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ABSTRACT 

The constant-false-alarm-rate (CFAR) detection algorithm is used for the detection 
of an optical target in an image dominated by optical clutter. The algorithm can he used 
for many aerial images when a clutter-subtraction technique is incorporated. To 
approximate the assumption of a constant covariance matrix, the digital image scene is 
partitioned into subimages and the CFAR algorithm is applied to the subimages. For 

each subimage, local means must be computed; the “best” local mean is the one that 
minimizes the third moment. The clutter subtraction technique leads to a mathemati- 

cally tractable algorithm based on hypotheses testing. A test statistic and a threshold 
level must be computed. The value of the test statistic is subimage-dependent and is 
compared with the detection threshold which is chosen to specify a performance level 
for the test. A computationally efficient and stable implementation of the CFAR 
algorithm is given which may use either the Cholesky decomposition or the QR 
decomposition with a rearrangement of the computations. 

1. INTRODUCTION 

A multiband constant-false-alarm-rate (CFAR) detection algorithm is used 

to detect a stationary optical target in an image dominated by optical clutter. 

The stationary optical target is assumed to have a known signal pattern which 
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has nonzero intensities in several signal-plus-noise bands. The detection algo- 
rithm relies on the assumption that the optical clutter can be modeled as a 
Gaussian process with a space-varying mean and a covariance that is slowly 
varying. Numerical experiments (e.g., [Z, 61) show that this assumption is 
reasonable for many aerial images after an appropriate clutter subtraction 
technique is applied. This assumption allows the application of mathematical 

and statistical techniques, and its applicability to the problem of detection is 

supported by numerical experiments [2, 7, 8, lo]. 
In Section 2 the detection problem is presented. In Section 3 a CFAR 

detection method is presented. In Section 4 a computationally efficient and 
numerically stable method for determining the test statistic is presented. In 

Section 5 numerical results are given. 

2. THE DETECTION PROBLEM 

Given a stationary scene, we wish to determine whether or not a particular 
optical target is located in the scene. All nontarget images in the scene will be 

considered to be clutter. Typically, a 512 x 512 stencil (mesh) will be laid on 
the scene. The intensity at each of the N pixel elements (mesh points) is 

measured in m signal-plus-noise bands; let Y ci)( 1, j) be the intensity at the (1, 
j) element for band i. The single-band case is m = 1; m > 1 is the multiband 
case; here, m is typically between 2 and 12. See Fig. 1. 

Let the m x N data matrix X represent the digital image scene to be 
tested. Typically, m < 12, but N = 512’ = 262,144. The ith row of X con- 

tains the elements of Y ci). Typically, the elements of Y ci) are ordered by the 
natural ordering, i.e., the pixels are ordered from left to right and from top to 

bottom. 
Let r(k) be the kth column of X, 1 < k Q N. Thus, x(k) is an m-vector 

containing the values of pixel k, 1 < k < N, in the m bands. Then 

x = [x(l), . . . , x(N)], x(k) = [x,(k), . . . , x,(k)lT, and xi(k) = Xik. Let s = 

[s(l), . . 1, s( N)]r be the N-vector of the known signal pattern and b = 

[b(l), . . . , b(m)lT be the m-vector of unknown signal intensities. ....... ....... ....... 1 ....... ....... ....... 
FIG. 1. The discretized image for band i (for a 6 x 7) stencil. 
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Statistical models of images assume a Gaussian probability density in order 
to be mathematically tractable. Unfortunately, this assumption is rarely valid 
for optical images. However, we do not want to abandon Gaussianity. Numeri- 
cal experiments [2, 61 show that the optical clutter can be modeled as a 
Gaussian process with a space-varying mean after applying an appropriate 
clutter subtraction technique. 

Let 

where W is a w x w all ones matrix and 0 denotes discrete convolution. x is 
the local nonstationary mean of X. The value of a typical pixel element of x is 
the average of the w2 pixel elements that are in the square neighborhood 
(window of size w) of the corresponding pixel element of X. (Elements in the 
window but outside the image are given value zero.) See Figure 2. Then 

the residual image, is the result of the clutter subtraction. Since the third 
moment of a Gaussian distribution is zero, we will choose a window size w 
which minimizes the third moment, giving us a distribution as close to 
Gaussian as possible. This issue is addressed in [9] in a more quantitative 
approach. In practice [3, 71, the minimum is chosen from w = 3, 5, 7, 9. 
Similarly, for the same window size w chosen above, we form B from s, and 
set so = s - S. 

The hypotheses which the detector algorithm must test are: 

H, : x = x, (clutter only), 

HA : X = X, + bs,T, (clutter plus signal) . 

The GLR (generalized likelihood-ratio) test [l, 1 l] is now applied. How- 
ever, in order to make the GLR test mathematically tractable we need the 
associated covariance matrices to be constant, i.e., we need the 

Mk = E{[ x(k) - Ex(k)][ x(k) - k(k)]‘} 

to be equal for 1 < k < N, where x(k) is the kth column of X. Unfortunately, 
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FIG. 2. A window of size w = 3 is put on Figure 1 (left) in order to compute the 
local means (right). 

in practice the Mk are not constant [2, 71, and at present the detection 
problem has not been solved for nonconstant covariance matrices. 

This difficulty is circumvented by partitioning the 512 x 512 image into 

256 subimages of size 32 x 32. Let X (4) be the m x n data matrix for the qth 
subimage, 1 < q < 256, where m < 12 and n = 322 = 1024. Let X,$q) be the 
corresponding m x n residual subimage, and s(q), ~64) be the corresponding 
n-vectors of signals and residual signals. In practice, the covariance matrices 

for these 32 x 32 subimages are almost constant [2, 7j. Thus, we may apply 
the GLR test to each subimage. Also, in practice, the X,$4) have full rank. 

THEOREM 1. The test statistic for subimage q is 

f-(q) = 
c;A; ‘cq 

% 

c 
9 

c x/j%&q) 

is an m-vector, 

A, E X,$q)=_T@) 

is an m x m symmetric positive dejhite matrix (if&$@ has full rank), and 

cYq = sp=sp. 

Proof. The theorem follows from a standard statistical argument as in [l] 
and by using det( Z - zzr) = 1 - zTz. Cf. [lo]. n 
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3. PROBABILITY OF FALSE ALARM 

Let r-o be the detection threshold, depending only on m, n, and PFA (the 

probability of a false alarm), and not on the covariance matrix. Then the test 

becomes: 

THEOREM 2. For each subimage 9. if r( 9) 2 rO then HA else HO. 

In order to determine ro, we need to know the probability density function 

of the test statistic r(q), given HO. This makes it possible to determine a 

rejection region for the test. Given HO, the probability that the calculated r( 9) 

lies in this region is called the probability of a false alarm and denoted PFA; it 

is the constant false-alarm rate. Then by [ll], 

PFA = 
s 

‘f( r I Ha) dr, 
ro 

where 

f(r ( Ho) = 2fk (1 _ r)(n-m-2)/2r(‘-2)/2 

r(y)r(+) 

is the probability distribution function of r given H,, and P is the factorial 
functil. -I. 

In practice, PFA is predetermined to achieve a desired performance level 

for the test. The closed interval [rO, l] defines the rejection region for the test 

statistic under H,,. If the calculated r(q) is less than r,, then we accept H,, 
(with 1 - PFA certainty); otherwise we‘reject H, and 
the detection threshold rO, given PFA, one computes 

r,, such that 

accept HA. To calculate 

p = 1 - PFA and finds 

P= J ,ro_f( r I Ho) dr 
using the bisection method on the function 

g(t) = Jo’f(r I HO) dr - P, 
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where t is the current estimate of rc. We will use the continued-fraction 
representation of the integral in the numerical evaluation of the integral: 

where 

4j+l = - 

(m + 2j)(n + 2j)t 

(m + 4j)(m + 4j -I- 2) ’ 

d,, = 
2j(n - m + 2j)t 

(m + 4j - 2)(m + 4j) ’ 

Note that for a fixed m, n, and PFA, rc is calculated only once and then 
used for each subimage 9. 

4. COMPUTATION OF THE TEST STATISTIC 

Given the probabilistic nature of the GLR test, it is not failproof, and 
conceivably in some applications of the CFAR detection algorithm false 
conclusions could have dire consequences. Hence the computation r(q) 

should be performed as accurately as possible so as not to promote false 
conclusions. The naive computation of r(q), which involves computing the 
inverse of A, = X,$9)X,$9)T, is to be avoided for several reasons. First, the 
explicit formation of A, may result in a loss of information, unless higher 
precision is used [5, p. 1421. Second, if B, is the computed inverse of A,, the 
exact inverse of I?, may not necessarily be close to A, [13, p. 2531. Third, if z 
is a solution to the overdetermined system X,$q)Tz = so, it satisfies the normal 
equations associated with this system, and hence it follows that 

r( 9) = ( X6q)S~q))TZ/aq. 

This shows that the explicit inverse need not be computed. If the formation of 
A, = X69)X69)T s i acceptable (does not result in the severe loss of information 
or yield a large condition number), the Cholesky decomposition may be 
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employed: 

Form c := Xdq)sbq) 
Form cxq := @r@ 

Form A, := X6q)X6’J)T 

Factorize A, := GGT (Cholesky) 

Solve Gz = c by forward substitution 

Then r(q):= zTz/cxq 

mn flops 

n flops 

+m2n flops 

+m3 flops 

+m2 flops 

m flops 

A flop is a multiply followed by an add. Only the highest order term is given. 

The backward error analysis by Wilkinson (see [5, p. 891) shows that if the 

solution to A,z = c is computed as above, then (A, + Eq) z = c, where 

II E, II < 6, eps 11 A, 11) in which 6, is a small constant that depends on m, eps 
is the machine precision, and 11 * II is the Z-norm. 

Alternatively, the computation of r(9) can be achieved more stably. by the 
QR decomposition of XhqjT using a sequence of Householder transformations 

{Qi:i= I..., m} (see [5, p. 411). If X,$qjT = QR, it follows that 

X64)X64)T = [ RT O]Q’Q[ ;] = RTR, 

which implies the sequence of Qi’s need not be accumulated or applied 
sequentially to any vector. The transformations are performed on X,$4) implic- 

itly, and RT is stored in the lower left comer of Xc to reduce storage 
requirements. The computations can be ordered as follows, with flop counts: 

Form c := X,$q)@) 
Form cxq := s&q)Tsh@ 

Implicitly transform Xdq) + RT 

Solve RTz = c 

r(9) := zrz/cY, 

mn flops 

n flops 
m2n flops 

$m2 flops 

m flops 

Triangular systems generally produce solutions that are more accurate than is 
indicated by the traditional bound for relative accuracy involving the condition 
number [13, p. 2471. The QR approach above should be used if A, is ill 
conditioned. The statistical relevance of these concerns is discussed in [12]. 
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THEOREM 3. The computation of the test statistic r(q) by the above 
algorithms using the Cholesky or QR decomposition is stable. If A, is well 
conditioned, the Cholesk y algorithm may be used. 

5. NUMERICAL RESULTS 

We have implemented in the C language the CFAR algorithm described 
above. Subroutine BISRO determines the detection threshold t-a, given J, n, 
and PFA. Bisection [4] is used to calculate r-c. For PFA = 10e5, Table I gives 

the number of iterations needed to compute ra for various m and n and 
various values of the stopping criterion TOL (it stops when the change in the 

function value is < TOL and 1 l;l,_, - r& 1 < TOL - 1 r_., I). Table I shows that 
as TOL decreases the number of iterations (ITS) ‘increases, but with no 

significant improvement in the computed value of r,. 

This experiment was repeated for larger values of PFA (10e4, 10m3, lo-'). 
The results for m = 5 are given in Table II. The number of iterations required 

TABLE I 

DETECTIONTHRESHOLD r,, FoRPFA = 10e5 

m=3 m=4 m=5 

n TOL ITS m ITS rn ITS m 

100 0.010000 10 0.145508 10 0.165039 10 0.184570 

0.001000 13 0.146118 13 0.165649 13 0.183716 

0.000100 17 0.146172 16 0.165665 16 0.183670 

0.000010 20 0.146178 20 0.165671 20 0.183673 

256 0.010000 11 0.059082 11 0.066895 11 0.074707 

0.001000 15 0.058990 14 0.067078 14 0.074646 

0.000100 18 0.058964 18 0.067074 18 0.074604 

0.000010 21 0.058967 21 0.067076 21 0.074606 

400 0.010000 12 0.037842 12 0.043213 12 0.048096 

0.001000 15 0.037994 15 0.043304 15 0.048187 

0.000100 19 0.038019 18 0.043285 18 0.048176 

0.000010 22 0.038018 22 0.043282 21 0.048176 

1024 0.010000 13 0.015015 13 0.016968 13 0.018921 

0.001000 17 0.014977 16 0.017044 16 0.018997 

0.000100 20 0.014970 20 0.017056 20 0.019000 

0.000010 23 0.014969 23 0.017057 23 0.019001 
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TABLE11 
DETECTIONTHRESHOLD r0 FOR m = 5 

PFA=lO-' PFA =10-3 PFA = 1O-4 PFA= 1O-5 

n TOL ITS f-0 ITS r0 ITS t-0 ITS r0 

100 0.010000 10 0.145508 10 0.192383 9 0.232422 9 0.275391 
0.001000 13 0.144653 13 0.191528 13 0.234253 12 0.273682 
0.000100 17 0.144768 16 0.191574 16 0.234238 16 0.273727 
0.000010 20 0.144767 29 0.191576 19 0.234243 19 0.273718 

256 0.010000 11 0.058105 11 0.077637 11 0.097168 10 0.114258 
0.001000 15 0.058014 14 0.078064 14 0.096985 14 0.115051 
0.000100 18 0.058002 17 0.078041 17 0.096931 17 0.115013 
0.000010 21 0.058000 21 0.078039 20 0.096936 20 0.115006 

400 0.010000 12 0.037354 11 0.050293 11 0.062988 11 0.074707 
0.001000 15 0.037323 15 0.050446 14 0.062927 14 0.074890 
0.000100 29 0.037336 18 0.050426 18 0.062870 18 0.074848 
0.000010 22 0.037335 21 0.050425 21 0.062867 21 0.074851 

1024 0.010000 13 0.014771 13 0.019897 12 0.025146 13 0.029541 
0.001000 17 0.014671 16 0.019913 16 0.024918 16 0.029770 
0.000100 20 0.014674 19 0.019903 19 0.024912 19 0.029776 
0.000010 23 0.014675 23 0.019902 22 0.024911 22 0.029775 

to compute the threshold r0 for each value of TOL is similar for the various 

values of PFA. If the event of a false alarm has serious consequences, then a 
small PFA value (10p5) could b e chosen without increasing the amount of 
computation significantly. 

Subroutine WSKUV computes the third moment for window size w. Subrou- 
tine MINELT determines the optimal window size among w = 3, 5, 7, 9. 
Subroutine LCMN forms the m x n residual matrix XhY) of subimage 4. 
Subroutine SIGBAR creates the corresponding residual signal pattern. Next the 
test statistic r(q) is computed by RVAL (using the QR decomposition) or by 

AGLT (using the Cholesky decomposition as long as Xi9) is very well condi- 
tioned). Now we can determine whether there is an optical target in subimage 

4. 
In the following simulation, we set m = 3, N = 64’ = 4096, and n = 8’ 

= 64. There are 64 subimages of size 8 x 8; the target was placed in 
subimage q = 28. The computed detection threshold is ra = 0.3437. The 
results of the simulation can be seen in Table III. Note that the results for QR 
and Cholesky are identical here (indicating that the A, were well conditioned 
in this case). 
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TABLE III 

TARGET DETECTED IN SUBIMACE 9 = 28 

Third moment Optimal r(9) Target 

9 w=3 5 7 9 W QR Cholesky detected? 

1 0.634 1.118 1.238 1.333 

2 1.362 1.389 1.720 1.920 

3 0.596 0.600 0.510 0.492 

4 0.970 0.853 0.807 0.613 

5 0.930 0.674 0.732 0.982 

6 1.055 1.487 1.528 1.516 

7 1.209 1.170 1.275 1.320 

8 1.227 0.774 0.722 0.761 

9 0.677 0.786 0.839 0.883 

10 0.742 0.728 0.675 0.550 

11 1.289 1.480 1.603 1.684 

12 0.861 0.674 0.919 0.906 

25 0.866 1.023 1.055 1.018 

26 1.407 1.315 1.260 1.169 

27 0.531 0.532 0.569 0.579 

28 11.13 11.05 11.75 11.75 

29 0.828 0.752 0.969 1.030 

30 0.494 0.179 0.136 0.113 

31 0.595 0.505 0.514 0.545 

32 0.741 0.989 1.013 0.994 

33 0.798 0.504 0.286 0.348 

34 0.646 0.648 0.767 0.741 

35 0.968 1.314 1.259 1.311 

36 0.772 0.834 0.836 0.895 

60 1.181 1.066 1.100 0.929 

61 0.818 1.104 0.925 1.045 

62 1.482 1.586 1.494 1.635 

63 1.034 0.620 0.643 0.564 

64 0.379 0.505 0.748 0.904 

3 

3 

9 

9 

5 

3 

5 

7 

3 

9 

3 

5 

3 

9 

3 

5 

5 

9 

5 

3 

7 

3 

3 

3 

iJ 

3 

3 

9 

3 

0.1507 0.1507 No 
0.2482 0.2482 No 
0.0390 0.0390 No 
0.0610 0.0610 No 
0.0164 0.0164 No 
0.0329 0.0329 No 
0.0519 0.0519 No 
0.0429 0.0429 No 
0.0638 0.0638 No 
0.0168 0.0168 No 
0.0277 0.0277 No 
0.0803 0.0803 No 

0.0105 0.0105 NO 
0.0398 0.0398 No 
0.0329 0.0329 No 
0.8638 0.8638 Yes 

0.0613 0.0613 No 
0.0207 0.0207 No 
0.1151 0.1151 No 

0.0361 0.0361 No 
0.0455 0.0455 No 
0.1156 0.1156 No 

0.0194 0.0194 No 
0.1671 0.1671 No 

0.0041 0.0041 NO 
0.0152 0.0152 No 
0.0485 0.0485 No 
0.0427 0.0427 No 
0.0483 0.0483 No 
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