned with the behaviour of

DkðxÞ ¼
X
npx

dkðnÞ � xPkðlog xÞ;

where dkðnÞ is the coefficient of n�s in the Dirichlet series expansion of zðsÞk and

xPkðlog xÞ is the residue of zðsÞk at s ¼ 1: There is a very extensive history of work in
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connection with DkðxÞ: Huxley [5] has shown that

D2ðxÞ{x
23
73 ðlog xÞ

461
146

and Kolesnik [8] has shown that

D3ðxÞ{x
43
96
þe:

For larger values of k see [7,15].
The other question which could be considered a generalisation of the Gauss lattice

point problem is that of the behaviour of EkðxÞ ¼ NkðxÞ � Gð1þ 1=kÞk
x where

NkðxÞ is the number of non-negative integral lattice points ðn1;y; nkÞ with nk
1 þ

?þ nk
kpx; but here far less is known. Indeed, the author is not aware of any

improvement over the trivial EkðxÞ{x1�1=k (which can be compared with Weber’s
bound for D) when k42; although some are doubtless about the possible variants of
the van der Corput method, and the only limitation known to how small the error
term might be is that obtained by combining the techniques of Montgomery and

Vaughan [11] and Vaughan [16] which shows that EkðxÞ ¼ Oðx
1
4Þ:

Let

b ¼ lim sup
x-N

logð1
x

R x

0 DðyÞ2 dyÞ
2 log x

;

IðsÞ ¼
Z

N

�N

jzðsþ it;KÞj2

jsþ itj2
dt

and

g ¼ inffs : IðsÞoNg:

Then Ayoub [1] has shown that

b ¼ g

and, more precisely, that when s4b one has

2p
Z

N

0

DðyÞ2y�2s�1 dy ¼ IðsÞ:

He has also shown that

b ¼ 1
4

when k ¼ 2:
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The main object of this paper is to show that

b ¼ 1
3

when k ¼ 3 ð1:1Þ

and that

bX
k � 1

2k
for all kX2: ð1:2Þ

For the Dirichlet/Piltz divisor problem Hardy [3], Cramér [2] and Heath-Brown [4]

have shown that 1
4
; 1
3
and 3

8
are indeed the abscissæ of convergence ofZ

N

0

DkðyÞ2y�2s�1 dy;

when k ¼ 2; 3 and 4; respectively. For no larger k has the exact value of the abscissa

of convergence been established, although it is known to be at least k�1
2k

: For further

details see [7,15].
The proofs of (1.1) and (1.2) use only the most basic analytic properties of zðs;KÞ;

and in fact pertain to the following general situation. Note that an Euler product is
not required.
Let f be a non-negative arithmetical function, not identically 0, possessing the

listed properties.

Property 1. For every fixed e40; whenever xX1;
P

npx f ðnÞ2{x1þe:

Property 2. The series FðsÞ ¼
P

N

n¼1 f ðnÞn�s; which as a consequence of

Property 1 converges for Rs41; has an analytic continuation to C; is analytic for

all s except s ¼ 1 where it has a simple pole with residue a; and satisfies a functional

equation

FðsÞ ¼ rðsÞFð1� sÞ;

where

rðsÞ ¼ ABs�1
2

Gð1�s
2
Þ

Gðs
2
Þ

� �r1 Gð1� sÞ
GðsÞ

� �r2

and A is real, B is real and positive, and r1 and r2 are non-negative integers not both 0:

Note that rðsÞ is analytic for all s except sAN when r240 and all s except s with sþ1
2
AN

when r2 ¼ 0; and in particular whenever Rso1:

Even these properties are susceptible to weakening and generalisation.
For example, the methods of this paper are easily adjusted to deal with the case
when FðsÞ has a pole of finite order at s ¼ 1 and the only information used
about rðsÞ is its analyticity and the vertical order of magnitude given by Lemma 1.
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Even the assumption the f be non-negative and A is real could be relaxed to include
complex values. In particular, the Dirichlet/Piltz divisor problems could be
included also.
Let

SðxÞ ¼
X
npx

f ðnÞ;

DðxÞ ¼ SðxÞ � ax;

LðsÞ ¼ 2p
Z

N

�N

DðeyÞ2e�2ys dy;

b ¼ lim sup
x-N

log
1

x

R x

0 DðyÞ2 dy

2 log x

and

k ¼ r1 þ 2r2:

Then we establish the following.

Theorem 1. If k ¼ 2 or 3; then LðsÞ converges when k�1
2k

oso1; and bp k�1
2k

:

The core of the proof of Theorem 1 lies in establishing the inequality

Z 2T

T

jFðsþ itÞj2 dt{T1þe 1� 1

k
pso1

� �

and in fact we prove also the more precise estimate

Z 2T

T

jFðsþ itÞj2 dt ¼ CðsÞT þ OðT1�nÞ;

where n ¼ nðeÞ40 and CðsÞ ¼
P

N

n¼1 f ðnÞ2n�2s; uniformly for 1� 1
k
þ epsp1� e

and any fixed e40: As an easy consequence of this latter approximation
we have

Theorem 2. If kX2; then LðsÞ diverges when 0osok�1
2k

; and bXk�1
2k

:

Our third theorem follows immediately on combining the previous two.
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Theorem 3. When k ¼ 3 the abscissa of convergence of

Z
N

0

DðeyÞ2e�2ys dy

is 1
3
:

With more precise information concerning the mean square of f ðnÞ in place of
Property 1, it would be possible to give a more exact description of the nature of the

singularity of LðsÞ at 1
3
:

2. Preparatory lemmata

The first lemma is a standard consequence of Stirling’s formula for the gamma
function.

Lemma 1. Suppose that s0; s1AR; s0os1; and s ¼ sþ it: Then

rðsÞ{jtjkð
1
2
�sÞ

uniformly in the region fs : jtjX1; s0psps1g:

Note that the implicit constant here may depend on A; B; k:
The second lemma is trivial when sX1þ d and d is any sufficiently small (in terms

of k and e) positive real number, and is immediate from the functional equation
when sp� d: Then in the range �doso1� d it follows from a general convexity
principle for Dirichlet series, see [14, Sections 5.65, 9.41].

Lemma 2. Suppose that s0; s1AR; s0os1; and s ¼ sþ it: Then

FðsÞ{jtjmðsÞþe

uniformly in the region fs : jtjX1; s0psps1g; where

mðsÞ ¼
kð1

2
� sÞ ðsp0Þ;

k 1�s
2

ð0osp1Þ;
0 ðs41Þ

8><
>:

and the implicit constant may depend on A; B; k; e:

We now come to the main tool of the proof.
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Lemma 3. Suppose that 0oso1; �1ofo� s; 0oco1� s; jX3
2 k þ 1; xX1; yX1:

Then

FðsÞ ¼
X
npx

f ðnÞn�sð1� n=xÞj þ rðsÞ
X
npy

f ðnÞns�1

� RðsÞ � UðsÞ � VðsÞ;

where

RðsÞ ¼ aljðx; 1� sÞ;

UðsÞ ¼ 1

2pi

Z fþiN

f�iN

rðs þ wÞ
X
n4y

f ðnÞnsþw�1ljðx;wÞ dw;

VðsÞ ¼ 1

2pi

Z cþiN

c�iN

rðs þ wÞ
X
npy

f ðnÞnsþw�1ljðx;wÞ dw

and

ljðx; zÞ ¼ xzj!

zðz þ 1Þ?ðz þ jÞ:

Proof. By moving the vertical path to Rw ¼ �N when uX1 and to Rw ¼ þN

when uo1 it is readily seen that for jX1; u40; y41; one has

1

2pi

Z yþiN

y�iN

ljðu;wÞ dw ¼ ð1� 1=uÞj ðuX1Þ;
0 ðuo0Þ:

(

Thus, by the absolute convergence of the above integral and the uniform
convergence of Fðs þ wÞ when Rw ¼ y one has

1

2pi

Z yþiN

y�iN

Fðs þ wÞljðu;wÞ dw ¼
X
npx

f ðnÞn�sð1� n=xÞj:

By Lemma 2, when Rðs þ wÞ4� 1;

Fðs þ wÞ � a
s þ w � 1

{ð1þ jIðs þ wÞjÞ
3
2

kþe:

Hence, as jX3
2
k þ 1; we may move the vertical path to the line Rw ¼ f; picking up

the residues of the integrand at w ¼ 1� s and 0, so that

X
npx

f ðnÞn�sð1� n=xÞj ¼ RðsÞ þ FðsÞ þ 1

2pi

Z fþiN

f�iN

Fðs þ wÞljðu;wÞ dw:
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By the functional equation in Property 2,

Fðs þ wÞ ¼ rðs þ wÞFð1� s � wÞ:

Moreover, as �Rðs þ wÞ ¼ �s� f40 we may write

Fð1� s � wÞ ¼
X
npy

f ðnÞnsþw�1 þ
X
n4y

f ðnÞnsþw�1:

The second series here gives rise to UðsÞ; and we treat the part arising from the first,
namely

1

2pi

Z fþiN

f�iN

rðs þ wÞ
X
npy

f ðnÞnsþw�1ljðu;wÞ dw;

by moving the path of integration to the line Rw ¼ c; picking up a further residue at
w ¼ 0; obtaining

�rðsÞ
X
npy

f ðnÞns�1 þ VðsÞ:

This completes the proof of the lemma. &

Our penultimate lemma is Corollary 3 of Montgomery and Vaughan [10].

Lemma 4. Suppose that anAC; X ; YAR; Y4X and
P

N

n¼1 njanj2oN: Then

Z Y

X

XN
n¼1

annit

�����
�����
2

dt ¼ ðY � XÞ
XN
n¼1

janj2 þ O
XN
n¼1

njanj2
 !

:

Below we record the intimate connection afforded by Plancherel’s identity between
the mean squares of FðsÞ and DðxÞ:

Lemma 5. Suppose that 0oso1;

LðsÞ ¼ 2p
Z

N

�N

DðeyÞ2e�2ys dy

and

IðsÞ ¼
Z

N

�N

Fðsþ itÞ
sþ it

����
����
2

dt:

Then LðsÞ converges if and only if IðsÞ converges, and

LðsÞ ¼ IðsÞ
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when convergence occurs. Moreover, if

g ¼ inffs : IðsÞ convergesg;

then b ¼ g:

Proof. This follows by a standard argument, as exemplified by Titchmarsh [15,
Theorem 12.5], or Ayoub [1, pp. 25–26]. &

Finally, we establish a convexity principle for mean values. This has some
similarity to the main result of Section 7.8 of Titchmarsh [15]. However, the form
given in Lemma 6 is more convenient for our purposes, applies to a wider class of
functions and has a much shorter proof. Titchmarsh’s conclusion is also an easy
deduction from it.

Lemma 6. Suppose that s0os1; TX1 and that GðsÞ is analytic for all sAS ¼ fs :

s0pRsps1g and satisfies GðsÞ{exp ððIsÞ2
2T2 Þ uniformly in S; i.e. the implicit constant

depends at most on s0; s1 and T : Let

Jðs;TÞ ¼
Z

N

�N

jGðsþ itÞj2exp 2ðs2 � t2Þ
T2

� �
dt:

Then, whenever s0psps1; we have

Jðs;TÞpJðs0;TÞ
s1�s
s1�s0Jðs1;TÞ

s�s0
s1�s0 :

Proof. Let

Lðs; yÞ ¼
Z sþiN

s�iN

GðsÞ exp ðs2T�2 � 2pysÞ ds:

Then, by Cauchy’s theorem,

Lðs0; yÞ ¼ Lðs; yÞ ¼ Lðs1; yÞ ð2:1Þ

for every sA½s0; s1
: Moreover,

Lðs; yÞ expð2pysÞ

¼
Z

N

�N

iGðsþ itÞ exp ððs2 � t2ÞT�2 þ 2istT�2 � 2piytÞ dt

and this is simply the Fourier transform of

iGðsþ itÞ exp ððs2 � t2ÞT�2 þ 2istT�2Þ:
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Hence, by Plancherels’ identity,

Z
N

�N

jLðs; yÞj2 expð4pysÞ dy ¼ Jðs;TÞ:

By (2.1), the integral on the left is

Z
N

�N

ðjLðs0; yÞj2 expð4pys0ÞÞ
s1�s
s1�s0ðjLðs1; yÞj2 expð4pys1ÞÞ

s�s0
s1�s0 dy:

By Hölder’s inequality, this is bounded by

Jðs0;TÞ
s1�s
s1�s0Jðs1;TÞ

s�s0
s1�s0 ;

which completes the proof of the lemma. &

3. The main theorem

Theorem 0. (i) Suppose that 1� 1=koso1 and d ¼ k
4
ðs� 1þ 1

k
Þ: Then, whenever

TX1; we have

Z 2T

T

jFðsþ itÞj2dt ¼ T
XN
n¼1

f ðnÞ2n�2s þ OðT1�dÞ:

(ii) For each fixed e40; whenever TX1 we have

Z 2T

T

jFð1� 1=k þ itÞj2 dt{T1þe:

Proof. We first suppose that 1
2
pso1: By Lemma 4 and Property 1, when 1

2
os;

Z 2T

T

X
npx

f ðnÞn�s�it

�����
�����
2

dt ¼ T
XN
n¼1

f ðnÞ2n�2s þ OððTx�1 þ 1Þx2�2sþeÞ

and, when 1
2
¼ s;

Z 2T

T

X
npx

f ðnÞn�s�it

�����
�����
2

dt{ðTx�1 þ 1Þx1þe:
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By Lemmas 1 and 4 and Property 1,

Z 2T

T

rðsþ itÞ
X
npy

f ðnÞnsþit�1

�����
�����
2

dt{T2kð1
2
�sÞ X

npy

f ðnÞ2n2s�2ðT þ nÞ

{T2kð1
2
�sÞðTy�1 þ 1Þy2sþe:

Trivially,

Z 2T

T

jRðsþ itÞj2 dt{x2�2sT�j:

Suppose Tpjtjp2T : Then, by Lemma 1 and Schwarz’s inequality,

UðsÞ2{
Z fþiN

f�iN

ðT þ jIw1jÞkð1
2
�s�fÞjljðx;w1Þj jdw1j

�
Z fþiN

f�iN

ðT þ jIw2jÞkð1
2
�s�fÞjljðx;w2Þj

X
n4y

f ðnÞnsþw2�1

�����
�����
2

jdw2j:

Therefore, by Lemma 4 and Property 1,

Z 2T

T

jUðsþ itÞj2 dt{Tkð1
2
�s�fÞxf

Z fþiN

f�iN

ðT þ jIwjÞkð1
2
�s�fÞjljðx;wÞj

�
Z 2T

T

X
n4y

f ðnÞnsþw�1

�����
�����
2

dtjdwj

{T2kð1
2
�s�fÞx2f

X
n4y

f ðnÞ2n2sþ2f�2ðT þ nÞ

{T2kð1
2
�sÞ Tk

xy

� ��2f

ðT=y þ 1Þy2sþe:

A similar argument applied to VðsÞ gives

Z 2T

T

jVðsþ itÞj2 dt{Tkð1
2
�s�cÞ xc

Z cþiN

c�iN

ðT þ jIwjÞkð1
2
�s�cÞjljðx;wÞj

�
Z 2T

T

X
npy

f ðnÞnsþw�1

�����
�����
2

dtjdwj
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{T2kð1
2
�s�cÞ x2c

X
npy

f ðnÞ2n2sþ2c�2ðT þ nÞ

{T2kð1
2
�sÞ xy

Tk

� �2c
ðT=y þ 1Þy2sþe:

It follows that, when 1
2
oso1;

Z 2T

T

jFðsþ itÞj2 dt ¼ T
XN
n¼1

f ðnÞ2n�2s þ OðE þ ðTEÞ
1
2Þ;

where

E ¼ðT=x þ 1Þx2�2sþe þ T2kð1
2
�sÞðT=y þ 1Þy2sþe

� Tk

xy

� ��2f

þ xy

Tk

� �2c !
: ð3:1Þ

Now suppose that 1� 1
k
oso1: Let Z ¼ s� 1þ 1=k and d ¼ kZ=4: Choose x ¼ T

k
2
þd

and y ¼ T
k
2
�d: Then

E{T1þ2
k
d�kZ�2Zdþeðk=2þdÞ{T1þ2

k
d�kZ

on choosing e sufficiently small. Thus,

E{T1�1
2
kZ

gives the first part of the theorem.
Finally, suppose that s ¼ 1� 1=k: Then

Z 2T

T

jFð1� 1=k þ itÞj2 dt{E;

where E satisfies (3.1). The choice x ¼ y ¼ T
k
2 gives

E{T1þke

and completes the proof of the theorem. &
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4. The proof of Theorem 1

When k ¼ 2 or 3 we have 1� 1=kpkþ1
2k

: Hence, by Theorem 0,

Z 2T

T

F
k þ 1

2k
þ it

� �����
����
2

dt{T1þe:

Therefore, by the functional equation in Property 2 and Lemma 1,

Z 2T

T

F
k � 1

2k
þ it

� �����
����
2

dt{T2þe:

Thus, by Lemma 6 with s0 ¼ ðk � 1Þ=ð2kÞ and s1 ¼ ðk þ 1Þ=ð2kÞ; whenever
s0osos1; Z 2T

T

jFðsþ itÞj2 dt{T2þe�kðs�s0Þ:

Thus

Z
N

�N

Fðsþ itÞ
sþ it

����
����
2

dtoN:

Theorem 1 now follows from Lemma 5.

5. The proof of Theorem 2

Suppose first that kX3; so that kþ1
2k

p1� 1
k
: Let Z be any real number with

0oZo 1
3k
: We apply Lemma 6 with GðsÞ ¼ FðsÞ; s0 ¼ kþ1

2k
þ Z; s ¼ 1� 1

k
þ 2Z; s1 ¼

1� 1
k
þ 3Z: Then

J 1� 1

k
þ 2Z;T

� �
pJ

k þ 1

2k
þ Z;T

� � Z
1
2
� 3
2k

þ2Z
J 1� 1

k
þ 3Z;T

� � 1
2�

3
2k

þZ
1
2
� 3
2k

þ2Z
:

By part (i) of Theorem 0,

T{J 1� 1

k
þ 2Z;T

� �

and

J 1� 1

k
þ 3Z;T

� �
{T :
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Therefore,

T{J
k þ 1

2k
þ Z;T

� �
:

By Lemma 2, there is a positive number c ¼ cðkÞ such that

Z
N

cTðlog TÞ1=2
F

k þ 1

2k
þ Zþ it

� �����
����
2

exp 2ðs2 � t2ÞT�2� �
dt{1:

Hence, for every sufficiently large U ;

Uðlog UÞ�1=2{
Z U

0

F
k þ 1

2k
þ Zþ it

� �����
����
2

dt: ð5:1Þ

By Lemma 1, there is a positive number d ¼ dðk; ZÞ such that, whenever jtjXd;

r
k þ 1

2k
þ Zþ it

� �����
����{ k � 1

2k
� Zþ it

����
����
�1
2
�kZ

:

Hence, for U sufficiently large,

Uðlog UÞ�1=2{
Z U

d

F
k þ 1

2k
þ Zþ it

� �����
����
2

dt

{
Z U

d

F
k � 1

2k
� Zþ it

� �����
����
2

k � 1

2k
� Zþ it

����
����
�1�2kZ

dt:

Therefore,

U2kZðlog UÞ�1=2{
Z U

d

Fðk�1
2k

� Zþ itÞ
k�1
2k

� Zþ it

�����
�����
2

dt;

and so the integral

Z
N

0

Fðk�1
2k

� Zþ itÞ
k�1
2k

� Zþ it

�����
�����
2

dt

diverges. This is true for every Z with 0oZo 1
3k
: Hence bXk�1

2k
as required.

When k ¼ 2 the above argument fails because now kþ1
2k

41� 1
k
: However, the lower

bound

U{
Z U

�U

F
3

4
þ Zþ it

� �����
����
2

dt

is immediate from Theorem 0 and so can be used in place of (5.1).
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