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a b s t r a c t

We study the order in Grammatical Inference algorithms, and its influence on the
polynomial (with respect to the data) identification of languages. This work is motivated
by recent results on the polynomial convergence of data-driven grammatical inference
algorithms. In this paper, we prove a sufficient condition that assures the existence of a
characteristic sample whose size is polynomial with respect to the minimum DFA of the
target language.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A Grammatical Inference (GI) algorithm is a method that tries to obtain a representation of a target language L from some
information about L [1–3]. In this work we study the inference of deterministic automata for regular string languages using
complete presentation (samples that belong or not to the target language) [4–8]. We note here that there are other results
that, using the same data presentation, tackle the inference of non-deterministic automata [9,10] as well as results that
study the identification of languages using queries [11–13].

A common approach to the GI of regular string languages takes into account an initial machine that represents the
input data. Some states of this machine are then merged in order to obtain some generalization. It is worth noting that
the generalization obtained depends both on the data supplied as well as on the order in which the states of the machine
are traversed.

An important issue to determine whether a given GI algorithm has good behavior or not, is the amount of information
needed to identify the target language. In that way it is important the concept of characteristic sample of a target language
for an inference algorithm. Given a class of languages H , the characteristic sample for an algorithm A and a language L ∈ H
is defined as a set of words in L (usually denoted by D+) and a set of words not in L (denoted by D−) such that: whenever
the algorithm A is run with input (D+,D−) the algorithm outputs a correct representation of L; this representation does not
change even though more words are added to the input.

Themodel of learning called identification in the limit byGold, establishes that an algorithm identifies a class of languages
H in the limit if and only if every language in the class has associatedwith it a characteristic set for that algorithm [14]. Taking
into account Gold’s work, as well as results by Pitt [15], Angluin and Smith [16] and de la Higuera [17] defines polynomial
time and data identifiability, as an extension of Gold’s definitions which consider characteristic sets of polynomial size.

Asmentioned above, themost referred results on the inference of regular languages from complete presentation propose
algorithms based on the merging of states: the RPNI algorithm proposed by Oncina and García [7] and the Blue-Fringe
algorithm by Lang et al. [8]. In both approaches, from an initial representation of the input information (usually a Moore
machine of the training set), the algorithms consider a fixed order to traverse of the states of the machine, usually the
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canonical order. In [18], de la Higuera et al. propose an algorithmic scheme able to consider a broader set of orderings
(the chosen order is an input parameter of the method), including any data-driven one. In that work, the order in which the
states of the initial representation are promoted (considered as states of the automaton to be output) is a consequence of the
order in which the states are merged. In fact, the authors do not distinguish among both orders. In that article, it is proved
that, whenever the (merging) order does not consider the input data, then, for that algorithm, there exists a polynomial
characteristic sample for any language. The authors also show that, given any size of automata, there is at least one data-
driven order for which it is possible to find automata with non-polynomial characteristic set. This seems to indicate that
any interesting data-driven order would imply an exponential characteristic sample.

All these results led to the GI community to think that Blue-Fringe algorithm (which was somewhat inspired by the
results in [18]) to have no polynomial characteristic set, because Blue-Fringe merging order is in fact data-driven. Despite
this assumption, Blue-Fringe became the state of art algorithm because of its experimental behavior in practical tasks, which
outperformed the results of previous approaches. In fact, the merging order used by Blue-Fringe led this algorithm to be
more data-efficient with respect to other GI algorithms, even when the training set does not include a characteristic set for
the target language.

Nevertheless, it has been recently proved that Blue-Fringe algorithm has a polynomial characteristic set [19]. The proof of
this takes into account that the Blue-Fringe promotion order does not depend on themerging order. This last resultmotivates
the study of the order influence in the polynomial convergence of GI algorithms.

2. Definitions and notation

Let Σ be a finite alphabet and let Σ∗ be the set of possible strings over Σ . Let also λ denote the empty string. A language
L over Σ is a subset of Σ∗. For any given set q, we will denote the cardinality of q with |q|. Given x ∈ Σ∗, if x = uv with
u, v ∈ Σ∗, then u (resp. v) is called prefix (resp. suffix) of x. Let us denote with Pr(L) the set of prefixes of L.

A Deterministic Finite Automaton (DFA) is a 5-tuple A = (Q , Σ, δ, q0, F), where Q is a finite set of states, Σ is an alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and δ : Q × Σ → Q is the transition function. The language
accepted by an automaton A is denoted L(A).

Given any DFA A, any two states p and q of A are usually said to be equivalent if and only if, for any x ∈ Σ∗, δ(p, x) ∈ F if
and only if δ(q, x) ∈ F . This relation allows to obtain theminimal DFA for the language L(A) (the automatonwith the smallest
set of states that accept the language). We note that this minimal automaton is unique up to isomorphism.

A Moore machine is a 6-tuple M = (Q , Σ, Γ , δ, q0, Φ), where Σ (resp. Γ ) is the input (resp. output) alphabet, δ is a
partial function that maps Q × Σ in Q and Φ is a function that maps Q in Γ called the output function. The function δ can
be extended in a natural way to consider strings over Σ .

Throughout this paper, the behavior ofM will be given by the partial function tM : Σ∗
→ Γ defined as tM(x) = Φ(δ(q0,

x)) for every x ∈ Σ∗ such that δ(q0, x) is defined.
A DFA A = (Q , Σ, δ, q0, F) can be simulated by a Moore machine M = (Q , Σ, {+, −}, δ, q0, Φ), where Φ(q) = + if

q ∈ F and Φ(q) = − otherwise. Then, the language defined byM is L(M) = {x ∈ Σ∗
: Φ(δ(q0, x)) = +}.

Given two disjoint finite sets of strings D+ and D−, we define the (D+, D−)-prefix tree Moore machine (PTMM(D+,D−)) as
the Moore machine having Γ = {+, −, ?}, Q = Pr(D+ ∪ D−), q0 = λ and δ(u, a) = ua if u, ua ∈ Q and a ∈ Σ . For every
state u, the value of the output function associated to u is +, − or ? (undefined) depending on whether u belongs to D+, to
D− or to Q − (D+ ∪ D−) respectively.

A Moore machine M = (Q , Σ, {+, −, ?}, δ, q0, Φ) is consistent with (D+, D−) if ∀x ∈ D+ we have tM(x) = + and
∀x ∈ D− we have tM(x) = −.

3. Convergence of GI algorithms using polynomial data

In this section we will prove a condition that, when fulfilled by a GI algorithm, assures the existence of a polynomial
characteristic set.

In order to do so, we first propose a general framework that unifies all the previous results. This framework will be also
useful to prove the main result.

3.1. A general framework

Algorithm 3.1 summarizes themost relevant GI algorithms. Please note that this algorithm puts aside efficiency.We now
show that this algorithm can be considered as a general framework able to implement any previous result.

Note that, in order to implement RPNI algorithm with the proposed scheme, it is enough to take into account which list
(NonEqStatesList or MergibleStatesList) has been first updated in order to choose among promotion or merge (line 16). Note
also that, in order to implement Blue-Fringe algorithm, it is enough to consider the merging of states whenever the list of
promotable states is empty.

Let us recall here the algorithm scheme proposed in [18]. The fact that this scheme does not use a PTMM to represent
the training data can be considered secondary. In order to avoid extra notation, we will describe it in terms of a PTMM
representation of the training set.
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Algorithm 3.1 Inference from complete presentation. A general scheme.
Input: M = PTMM(D+,D−) = (Q,Σ, {0, 1, ?}, δ, q0, Φ);
Input: An order among the states of the input PTMM
Output: A Moore Machine consistent with respect to the input data
1: Method
2: red = {λ}

3: blue = {q ∈ Q : q = δ(p, a), p ∈ red ∧ a ∈ Σ} − red
4: while blue ≠ ∅ do
5: NonEqStatesList = MergibleStatesList = ∅

6: for all q ∈ blue /* traversed following the given order */ do
7: merged = False
8: for all p ∈ red /* traversed following the given order */ do
9: if (p, q) are mergable then

10: AppendTo(MergibleStatesList, (p, q))
11: merged = True
12: end if
13: end for
14: if not merged then AppendTo(NonEqStatesList, q) end if
15: end for
16: Set option value among {merge, promote}
17: if option = promote then
18: red = red ∪ {q} : q = First(NonEqStatesList)
19: else
20: Let (p, q) ∈ MergibleStatesList be chosen following whichever criterion, and deterministically merge them
21: end if
22: blue = {q ∈ Q : q = δ(p, a), p ∈ red ∧ a ∈ Σ} − red
23: end while
24: Return(M);
25: End Method.

In any given iteration of that scheme, a score for every p ∈ red and q ∈ blue is obtained, no matter whether the merge is
possible or not. This set of scores drives the traverse of the pairs of red and blue states. In the traverse of the pairs of states,
it is checked whether or not the merging of the states is possible. If so, the pair is merged and the blue set is updated. If the
merge is not possible, the algorithm checks if the state q has been considered to be merged with all states in the red set. In
that case, the state q is promoted to red, otherwise, the blue set is updated and the set of scores is reset. The algorithm ends
when the blue set is empty.

Note that, in order to use Algorithm 3.1 to implement the algorithm by de la Higuera et al., it is necessary to compute
the score among the red and blue states before the loop that traverses the blue states (line 6). The scores obtained guide the
traverse of both blue and red sets, and therefore, the loops of lines 6 and 8 are also reduced to just one loop. The update of
theNonEqStatesList (line 14) has also to bemodified (to check whether or not all the possible merges have been considered),
as well as included into the loop. Finally, the option flag is set to merge or promote (line 6) taking into account which list is
updated first (in the same way the RPNI algorithm was previously adapted to our scheme).

3.2. A stronger result

We nowwill consider the proposed framework to prove a sufficient condition that assures the existence of a polynomial
characteristic set for any given regular language. We first show that, for any regular language L, and whichever the order
Algorithm 3.1 considers, it is possible to obtain a polynomial characteristic sample that identifies L.

The usual way to compute the characteristic set for any given language L is based on the definition of the minimal set of
test states. Thus, given A = (Q , Σ, δ, q0, F) the minimumDFA for L, the set S ⊂ Σ∗ is a minimal set of test states if for every
q ∈ Q there exists only one string x ∈ S such that δ(q0, x) = q.

Usually, for each state q, the set S contains the first string in canonical order that reaches q (note that, so defined, S
is minimal (Card(S) = Card(Q )) and prefix closed). We note here that, for any order used by Algorithm 3.1, no state is
considered before any of its prefixes. This follows from the fact that Algorithm 3.1 chooses a state among those in the blue
set. In the following, we will consider only this kind of effective orders.

Whichever the effective order chosen, it can be used to obtain a prefix closed minimal set of test states.

Example 1. Let the automaton in Fig. 1. Let us also consider the alphabetical order.
In order to obtain the minimal prefix closed test states set it is necessary to find, for each state q, the first string that

reaches q such that it does not visit a state twice. The alphabetic order does not give priority to shorter strings, thus, the
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Fig. 1. Automaton example.

Algorithm 3.2 Algorithm to obtain the characteristic set for a language L.
Input: The minimal DFA A for L
Output: The polynomial characteristic set for L
1: Method
2: Let S be the minimal set of test states for A
3: E = {λ}

4: Let S ′
= SΣ − S

5: Let T be a matrix indexed by the strings u ∈ S ∪ S ′ and e ∈ E that stores the membership of the string ue to the
language

6: while there exist two undistinguished u, v ∈ S and a symbol a ∈ Σ such that T [ua, e] ≠ T [va, e] for some e ∈ E do
7: E = E ∪ {ae}
8: end while
9: (D+,D−) = Data in T

10: Return(D+, D−);
11: End Method.

minimal prefix closed set of test states for this example is S = {λ, a, aa, aab}. Note that the set of test states obtained
according the canonic order would have been S = {λ, a, b, ab}.

Let us also note that, for instance, a set of test states using the alphabetical order is S = {λ, a, aa, aaab}, but it is not
prefix closed. Note also that, to make this set closed under prefixes implies that it would be non-minimal.

Taking into account any prefix closed minimal set of test states, Algorithm 3.2 shows the way to obtain two sets D+(S)
and D−(S). A rough bound for the size of D+(S) ∪ D−(S) is easily seen to be quadratic in the size of Q .

In this algorithm, the condition of the loop in line 6 refers to two undistinguished states, that is, two elements u and v in
S such that there is no w ∈ E such that just one of the strings uw or vw belongs to the language L. In order to find two such
states, it is possible to use the matrix T and look for two identical rows indexed by elements in S. Example 2 illustrates this
procedure.

Example 2. Let us also consider the automaton in Fig. 1 and the prefix closed minimal set of test states S = {λ, a, aa, aab}.
The following table summarizes the process of obtaining the characteristic set. For the sake of clarity, we represent

separately the elements in S and those in SΣ − S. Initially the only column available is the one with label λ. The 1 and
0 entries in the table represent if the strings obtained by concatenation of the strings that label the row and column belong
or not to the language L.

λ b
λ 0 0
a 1 1

aa 0 1
aab 1 0

b 0 1
ab 1 0

aaa 1 1
aaba 1 1
aabb 0 0

Note that, taking into account just the column labeled λ, the undistinguished elements in S are {λ, aa} and {a, aab}. It
is possible to distinguish the first one using the suffix b. Once the table is filled in, all the elements in S are distinguished,
therefore, the sets D+(S) and D−(S) for the language are the following:

D+(S) = {a, ab, bb, aaa, aab, aaab, aaba, aabab}
D−(S) = {λ, b, aa, abb, aabb, aabbb} .
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Fig. 2. PTMM for the example (characteristic) training set.

We now prove that, if the minimal set of test states was built using the same order Algorithm 3.1 uses, then, the sets
D+(S) and D−(S) are a characteristic sample that identifies L.

Theorem 3. Any GI algorithm, such that the promotion of states is independent from the input set, has a polynomial characteristic
set, no matter the order followed to carry out the merging of states.

Proof. Let us consider any order over a finite subset of Σ∗ as defined previously. Let S ⊂ Σ∗ be a prefix-closed minimal
set of test states obtained according the defined order. Let also D+(S) and D−(S) be the positive and negative sets of strings
obtained from S.

Let us assume first that promotion has priority over merging. We first will prove that red ⊆ S always hold.
Initially, red = {λ} and blue = Σ . Let us consider any given iteration such that red ( S, then blue = redΣ − red ⊂

(SΣ ∪ S). Note that there is at least one state in blue ∩ S which, by construction of the characteristic sample, can be
distinguished from any state in red. Let q denote the first of those states, q appears also the first in NonEqStateList and
is promoted to red (line 18 in Algorithm 3.1). Eventually, all the elements in S will be promoted and thus red = S and
blue = SΣ − S. At that moment, again by the construction of the characteristic sample, each q ∈ blue can be distinguished
from any element in S but just one. Therefore, the criterion followed to merge the remaining states in blue is irrelevant.

Let us assume now that promotion has no priority over merge. We prove now that the order in which the merges are
carried out affects only when the training set is not characteristic. Under these conditions, whenever red ⊂ S it is fulfilled
that blue ⊆ SΣ ∪ S. By construction of the characteristic sample, for any state q ∈ blue there is only one red state p such
that the pair (p, q) is inMergibleStatesList . Once the merging of the pair of states (p, q) has been carried out, the red set does
not change and the blue set continues being included into SΣ ∪ S. �

Example 4. Let the automaton A in Fig. 1 and the characteristic sample for the language L(A) obtained in Example 2. The
PTMM(D+,D−) is the one shown in Fig. 2.

The symbol inside each state represents the output value for that state. Note also the figure shows also the numbering
of the states according the alphabetical order. The red and blue sets are initialized respectively to {1} and {2, 13}. The first
state to analyze is state 2 and added to the NonEqStatesList as well as state 13 which is analyzed afterwards. Thus, the state
2 is promoted to the red set, and therefore, red = {1, 2} and blue = {3, 11, 13}.

The second iteration analyzes first the state 3 which is added to the list of NonEqStatesList , as well as state 11 and
state 13. Thus, the algorithm’s only option is to promote the first state in NonEqStatesList , and thus, red = {1, 2, 3} and
blue = {4, 6, 11, 13}.

The next iteration starts analysing state 4 which is found to be mergable with state 2, and therefore it is added to the
MergibleStatesList . State 6 is the next state took into account and it is added to NonEqStatesList because it is not equivalent to
any state in red (aswell as state 11). The last state analyzed is state 13which is found to be equivalent to state 3 and therefore
added toMergibleStatesList . First, let us note that the two possible merges in this stage consider the pairs of states (2, 4) and
(3, 13) (whichwill be of interest at the end of this example). In this run, wewill choose first to promote rather than tomerge.
Therefore, the first state inMergibleStatesList is added to the red set, and thus red = {1, 2, 3, 6} and blue = {4, 7, 9, 11, 13}.

The analysis of the blue states carried out in the next iteration detects that the pair of states (2, 4) can be merged, as
well as the pairs (2, 7), (1, 9), (6, 11) and (3, 13). It is worth noting here that: first, each blue state can only be merged with
one red state; second that the possible merges detected in previous iterations are also considered in this last iteration, and
therefore, when a characteristic sample is used, it does not matter which choice is done in previous iterations because the
output of the algorithm is always the same.

4. Conclusions

The experimental behavior of Blue-Fringe algorithmproves that themerging order in a GI algorithm is important to obtain
good results in applied tasks. This is mainly due to the fact that a guided order can take profit from evidences in the training
set. In general, the consideration of guided orders in a GI algorithm leads to a more data-efficient method.
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The proof that Blue-Fringe algorithm has a polynomial characteristic set, which was assumed not to exist by the GI
community, motivates this work. In this paper we prove a sufficient condition for GI algorithms to have a polynomial
characteristic sample. The result allows the consideration of any interesting data-driven criterion to establish the merging
order of a GI algorithm. Thus, the use of ad-hoc orders in the application of GI algorithms to real tasks, under some conditions,
could lead on the one hand to very efficient algorithms with respect to the data, and on the other hand, does not threaten
the polynomial convergence which can be achieved.
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