View metadata, citation and similar papers at core.ac.uk brought to you bffCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

SGIENCE@DmEcT- JOURNAL OF
Number
ACADEMIC Theory
PRESS Journal of Number Theory 100 (2003) 169-183

http://www.el sevier.com/l ocate/jnt

A mean value theorem for cubic fields ™

R.C. Vaughan

Department of Mathematics, McAllister Building, Pennsylvania State University, University Park,
PA 16802, USA

Received 19 May 2002; revised 26 September 2002
Communicated by D. Goss

Abstract

Let r(n) denote the number of integral ideals of norm n in a cubic extension K
of the rationals, and define S(x)= >,  .r(n) and 4(x)= S(x) —ax where « is the
residue of the Dedekind zeta function {(s,K) at 1. It is shown that the abscissa of
convergence of

/ A(&) e dy
0

is § as expected.
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1. Introduction

Let K be an algebraic extension of the rationals of degree k, r(n) denote the
number of integral ideals whose norm is the rational integer n, and define
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Then {(s, K), the Dedekind zeta function for the field K satisfies

{(s,K) = Z%: - r(n)’

where the first sum is over the integral ideals g of K. Moreover,
S(x) = ax + A(x),

where o is the residue of {(s, K) at its simple pole at s = | and 4(x) satisfies 4(x) =
o(x) as x— oo. The question of the order of magnitude of 4(x) as x— oo is a natural
generalisation of the problem of Gauss concerning the number of lattice points in a
large circle centred at the origin. Landau [9] proved that

A(x) < x"

with n =1 —2/(k 4 1), improving the classical result n = 1 — 1/k (see [17]). More
recently, Huxley and Watt [6] (see [5] for the special case of the Gauss lattice point
problem) have established that when k =2

2 &
A(x) < x73 (log x)146

=¥

Muiiller [12] has shown that when k = 3

43
A(x) < x96+

and Nowak [13] has obtained

A(x) <« x"(log x)*
with
2 8 10
-4 % r—_ " Wwhen 4<k<6,
1 KT RGkT12) ¢ T skqa Whem4<ksS
2 3 2
=1-Z4+ == >7.
n=1 k+2k2’ 4 r when k=7

There are a couple of questions that could be considered as generalisations or
analogues of the above. The most well known is the Dirichlet divisor problem and its
generalisation, the Piltz divisor problem. There one is concerned with the behaviour of

Z dk — ka log x)

n<x

where dj (n) is the coefficient of n~* in the Dirichlet series expansion of {(s)* and
xPy(log x) is the residue of {(s)* at s = 1. There is a very extensive history of work in
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connection with 4, (x). Huxley [5] has shown that

23 461
A>(x) < x73 (log x)146

and Kolesnik [8] has shown that

43,
A3 (x) < x9% ",

For larger values of k see [7,15].

The other question which could be considered a generalisation of the Gauss lattice
point problem is that of the behaviour of Ei(x) = Ni(x) — I'(1 4 1/k)*x where
Nyi(x) is the number of non-negative integral lattice points (ny, ...,n;) with n¥ +
-+ +nk<x, but here far less is known. Indeed, the author is not aware of any
improvement over the trivial E;(x) <« x!~'/¥ (which can be compared with Weber’s
bound for A) when k> 2, although some are doubtless about the possible variants of
the van der Corput method, and the only limitation known to how small the error
term might be is that obtained by combining the techniques of Montgomery and

1
Vaughan [11] and Vaughan [16] which shows that Ej(x) = Q(x4).
Let

. log(L [5 A(y)’ dy)
b= hglsﬂp 2log x

3

(o) = /f o+ BOF

w o+ itl
and
y=inf{o:I(o)<0}.
Then Ayoub [1] has shown that
B=v

and, more precisely, that when ¢ > f§ one has

2n /0 A2y N dy = I(o).

He has also shown that

B=4% when k=2.



172 R.C. Vaughan | Journal of Number Theory 100 (2003) 169-183

The main object of this paper is to show that
p=1% when k=3 (1.1)

and that

-1
ﬂ>k2—k for all k>2. (1.2)

For the Dirichlet/Piltz divisor problem Hardy [3], Cramér [2] and Heath-Brown [4]

have shown that 1, 1 and  are indeed the absciss@ of convergence of

o0
/0 A )y ay,

when k = 2, 3 and 4, respectively. For no larger k has the exact value of the abscissa
of convergence been established, although it is known to be at least kz;kl For further
details see [7,15].

The proofs of (1.1) and (1.2) use only the most basic analytic properties of {(s, K),
and in fact pertain to the following general situation. Note that an Euler product is
not required.

Let / be a non-negative arithmetical function, not identically 0, possessing the
listed properties.

Property 1. For every fixed ¢>0, whenever x=1, ), . f(n)2 < x'e,

Property 2. The series F(s)=Y., f(n)n~*, which as a consequence of
Property 1 converges for Rs>1, has an analytic continuation to C, is analytic for
all s except s = 1 where it has a simple pole with residue o, and satisfies a functional
equation

F(s) = p(s)F(1— ),

p(s) = AB2 <F F(l(?) (r(; (;) s)> .

and A is real, B is real and positive, and r\ and r, are non-negative integers not both 0.
Note that p(s) is analytic for all s except s€ N when ry >0 and all s except s with %e N
when ry = 0, and in particular whenever Rs<1.

where

Even these properties are susceptible to weakening and generalisation.
For example, the methods of this paper are easily adjusted to deal with the case
when F(s) has a pole of finite order at s =1 and the only information used
about p(s) is its analyticity and the vertical order of magnitude given by Lemma 1.
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Even the assumption the /" be non-negative and A4 is real could be relaxed to include
complex values. In particular, the Dirichlet/Piltz divisor problems could be
included also.

Let
=Y f(n)
n<Xx
A(x) = S(x) — ax,
0
L(c) =2n / A(e")?e 27 dy,
1 X 2

; log ~ Jo 4()" dy

b= sep 2log x

and
k=r +2r,.

Then we establish the following.
Theorem 1. If k =2 or 3, then L(c) converges when 5 <o <1, and p< 2L

The core of the proof of Theorem 1 lies in establishing the inequality

<0 <1>

WI*—'

2T
/‘|no+m2m«TW>(1
T

and in fact we prove also the more precise estimate
2T
/ |F((r+it)|2 dt = C(o)T + O(T'™),
T

where v =v(¢)>0 and C(g) = Zfz‘lf(n)zn’z'f, uniformly for 1 —}+¢<o<1—c¢
and any fixed ¢>0. As an easy consequence of this latter approximation
we have

Theorem 2. If k>2, then L(c) diverges when 0 <o <k1 2k and > kz—

Our third theorem follows immediately on combining the previous two.
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Theorem 3. When k = 3 the abscissa of convergence of
0
/ A(e")2e™27 dy
0

jg L
is 3.

With more precise information concerning the mean square of f(n) in place of
Property 1, it would be possible to give a more exact description of the nature of the
singularity of L(o) at 1.

2. Preparatory lemmata

The first lemma is a standard consequence of Stirling’s formula for the gamma
function.

Lemma 1. Suppose that oy, 01€R, 69<o, and s = o + it. Then
1
pls) < 1377
uniformly in the region {s : |t{|=1,00<0<0a}.

Note that the implicit constant here may depend on 4, B, k.

The second lemma is trivial when ¢ =1 + 6 and ¢ is any sufficiently small (in terms
of k and ¢) positive real number, and is immediate from the functional equation
when o< — . Then in the range —d<a<1 — 9 it follows from a general convexity
principle for Dirichlet series, see [14, Sections 5.65, 9.41].

Lemma 2. Suppose that oy, 01€R, 69<oy, and s = o + it. Then
F(s) < |¢M 1)t
uniformly in the region {s : |t|=1,060<0<a,}, where

k(t—a) (0<0),
uo) = k52 (0<o<l),
0 (6>1)

and the implicit constant may depend on A, B, k, e.

We now come to the main tool of the proof.



R.C. Vaughan | Journal of Number Theory 100 (2003) 169-183 175

Lemma 3. Suppose that 0<o<1, —1<¢p< —0,0<ty<1 — a,j)%kJr I,x=1,y>1.
Then

F(s)= S fmn~* (1= n/x) + p(s) 3 f(mn

n<x n<y

where
R(s) = ady(x, 1 - s),
U(s) _ /¢+m (s+w) Zf (e, w) dw
2mi $p—ion n>y
1 Y+ioo
V(s):—,/ p(s+w) Zf s (x, w) dw
21 Jy_io =
and
x7j!
Ai(x,z) = <
D =)
Proof. By moving the vertical path to Rw = —co when u>1 and to Rw =40

when u<1 it is readily seen that for j>1, u>0, 8> 1, one has

| Oion (1—1/u)/ (u=1),

Ai(u, w) dw = { 0 (u<0).

2mi 0—ico

Thus, by the absolute convergence of the above integral and the uniform
convergence of F(s+ w) when Rw = 0 one has

1 0+ioco

F(s+w)ij(u,w) dw = Z f()n™(1 —n/xY.

27 Jo_ion =

By Lemma 2, when R(s +w)> — 1,

3k+s

F(s+w)— < (1413(s+w)|)2

o
s+w—1
Hence, as jZ%k + 1, we may move the vertical path to the line Rw = ¢, picking up
the residues of the integrand at w =1 — s and 0, so that

¢+io

Zf(n)n’s(l —n/xY = R(s) + F(s) +2Lm/ F(s+w)i(u,w) dw.

n<x ¢p—ioo
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By the functional equation in Property 2,

F(s+w)=p(s+w)F(l—s—w).

Moreover, as —R(s + w) = —o — ¢ >0 we may write
1 g W Zf A“rW*l + Z f(n)n”w’l.
n<y n>y

The second series here gives rise to U(s), and we treat the part arising from the first,
namely
1 d+ioo X
— pls+w P (u, w) dw,
2mi p—ioo Z f )

n<y

by moving the path of integration to the line Rw =, picking up a further residue at
w = 0, obtaining

5) > f(mn™ + V(s).

n<y

This completes the proof of the lemma. [

Our penultimate lemma is Corollary 3 of Montgomery and Vaughan [10].

Lemma 4. Suppose that a,eC, X, YeR, Y>X and 3", n\an|2< 0. Then

Zan (Y — X) Z || +0(§: n|an|2>.

n=1 n=1

Below we record the intimate connection afforded by Plancherel’s identity between
the mean squares of F(s) and A(x).

Lemma 5. Suppose that 0<o<1,
o0
L(o) =2n / A(ey")ze’zyJ dy

and

F(o +in)|?
o+ it

o |

Then L(o) converges if and only if 1(a) converges, and
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when convergence occurs. Moreover, if
y =inf{o : I(0) converges},
then f = y.

Proof. This follows by a standard argument, as exemplified by Titchmarsh [15,
Theorem 12.5], or Ayoub [1, pp. 25-26]. O

Finally, we establish a convexity principle for mean values. This has some
similarity to the main result of Section 7.8 of Titchmarsh [15]. However, the form
given in Lemma 6 is more convenient for our purposes, applies to a wider class of
functions and has a much shorter proof. Titchmarsh’s conclusion is also an easy
deduction from it.

Lemma 6. Suppose that oyp<ay, T=1 and that G(s) is analytic for all s€ ¥ = {s:
(39
277

a0 <Rs<o,} and satisfies G(s) <exp (
depends at most on g, a1 and T. Let

J(o,T) = [ B |G (0 + if)|*exp (W) dt.

o0

) uniformly in &, i.e. the implicit constant

Then, whenever oo <o <oy, we have

g1—0 g—0(

J(0,T)<J (a0, T)71—o0J (1, T)71—0.

Proof. Let

g+ion
L(o,y) = / G(s)exp (s*T~% — 2mys) ds.

—io0
Then, by Cauchy’s theorem,
L(O'o,y):L(G,y):L(Ul,y) (21)
for every o €[0g,0,]. Moreover,

L(a,y)exp(2nya)

= / iG(c + it) exp (6> — )T 72 + 2iotT~> — 2miyt) dt

o0

and this is simply the Fourier transform of

iG(o + it) exp (6 — )T + 2ictT7?).
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Hence, by Plancherels’ identity,

/jﬁ |L(o',y)|2 exp(4nye)dy = J (o, T).

0

By (2.1), the integral on the left is

0 010 g—0)
/ (|1L(0, ) exp(dnyay))7=oo(|L(o1, )| exp(4myai))oi=eo dy.

o0

By Holder’s inequality, this is bounded by

01—0 ag—0y

J (o9, T)n1—o0J (g}, T)o1-0,

which completes the proof of the lemma. [

3. The main theorem

Theorem 0. (i) Suppose that 1 —1/k<c<1 and 5 =% —1+1). Then, whenever
T>=1, we have

/2T |F(o+it))dt =T Zf Yn7% 4+ O(T').

T
(i1) For each fixed ¢ >0, whenever T =1 we have
2T
/ |F(1 = 1/k + it)|* dr < T
T

Proof. We first suppose that %<a< 1. By Lemma 4 and Property 1, when %<a,

I

and, when 1 =g,

2

Zf n°- it - T Zf(n)2n72a + O((TX71 + 1)x2720+£)

n<x
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By Lemmas 1 and 4 and Property 1,

2T
:

Trivially,

2
1
dt < TG Zf(n)znz”*z(T—i— n)

n<y

1
« T2k(§7a>(Ty71 + 1)y20'+1:.

plo+it) S flmn !

n<y

2T
/ |R(0 4 it)|* dt < x>~ T .
T

Suppose T<|t|<2T. Then, by Lemma 1 and Schwarz’s inequality,

—ico

¢+ion 1
U(s)2 < / (T + \Swl|)k(2_“_d’)|/1j(x,w1)\ |dw |
¢

2

> S dwsl.

—i0 n>y

P+in k(l—rr—(/))
<[ e e )
¢

Therefore, by Lemma 4 and Property 1,

2T 1 ¢+ioco 1
/ |U(o + ir)|* dt < TFG=7=#)x? / (T + |3w) @D (x, w)|
T ¢p—ico '
2T 2
X / > St dildw|
T n>y

1
« T2k(§—<7—d>)x2¢ Zf(n)2n20+2¢72(T+n)

n>y

o) (T 2o4s
< T72 — (T/y+ 1)y~
Xy

A similar argument applied to V' (s) gives

2T 1 Y+ioo 1
/ |V (o + it)|* di < TFQ=779) x¥ / (T + |3w)* @) 2, (x, w)|
T Y—ioo
2T 1 2
X f@nr ™ dt)dw
[ 1w i

n<y
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« TKGo-) 2y Z (22T 4o

n<y

1 2
« TG0 (%) (T/y+ 1)y

It follows that, when ;<o <1,

/ Y \F(o+it)>dt =T f: S0 + O(E + (TE)),
T

n=1

where
1
E = (T/)C + 1)x2720+s + T2k(§—a)(T/y + 1)y20+s
T\ % X\ 2
— — . 3.1
8 ((xy) + (T") (3:1)
ks
Now suppose that I —<g<1.Let =6 — 1+ 1/k and 6 = ki/4. Choose x = T2
k s
and y = 72°°. Then
Ew Tl+%é—k11—2n5+a(k/2+5) « T1+%é—kn
on choosing ¢ sufficiently small. Thus,

lfllcr]
E«T 2

gives the first part of the theorem.
Finally, suppose that ¢ = 1 — 1/k. Then

2T
/ |F(1 —1/k +it)|* dt < E,
T

k
where E satisfies (3.1). The choice x = y = T2 gives
E« "

and completes the proof of the theorem. [
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4. The proof of Theorem 1

When k =2 or 3 we have 1 — l/kgk;kl Hence, by Theorem 0,

k+1 > ?
Fl——+it
J (5
Therefore, by the functional equation in Property 2 and Lemma 1,
2T 2
k—1
Fl——+it

Thus, by Lemma 6 with o9 = (k—1)/(2k) and o, = (k+1)/(2k), whenever
op<o<oy,

dt < T,

dt < T,

2T
/ |F(o+ l'f)|2 dt « T?e—klo=a0)
T

Thus

F(o +it)|?
o+ it

dt< oo.

[

Theorem 1 now follows from Lemma 5.

5. The proof of Theorem 2

Suppose first that k>3, so that £1<1—1 Let n be any real number with
0<n<3‘k We apply Lemma 6 with G(s) = F(s), oo =51 +n, 0 =1—-1+2n, ) =
-z L+ 35. Then

1
] 22k

1 k+1 I3 liﬂ
l——+2n, T )<J | —— T |22 272k
J( k+ 1, ) J( e + 1, ) J k+3n,

By part (i) of Theorem 0,
1
T<<J(1 — %—I— 2y, T)

1
J<l — 3, T) «T.

and
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Therefore,

k+1
T<<J(7+77,T>

By Lemma 2, there is a positive number ¢ = ¢(k) such that

/w k+1
F +n+it
¢T(log T)'? 2k

Hence, for every sufficiently large U,

2
exp (2(c? — )T %) dt«<1.

2

U(log U)"*« d. (5.1)

k+1
F( K -H1+lt)

0

By Lemma 1, there is a positive number d = d(k,n) such that, whenever |¢|>d,

1
Kl i)« i +'zi§7k”
Pl 71! % T
Hence, for U sufficiently large,
U k 1 2
U(logU)~ 12 / F( i +i1+lt) dt

d 2k
« /UF k=l i k- +'z_1_2kndz
, o T e 1! '

Therefore,

2
VIF(5E —n+ir)

UM (log U _1/2«/ dt,
(log U) d —n+it
and so the integral
2
* | F(kL — it
/ 1((——*—) dt
0 —n+it

diverges. This is true for every # with 0<17<3k Hence > k as required.
When k = 2 the above argument fails because now 2k1 >1—1 However the lower

bound
vr /3
U<</ F<+n—|—it>
U 4

is immediate from Theorem 0 and so can be used in place of (5.1).

2
dt
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