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The objective of this study was to determine whether leaf area index (LAI) can be accurately estimated in
intensively managed pine plantations using multiple-return airborne laser scanner (lidar) data. In situ
measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 109 plots under a
variety of stand conditions (i.e., stand age, nutritional regime, and stem density) in North Carolina and
Virginia, USA in late summer, 2008. Distributional metrics were calculated for each plot using small foot-
print lidar data (average pulse density 5 pulses per square meter; up to four returns per pulse) acquired in
the month preceding the field measurements. Distributional metrics were calculated for each plot using
all vegetation returns, as well as using ten 1 m deep crown density slices (a new technique introduced in
this study), five above and five below the mode of the vegetation returns for each plot. These metrics
were used as independent variables in best subsets regressions with LAI (measured in situ) as the depen-
dent variable. The best resulting models had an R2 ranging from 0.61 (for a 2-variable model) to 0.83 (for
a 6-variable model). The laser penetration index (LPI) was an important variable regardless of the number
of variables used. Other important variables included the mean intensity value, the mean and 20th per-
centile of the vegetation returns, and various crown density slice metrics. These results indicate that LAI
can be estimated accurately using lidar data in intensively managed pine plantations over a wide variety
of stand conditions.

Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Stemwood production is influenced by climate, nutrients, and
water, but is also determined by the amount of light intercepted
and the photosynthetic efficiency of canopies (Vose and Allen,
1988). Canopy structure throughout the vertical and horizontal
profiles can be described by biophysical forest parameters such
as leaf area and tree height. Leaf area index (LAI) is defined as
the total one-sided area of leaf tissue per ground surface area
(Watson, 1947). It plays an important role in several key ecosystem
processes by the exchange of energy and gases (e.g., CO2 and
water-vapor fluxes) between terrestrial ecosystems and the
atmosphere. It is also central to describing rainfall interception. As
a result, leaf area varies along with hydrological, biogeochemical,
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and biophysical processes, either due to natural stand develop-
ment or forest management practices (e.g., thinning, fertilization,
and vegetation control).

Along with leaf biomass, leaf area has a strong relationship with
productivity (Cannell, 1989). In loblolly pine (Pinus taeda L.), for
example, leaf biomass dynamics are dependent on phenology, cli-
matic conditions, site factors and stand density, thus LAI represents
a measure of site occupancy that integrates tree size, stand density
and site resource supply (Vose and Allen, 1988). Based on these
relationships, forest managers have observed crown development
and leaf production as responses to fertilization and thinning; such
responses are consequently related to carbon accumulation and
tree growth (Albaugh et al., 1998; Carlyle, 1998; Martin and Jokela,
2004). Traditional approaches to directly estimate leaf area index,
such as using destructive sampling, although very accurate, are
labor intensive, time consuming, and costly. The resulting paucity
of samples limits their utility for forest management.

The use of remote sensing technologies to monitor, and there-
fore to improve the management of forest resources at regional
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and global scales has increased exponentially over the last 30 years
(Lefsky et al., 2002b; Lu, 2006; Lutz et al., 2008). Previous research
has shown that satellite data can be used to estimate LAI accurately
in areas where LAI has been empirically related to satellite-mea-
sured reflectance values (Curran et al., 1992; Gholz et al., 1997;
Jensen and Binford, 2004; Flores et al., 2006). Green vegetation
amounts and leaf area index have been associated with spectral
reflectance, and frequently with vegetation indices. Nonetheless,
researchers have observed that optically-derived vegetation indi-
ces reach an asymptote or saturation point when LAI values are
on the order of 3–5 (Spanner et al., 1990b; Turner et al., 1999;
Birky, 2001; Anderson et al., 2004).

The estimation of LAI using satellite data can be complicated by
variation in atmospheric characteristics, the background optical
properties (i.e., understory vegetation, senescent leaves, soil, bark
and shadows) (Spanner et al., 1990a; Eriksson et al., 2006), and
the challenge of accounting for tree architecture (Soudani et al.,
2002). A drawback of optical imagery is that it is only appropriate
for examining the variation of features on horizontally distributed
basis. Newer remote sensing technologies such as discrete return
lidar (light detection and ranging), which is physically oriented
and generates data points in a three-dimensional cloud, can be
suitable to evaluate variation in vertically distributed canopy fea-
tures. Researchers have employed lidar to estimate forest biophys-
ical parameters, especially in forest inventory applications, such as
estimating stand height and volume (Nilsson, 1996; Næsset,
1997a,b; Popescu et al., 2002); forest biomass (Nelson et al.,
1997; Lefsky et al., 2002a; Drake et al., 2003; Bortolot and Wynne,
2005; van Aardt et al., 2006); canopy structure (Nelson et al., 1984;
Lovell et al., 2003); tree crown diameter (Popescu et al., 2003);
stem density (McCombs et al., 2003; Maltamo et al., 2004), species
classification (Farid et al., 2006; Ørka et al., 2009) and leaf area in-
dex (Morsdorf et al., 2006; Jensen et al., 2008; Zhao and Popescu,
2009). The studies in which lidar data were used to estimate LAI
did not find a maximum LAI or saturation problems. However,
none of the past studies have used multiple return lidar data to
examine the accuracy of lidar-based LAI estimates in stands that
have been fertilized at different rates and have different stem den-
sities. The primary objective of this study was to predict LAI accu-
rately across multiple sites of loblolly pine plantations and under a
variety of intensive silviculture regimes using laser technology.
Traditional approaches, used in previous published work, to extract
information from lidar data were followed, as well as the calcula-
tion and evaluation of new metrics to better explain variation in
LAI.

2. Methods

2.1. Study sites

Five study sites located in North Carolina and Virginia, USA
were used for this research. All five sites were established and
maintained in support of research studies investigating the role
of intensive management in optimizing loblolly pine (P. taeda L.)
production. These studies were established and/or maintained as
a joint effort among the Forest Productivity Cooperative (FPC,
2011), academic institutions, the USDA Forest Service, the Virginia
Department of Forestry, and private industry.

The Nutrient by Stand Density Study (NSD) was installed in 1998
and is located in Buckingham County, Virginia (37�3405900N,
78�2604900W) (Fig. 1), at 184 m above sea level. The aim of the study
was to investigate the effects of two tree planting spacings and fer-
tilization on tree growth development. It has three different fertil-
ization regimes: low, medium and high, (designed to achieve a site
index (SI) at 25 years of 15, 21 and 24 m, respectively), and two dif-
ferent stem densities (897 and 1794 trees per hectare). Fertilizer
applications mainly contained nitrogen and phosphorus. Plot size
is 676 m2 (26 m � 26 m) with each block containing 6 plots, for a
total of 18 plots. Refer to Carlson et al. (2009) for a more detailed
explanation of the treatments.

The second study site was a recently established trial,
RW195501 (RW19), which is part of a regionwide study examining
the effects of fertilization and thinning in mid-rotation stands. This
trial is located in the Piedmont of Virginia in Appomattox County at
37�2603200N and 78�39’4300W (Fig. 1). A total of 32 plots were in-
stalled in a 13 year old stand. The plots vary in size from approxi-
mately 400 to 1280 m2. At the time of the lidar acquisition in
summer 2008, only the plots had been established and no addi-
tional silvicultural technique had been applied besides the tradi-
tional forest operation practices used in the area.

The third study in Virginia, RW180601 (RW18), is also part of a
regionwide study designed with the objective of understanding
optimal rates and frequencies of nutrient additions for rapid
growth in young stands. The trial is located in a Piedmont site of
Brunswick County at 36�4005100N and 77�5901300W (Fig. 1). A total
of 40 plots were installed in 1999 in a 6-year-old planted stand.
These plots had complete weed control and five nutrient treat-
ments, as follows: 0, 67, 134, 201, and 269 kg/ha nitrogen (N) ap-
plied with phosphorus (0.1 � N), potassium (0.40 � N) and boron
(0.005 � N). Nutrient application frequencies were at 1, 2, 4 and
6 year intervals. Thirty plots were thinned in 2008. Plots vary in
size from approximately 400 to 470 m2.

One of the two sites located in North Carolina, is The Southeast
Tree Research and Education Site (SETRES), geographically posi-
tioned in the sand hills at 34�5401700N and 79�290W (Scotland
County) (Fig. 1). This trial was established in 1992 in an
8-year-old plantation. The aim of the study was to quantify the ef-
fects of nutrient and water availability on above and below ground
productivity and growth efficiency in loblolly pine. Treatments
consisted of nutrient additions (nitrogen, phosphorous, potassium,
calcium and magnesium), and irrigation. See Albaugh et al. (1998)
for complete site and treatment descriptions. Plot size is 900 m2

(30 m � 30 m), 4 blocks and 4 plots per block, for a total of 16 plots.
The final site in North Carolina, and also the oldest stand

measured, is the Henderson Long Term Site Productivity Study
(Henderson) located at 36�2605200N, 78�2802300W (Vance County)
(Fig. 1). It was established in 1982 with the objective of monitoring
the effects of soil management practices on soil structure, organic
matter and nutrient contents, and pine growth. Treatments con-
sisted of two levels of biomass harvest, stemwood only or whole
tree removals; two site preparation methods, chop and burn, or
shear, pile and disk; and vegetation control for the first 5 years
or no vegetation control. Plot measurement size is 450 m2

(15 m � 30 m), and there are 3 blocks, with 8 plots per block,
totaling 24 plots in the study. For a detailed description of the
treatments and study, see Vitousek and Matson (1985).

2.2. Field data collection and analysis

2.2.1. Inventory data
All studies were measured during the 2008 dormant season. To-

tal tree height (HT) and height to live crown (HLC) were assessed
for every tree within the measurement plots using a Haglöf Vertex
hypsometer.

2.2.2. Leaf area measured with an optical sensor
Leaf area index data were assessed using the LiCor LAI-2000

Plant Canopy Analyzer on each plot during late summer (Septem-
ber 7–19, 2008) except for the RW19 trial, which was measured in
January 2009. Above canopy readings were recorded remotely
every 15 s by placing an instrument in an open field adjacent to
the stand during the same date and time that measurements were



Fig. 1. Geographic representation of the study sites in North Carolina and Virginia, USA.
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taken inside the stand. The measurements inside the stand were
made holding the instrument at a height of 1 m facing upwards.
This same procedure was repeated in every single plot regardless
of the presence of understory or mid-story vegetation, such as that
found in some plots part of the Henderson study. Due to the instru-
ment’s design, measurements were taken under diffuse sky condi-
tions to ensure that the sensor measured only indirect light. Thus,
measurements were taken during the dawn and predusk periods,
with the above and below instruments facing north, using a 90�
view cap. Sampling points were distributed systematically in the
plots along a transect perpendicular to the tree-rows. Two tran-
sects were used, one close to the plot edge and the other in the
middle of the plot. Between 14 and 25 readings were recorded,
based on the plot dimensions. The calculation of LAI was accom-
plished using the FV-2000 software which averaged all the read-
ings per plot. The canopy model used to calculate LAI was
Horizontal (LI-COR, 2010); the ring number 5 was masked to re-
duce the error introduced by the stem and branches of pine trees;
the option of skipping records with transmittance >1 was used in
order to avoid bad readings that can alter the mean values of LAI
per plot. The above and below canopy records were matched by
time (Welles and Norman, 1991).

Since RW19 leaf area was measured in early winter (January
2009), a regression model was developed to generate an approxi-
mation of the summer 2008 LAI values. The model was based on
Licor LAI ground measurements made in summer (August) 2005
and winter (February) 2006 from 17 plots (100 m � 100 m) estab-
lished in 7- and 10-year old loblolly pine stands. See Peduzzi et al.
(2010) for a description of the plots. The resulting equation was
LAIsummer = 1.2768(LAIwinter) and had an R2 of 0.8. Previous research
has shown that loblolly pine LAI differences between summer and
winter estimates, based on litterfall, are higher than the differences
of seasonal LAI estimates using the Licor LAI-2000 (Hebert and
Jack, 1998; Dewey et al., 2006), this is probably due to Licor under-
estimations of LAI (Sampson and Allen, 1995); hence, predicted LAI
values from the developed equation were low compared to litter
trap estimates (Gresham, 1982; Dalla-Tea and Jokela, 1991) but
in agreement with Licor measurements (Sampson et al., 2003). In
addition, an unrealistic estimated LAI value (0.12) collected in
one of the heavily thinned plots of the RW18 study was deleted
from the dataset.

2.2.3. Lidar data
Small footprint lidar data were acquired for all the study areas

in late August 2008. The system was an Optech ATLM 3100 with
an integrated Applanix DSS 4K � 4K DSS camera. The data have
multiple returns with a sampling density of 5 pulses per square
meter, with at least 4 returns per pulse. The scan angle was less
than 15�. Instrument vertical accuracy over bare ground is 15 cm,
and horizontal accuracy is 0.5 m.

Ground returns were already extracted by the lidar provider,
and the data were reviewed to determine whether the ground re-
turn classification had any flaws. Based on the size of the lidar
dataset, these study sites represent a relatively small area, which
is an advantage in terms of the computation time necessary to
run interpolation models. Therefore, the kriging method was ap-
plied to the provided ground returns to generate a digital elevation
model (DEM) for the area (Popescu et al., 2002). Next, lidar data
points per plot were separated in three classes: ‘‘ground returns’’
(height above the ground, hag = 0 m), ‘‘all returns’’ (hag > 0.2 m),
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and ‘‘vegetation returns’’ (hag > 1 m). Vegetation returns were clas-
sified using a 1 m threshold because the instrument used to esti-
mate LAI in situ was held at approximately 1 m above the
ground. The metrics derived from the ground returns class (Gr)
were: frequency (count) of returns and frequency (count) of pulses
(Table 1). The metrics derived from the all returns class (All) were:
frequency (count), mean height, standard deviation, coefficient of
variation, minimum, maximum, percentiles (10, 20, 25, 40, 50,
75, and 90), and frequency (count) of pulses (Magnussen and
Boudewyn, 1998; Popescu et al., 2002; Holmgren, 2004). The met-
rics derived from the vegetation returns class (Veg) were the same
described for the all returns class with the addition of the mode.
The distribution of intensity values (I) were described using the
mean, minimum, maximum, standard deviation, and coefficient
of variation. First, second, third and fourth returns were classified
as such and divided by the total number of ‘‘vegetation returns’’
(R). The laser penetration index (LPI) (Barilotti et al., 2005), devel-
oped taking into account the transmission of the laser beams
through the canopy, uses the number of ground returns. It is based
on the same principles than the instruments to indirectly measure
LAI on the ground (measuring the solar light transmission or reflec-
tance through vegetation). However, the authors advised that this
index could vary by forest type and stand structure. LPI was then
calculated per plot as the proportion of ground pulses to the total
pulses (ground pulses + all pulses). Density metrics (d) were calcu-
lated following Næsset (2002), as the proportion of returns found
on each of 10 sections equally divided within the range of heights
of vegetation returns for each plot. These 10 sections correspond to
the 0, 10, 20, . . . , 90 quantiles of the return classes per plot. Addi-
tionally, another set of metrics, crown density slices (Cd), was cal-
culated using the mode value of vegetation returns. Ten 1-m
sections of vegetation returns (5 above and 5 below the mode va-
lue, based on the maximum value of crown length observed) were
classified and proportion of returns to the total number of returns,
mean, standard deviation, and coefficient of variation were calcu-
lated (Fig. 2). Frequency of returns (count), calculated from each
of the lidar data point classes, were used only to estimate other
metrics, such as proportions of returns, but they were not used
in the development of the models (Table 1).

The height values obtained from the lidar data collected in
RW18 were too high in one portion of the study area, with values
several meters higher than the forest stand heights. A threshold,
Table 1
Explanatory variables derived from lidar. Return hag refers to the return height above the gr
deviation (stdv), coefficient of variation (cv), minimum (min), maximum (max), and height
and Vegpulses were determined for calculation of other metrics (i.e., proportions of returns

Lidar metrics

Total number of ground returns
All returns (return hag > 0.2 m)

Units are meters for all metrics except for Alltotal and Allcv

Vegetation returns (return hag > 1 m)
Units are meters for all metrics except for Vegtotal and Vegcv

Pulses (number of lidar pulses per return class)
Laser penetration index (LPI)
Intensity values (returns hag > 1 m)

Units are watts for all metrics except for Icv

Proportion of 1st, 2nd, 3rd and 4th returns
Ri is a proportion of returns

Density
di is a proportion of returns

Crown density slices around Vegmode

See Fig. 2 for a graphic representation of slices

Units are meters for Cdimean , Cdistdv
, and Cdicv

Cdi is a proportion of returns
maximum return hag P1 m higher than field-measured tree
height per plot was used to eliminate erroneous lidar measure-
ments. After this threshold was applied only 19 plots remained
in this study area.

2.2.4. Statistical analysis
A dataset of 109 plots was assembled with all lidar derived met-

rics and ground truth measurements. Results from the data diag-
nostic methods applied to the dataset showed normality between
the Studentized residuals and the predicted values, and normal
order statistics. There was no need to transform the dependent
variable, and because the existing outliers were also influential
points, they were not deleted from the dataset. Pearson correlation
coefficients were used to evaluate relationships among lidar met-
rics, ground data, and LAI. Multiple regressions were used to fit
the dataset. Best subset regression models were examined using
the RSQUARE method for best subsets model identification (SAS,
2010). This method generates a set of best models for each number
of variables (1, 2, . . . , 6, etc.). The criterion to choose the models
was a combination of several conditions as follows:

� High coefficient of determination (R2) value.
� Low residual mean square (RMSE).
� Similarity between the adjusted coefficient of determination

R2
adj’ and R2 values. The R2

adj’ is a rescaling of R2 by degrees of free-
dom, hence involves the ratio of mean squares instead of sum of
squares.
� Mallows’ Cp statistic values (Hocking, 1976). When the model is

correct, the Cp is close to the number of variables in the model.
� Low values from two information criteria, the Akaike (1969)

Information Criterion (AIC) and Schwarz (1978) Bayesian Crite-
rion (SBC). The AIC is known for its tendency to select larger
subset sizes than the true model; hence the SBC was used for
comparison, since it penalizes models with larger number of
explanatory variables more heavily than AIC.

The best models chosen per subset size (based on number of
variables in the models) were evaluated for collinearity issues.
Computational stability diagnostics were then used to check for
near-linear dependencies between the explanatory variables. In or-
der to make independent variables orthogonal to the intercept and
therefore remove any collinearity that involves the intercept, inde-
ound. Statistics in subscripts were as follows: frequency (total), mean, mode, standard
percentiles (10th, 20th, . . . , 90th). The metrics Grtotal, Alltotal, Vegtotal, Grpulses, Allpulses,
), but were not used for model development.

Symbol

Grtotal

Alltotal, Allmean, Allstdv, Allcv, Allmin, Allmax, All10th, . . . , All90th

Vegtotal, Vegmean, Vegmode, Vegstdv, Vegcv, Vegmin, Vegmax, Veg10th, . . . , Veg90th

Grpulses, Allpulses, Vegpulses

LPI = Grpulses/(Grpulses + Allpulses)
Imean, Imin, Imax, Istdv, Icv

Ri = total number of i returns/Vegtotal

i = 1st, 2nd, 3rd, and 4th
di = [x + (Vegmax � Vegmin)/10]/Vegtotal

x = Vegmin, 1, . . . , 10
i = 1, 2, . . . , 10
Cdi , Cdimean , Cdistdv

, Cdicv

Cdi = [number of returns in i/(Alltotal + Grtotal)]
(i = +1, +2, +3, +4, +5, 0, �1, �2, �3, �4, and �5)
i = +1, . . . , + 5 at i meters above Vegmode

i = 0 at Vegmode

i = �1, . . . , �5 at i meters below Vegmode



Proportions of returns to the total number of returns
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

C
ro

w
n 

de
ns

ity
 s

lic
es

Cd-5
Cd-4
Cd-3
Cd-2
Cd-1
Cd0

Cd+1
Cd+2
Cd+3
Cd+4
Cd+5 Henderson vegetation control plot 

Age = 26 
LAI = 2.75 

(a) 

Fig. 2. Graphic description of crown density slices derived from lidar Vegmode value. Mode value per plot was significantly correlated (0.92) with mid-crown height, which
was calculated as follows: Tree total height � (crown length/2). Five 1 m sections above and below the mode were defined, and the descriptive statistics (i.e., frequency, mean,
standard deviation, and coefficient of variation) from the returns within each section were obtained. See Table 1 for variable names and how they were calculated. (a) Crown
density values for a vegetation control plot from the Henderson site.
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pendent variables were centered by subtracting their mean values
(Marquart, 1980; Belsley, 1984). The variance inflation factor (VIF)
quantifies how much the variance of an estimated regression coef-
ficient is inflated, and a threshold of 10 is commonly used, which in
the case of higher values, suggests weak (10 < VIF < 30) to high
(VIF > 30) collinearity problems. However, since VIF neither detects
multiple near-singularities nor identifies the source of singularities
(Rawlings et al., 2001), condition index (CI) was evaluated for all
variables within the models. This index is the square root of the ra-
tio of the largest eigenvalue to the corresponding eigenvalue from
the matrix. Similar to VIF, the CI indicates weak dependencies
when 10 > CI > 30 to high dependencies when CI > 30.

Additional data to test the models were not available, thus
cross-validation analysis was performed using the predicted resid-
ual sum of the squares (PRESS) statistics (Allen, 1971), which is the
sum of squares of the difference between each observation and its
prediction when that observation was not used in the prediction
equation. The root mean square error from the cross validation
analysis (CV-RMSE) was then calculated as the square root of the
ratio between the PRESS statistic and the number of observations.
The CV-RMSE is an indicator of the predictive power of the model,
thus a small CV-RMSE is desirable. The significance level used for
all the statistical tests was a = 0.05 (p-value < 0.05). This p-value
was used to evaluate if the variables included in the model were
statistically significant as well. The squared semipartial correlation
coefficients (SSCC) were calculated using partial sum of squares to
determine the contribution from each variable to the models, while
controlling the effects of other independent variables within the
model. These coefficients represent the proportion of the variance
from the dependent variable associated uniquely with the inde-
pendent variable.

3. Results

3.1. Summary statistics from ground measurements and lidar metrics

Stand age ranged from 11- to 26-year-old. Forest canopy was
closed in all plots, except for the plots in NSD that had the spacing
twice as large as that traditionally used in forest operations, and
the plots from RW18 that were thinned. Table 2 summarizes the
average growth metrics of plots, within the study sites, as treat-
ment and control, and in the case of NSD, these were distinguished
by the number of trees per hectare. In RW19 all plots were classi-
fied as fertilized, since the stand had been under traditional forest
management. Studies in which there were different levels of fertil-
ization were classified together as fertilized, regardless of the rate
and frequency of nutrient additions. In RW18, thinning was re-
cently applied to some of the control and fertilized plots, thus
the plots at this site were also classified by the number of trees
per hectare. Individual tree height ranged from 4.8 to 27.9 m and
averaged 15.7 m among all the study areas, the highest standard
deviation (>2 m) from the mean of tree height was observed in
the SETRES and Henderson studies. Crown length ranged between
0.8 (a damaged tree) and 10.8 m, and averaged 6.9 m. Leaf area in-
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dex measured on the ground ranged from 0.45 to 4.91. The lowest
values of LAI were observed in the plots from the RW18 study, and
they corresponded to the thinned plots which had an average of 16
trees distributed in a 400–470 m2 plot area. Leaf area index assess-
ment in these plots was expected to be low, not only due to the re-
duced number of trees, but also due to the difficulty of using an
indirect method to measure it. The highest LAI values were ob-
served in the control plots in Henderson. Regardless of the other
treatments applied to these plots (harvesting and site preparation),
the control plots had consistently higher LAI than the vegetation
control plots. In most plots, the presence of competing vegetation
(mostly hardwood trees) increased the LAI as much as twice the
LAI value from the plots with vegetation control.

Lidar ground returns were lowest (131) at the control plots in
Henderson (Table 3). This set of plots can be compared to the veg-
etation control plots (297) from the same study and to the fertil-
ized plots (223) from RW18, which had comparable tree
densities. However, when the number of vegetation returns are ta-
ken into account, the proportion of ground pulses relative to the
total number of pulses (LPI = 0.08) shows that the canopy in the
control plots from Henderson generated more returns (1601) and
hence did not penetrate to the ground as much as the other two
set of plots. The opposite was observed in the thinned plots from
RW18, which had the highest LPI (0.42 and 0.50), and the lowest
number of trees per plot, ground penetration was high (461 and
427), and canopy interception low (478 and 670).

Heights of vegetation returns were consistently lower than the
tree heights measured on the ground, except for a few returns that
were a few centimeters higher than the maximum tree height of
the plot. These minor anomalies could be attributable to measure-
ment and estimation errors. Fertilized plots showed higher inten-
sity mean values than control plots; however, as expected,
Henderson control plots had higher intensity means than the trea-
ted plots, since classification of these plots is not based on nutrient
additions but on competing vegetation control.

The vertical profiles (Fig. 3) show graphically the range of
heights for the vegetation returns according to their frequency.
The mode for each of the sites is highlighted on the profiles; this
metric had a Pearson correlation coefficient of 0.92 with the mean
mid-crown height of the individual plots (n = 109). The frequency
of returns at the Henderson site, and at the RW18 and RW19 sites
(Fig. 3) show that there are a number of returns that come from be-
low the canopy, whereas SETRES and NSD frequencies are closer to
zero. The latter two sites have been maintained with no understory
vegetation. RW18 unthinned plots are also free of understory veg-
etation, but they represent only 4 of the 19 plots used from this
study. The site that showed less frequency of returns was RW18
(Fig. 3); this observation could be due to the fact that most of
the 15 plots at this site had been intensively thinned (313–470
TPH) and they are also the smallest plots among all the study sites.
SETRES and Henderson have a higher number of trees per hectare
than RW19; however the frequency of returns in Fig. 3 was higher
in RW19 than in the other two sites. This result could be explained
by the number and area of the plots: 32 plots (400–1280 m2) in
RW19, compared to 24 plots (450 m2) in Henderson, and only 16
plots (900 m2) in SETRES.

3.2. Variable selection and modeling

Among all the lidar metrics, LPI has the highest correlation with
LAI (�0.757) (Table 4). A graphic representation of the LAI and the
LPI contrast is shown in Fig. 4, where the high values of LAI are in
concordance with the low values of LPI. The crown density slices
(1 m section) were calculated with the objective of examining
the relationship of the shape of the frequency profiles to LAI. The
metrics that contributed to the best models were the proportion
of returns at 1 m above the mode (Cd+1) and its standard devia-
tion, the coefficient of variation at 4 m above the mode (Cd+4cv),
and the proportion of returns at 4 m below the mode (Cd�4). Cor-
relations of these metrics are shown in Table 4. Although the stan-
dard deviation at 1 m above the mode (Cd+1stdv) was the only one
to have a statistically significant correlation with LAI, the other
three metrics (Cd+1, Cd+4cv, and Cd�4) had a highly significant
contribution to the LAI predictive models when used in combina-
tion with other variables. The other variables, which were signifi-
cantly correlated with LAI included Vegstdv, and Imean (Table 4).
Also, variables such as the Veg-percentiles, crown density slices,
and the rest of the densities, had significant correlations with
LAI, but since their correlations were similar to the ones from the
variables shown in Table 4, and they were not part of the best mod-
els observed, their Pearson coefficients have not been reported.
Variables derived from all returns >0.2 m were also significantly
correlated with LAI, but not as highly correlated as the variables
derived from vegetation returns >1 m. Due to collinearity problems
among these metrics, only one set of variables was used at a time
in the best subset analysis, and ultimately variables with higher
correlations and models with better R2 were chosen.

All variables from ground measurements showed significant
correlations with LAI, that is mean tree height (0.270), mean crown
length (�0.343), and number of trees (0.427). However, the best
models generated from the best subsets analysis, did not have an
increase in R2 compared to the models using lidar metrics only.
Therefore, these models were not reported.

Combinations of the metrics reported in Table 4 for models
including 2, 3, 4, 5 and 6 variables are summarized in Table 5.
R2

adj’ values ranged between 0.60 and 0.82 for 2 and 6 variable mod-
els, respectively. Despite the collinearity issues that lidar derived
metrics can produce in predictive models, all parameters had var-
iance inflation factors (VIF) lower than 6. All variables had a CI low-
er than 5 (Table 5). The increment in R2 and R2

adj’ gained from
adding a variable to the model is more noticeable where 2–3 and
3–4 variables were included. The root mean square error
(CV-RMSE) and PRESS statistics (from the cross validation analysis)
became lower as the number of variables included in the models
increased. LPI, which was highly correlated with LAI, was found
in all the models, as well as Imean except for the 2-variable model;
and as these two variables were added to the models, the Vegmean

and Veg20th became common variables also. The variable contribu-
tions among the models, in descending order of importance, were
LPI, Vegmean, Veg20th, and Imean; except for the 6-variable model
were Imean had higher contribution than Veg20th. Crown density
metrics were the lesser contributors compared to the rest of the
variables, nonetheless these were responsible for increasing the
R2 values from the models. Among all the models reported, the
4-variable model represents the best way to estimate LAI, in terms
of maximizing R2 while minimizing the number of variables. How-
ever, predicted LAI values using this model were plotted against
the observed LAI from all the plots (Fig. 5) and it was noticeable
that one of the plots from RW18 control thinned stands with very
low LAI (0.6) was predicted as no LAI (0). Therefore, for comparison
purposes, LAI estimations using the 6-variable model were plotted
versus the observed LAI values (Fig. 6), in which the same plot was
estimated with and LAI of 0.4. Although, the R2 and R2

adj’ values are
similar between these two models, the 6-variable model predicted
low LAI values better (more realistically) than the 4-variable mod-
el. Data distribution within the graphs tended to cluster at the cen-
ter, since this was the range of the observed LAI from most of the
sampled plots.

In addition, a modified dataset was used to evaluate the influ-
ence that plot size had on the models. As described previously,
the area of the plots differed from one site to another. For this
modified dataset, all plots were buffered and reduced to the small-



Table 2
Descriptive statistics for tree height, crown length and leaf area index (LAI) at control and treatment plots per study site. Statistics for total were calculated based on plot means.
Column annotation: n (number of observations or plots), TPH (trees per hectare), Ntrees (number of trees per plot), and Stdv (standard deviation).

Study Stand
age

Treatment n TPH Ntrees Height (m) Crown length (m) LAI

(mean) Mean Stdv Range Mean Stdv Range Mean Stdv Range

NSD 11 Control 3 897 61 11.0 0.9 7.1 12.9 7.2 1.0 6.5 7.6 2.57 0.20 2.38 2.78
3 1794 125 11.1 0.9 6.5 13.2 5.8 0.9 5.6 6.1 3.72 0.39 3.35 4.13

Fertilized 6 897 61 11.1 1.0 5.7 13.3 7.3 1.1 6.7 7.9 3.21 0.48 2.51 3.97
6 1794 123 11.2 0.9 6.7 14.6 5.9 1.0 5.7 6.2 3.50 0.49 2.84 4.03

RW19 13 Fertilized 32 1176 94 13.1 1.3 5.0 18.8 7.3 1.2 6.5 8.0 2.56 0.27 1.93 3.05

RW18 16 Control and thinned 2 (346–
395)

16 16.7 0.7 15.5 18.0 7.7 1.0 5.7 10.8 0.79 0.30 0.57 1.00

Fertilized unthinned 4 1678 60 16.9 1.8 10.5 20.6 6.3 1.6 0.8 10.7 3.90 0.78 2.93 4.85
Fertilized and thinned 13 (313–

470)
16 17.0 0.8 13.8 19.4 7.6 1.0 4.9 10.7 0.96 0.30 0.45 1.52

SETRES 24 Control 4 1665 100 12.9 2.1 4.8 17.8 6.2 1.6 5.7 6.6 2.09 0.38 1.55 2.40
Fertilized, irrigated or
both

12 1665 95 16.6 2.5 6.0 22.1 6.9 1.7 6.1 7.9 2.66 0.41 1.87 3.27

Henderson 26 Control 12 1665 51 21.1 2.4 13.4 27.9 6.3 1.8 5.6 8.2 4.47 0.31 3.84 4.91
Vegetation control 12 1665 63 21.9 2.2 14.0 26.9 6.2 1.7 5.0 7.1 3.07 0.83 2.08 4.69

Total 109 – 73 15.7 3.7 4.8 27.9 6.9 0.8 0.8 10.8 2.77 1.06 0.45 4.91
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est area plots (between 400 and 450 m2), and lidar metrics for this
new set of plots were then calculated. Despite the expectation that
the results using similar plot sizes could improve, the models de-
rived using same plot size consistently showed lower R2 values
than those generated using different plot size. Nonetheless, the
combination of variables within the models was very similar. This
result was supported by the absence of correlation between LAI
and plot area (r = �0.010).
4. Discussion

Good correlations of certain lidar metrics with LAI were ex-
pected. Laser penetration index is physically related to the level
of canopy development; the closer and denser the vegetation, the
less the laser pulses penetrate to reach the ground. This index
has been used in previous research to predict LAI, and reported
models were able to explain 80% or more of the variation of leaf
area in natural forest ecosystems (Barilotti et al., 2005; Kwak
et al., 2007). Vegetation return percentiles, and canopy densities
have also correlated well with other stand attributes, including
tree height, diameter, and volume (Magnussen and Boudewyn,
1998; Næsset, 2002; Popescu et al., 2002; Holmgren, 2004). Recur-
rent variables in the models, besides LPI, were:
Table 3
Means of lidar returns per plot at each study site. Minimum values for vegetation returns
(n = 109). Column annotation: n (number of observations or plots), Grtotal (total number of
(maximum value), and LPI (Laser Penetration Index).

Study Treatment n Ntrees (mean) Grtotal (mean)

NSD Control 3 61 592
3 125 719

Fertilized 6 61 589
6 123 660

RW19 Fertilized 32 94 1042

RW18 Control and thinned 2 16 461
Fertilized unthinned 4 60 223
Fertilized and thinned 13 16 427

SETRES Control 4 100 814
Fertilized, irrigated or both 12 95 757

Henderson Control 12 63 131
Vegetation control 12 51 297
(1) The average intensity of the returns (Imean), which as a mea-
sure of the return signal strength, depends, among other
things, on the reflectance and reflectivity of the target. This
metric is therefore closely related to the amount of vegeta-
tion (leaves and branches) when a forest is such target. Pre-
vious research has used metrics calculated from intensity
values to estimate forest biomass (van Aardt et al., 2006);
however, since the intensity values from lidar sensors are
frequently not calibrated, researchers have advised to using
them with caution (Bater et al., 2011). Fortunately, the data-
set used in this research encompasses large variability in
many aspects. Lidar data acquisition dates were not the
same for most sites, the terrain relief ranged from flat to
hilly, and the forest stands varied in age, stem density and
fertilization rates. Therefore, the intensity metrics used for
developing the models inherently possessed a large amount
of variation.

(2) The average height from the vegetation returns (hag > 1 m)
and the Veg20th percentile. These two metrics are lidar
return height values, hence they are descriptors of the
canopy density and height of the forest stands. The mean
values from the lidar returns are related to the distribution
of return heights across the stand vertical profiles, and such
heights will therefore relate to the target heights (on the
heights above ground were set at 1 m. Intensity minimum value was 1 for all plots
ground returns), Vegtotal (total number of all returns), Stdv (standard deviation), Max

Vegtotal (mean) Veg return heights (m) Intensity (W) LPI

Mean Stdv Max Mean Stdv Max

1286 6.9 1.7 11.5 33.5 14.1 93 0.32
1965 7.8 1.5 12.1 36.7 13.9 75 0.28
1912 7.3 1.7 12.1 38.9 14.9 91 0.24
2218 8.0 1.5 12.1 40.8 14.7 80 0.23

2201 9.2 2.1 15.2 36.8 16.0 115 0.30

478 12.6 1.9 16.7 28.9 14.5 66 0.50
1031 12.5 3.7 18.6 34.5 13.2 71 0.18

670 11.9 3.5 19.4 31.4 15.2 87 0.42

2806 10.4 2.2 18.1 28.9 13.3 69 0.23
2456 14.0 2.7 21.2 34.1 14.6 80 0.24

1601 15.2 5.0 24.7 32.0 19.4 103 0.08
1395 17.1 5.6 25.7 30.4 15.8 105 0.18



Fig. 3. Vertical profiles for lidar vegetation returns (hag > 1 m) in each study site. The mode for the vegetation returns is circled on the y axis. Study sites are: (a) NSD, (b)
RW19, (c) RW18, (d) SETRES, and (e) Henderson.
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ground). The more targets (i.e., branches, leaves, etc.) the
laser would encounter within a range of heights, the more
returns will be obtained from that section of the stand. Thus,
the mean value from all the vegetation returns will be influ-
enced by the heights from where most of the returns were
acquired. Similarly, the percentile values, in this case the
20th, meaning that 80% of the return heights are above that
height; can refer to the density of such targets on the
ground.

(3) The standard deviation of the returns found between 1 and
2 m above the mode of the height values of vegetation
returns (Cd+1stdv). This variable had a negative correlation



Table 4
Pearson correlation coefficients for the independent variables used to predict leaf area index (LAI) (n = 109). For a description of the variable names refer to Table 1. LAI was
measured on the ground. Bold values were significant at a = 0.05.

LAI LPI Vegmean Vegstdv Veg20th Imean Cd+1 Cd+1stdv Cd+4cv Cd�4

LAI 1 �0.757 0.187 0.397 �0.046 0.271 0.086 �0.328 �0.029 0.101
LPI 1 �0.045 �0.271 0.060 �0.183 �0.254 0.239 �0.213 �0.185
Vegmean 1 0.693 0.873 �0.436 0.153 �0.004 �0.453 0.391
Vegstdv 1 0.366 �0.491 0.024 0.016 �0.249 0.227
Veg20th 1 �0.271 0.250 0.045 �0.450 0.298
Imean 1 0.172 �0.075 0.086 �0.179
Cd+1 1 0.002 0.304 �0.326
Cd+1stdv 1 0.135 0.125
Cd+4cv 1 �0.093
Cd�4 1

Fig. 4. Graphic representation of LAI and LPI mean values for a subset of plots at the SETRES study site. LAI and LPI have a negative correlation (�0.76), hence when LAI is high
(dark) the LPI should be low (light). Aerial photography was taken at the same time that lidar data were acquired (Summer 2008).
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with LAI, meaning that the higher the LAI, the less the dis-
persion observed from the mean of the height values. This
section is located above the mode, within the top part of
the tree crowns, which in closed canopy stands such as these
is likely to be where most of the foliage would be located.

Despite the fact that ground-based variables (number of trees,
mean tree height, and crown length) showed significant correla-
tions with LAI, these were not strong enough to increase the per-
formance of lidar metrics when added to the models.

Previously developed leaf area predictive models (that used dis-
crete lidar data, first and last returns) were reported to explain be-
tween 40% and 89% of the variance. Interestingly enough, the
tendency observed is that relationships (between LAI and lidar
metrics) favor the sampling of mixed species forests more than
pure coniferous stands. For example, Riaño et al. (2004) measured
forests in Spain and reported R2 > 0.8 for deciduous species and
R2 < 0.4 for pines. Other researchers modeling pure pine stands re-
ported an R2 of 0.69 in Sweden (Morsdorf et al., 2006), and an R2 of
0.70 in the U.S. (Jensen et al., 2008); but the results from mixed
species stands have R2 values of 0.89 (Barilotti et al., 2005), 0.80
(adjusted R2) (Sasaki et al., 2008), and 0.84 (Zhao and Popescu,
2009). Using loblolly pine plantations only, Roberts et al. (2005)
developed a model that explained 69% of the variation.

Based on these previous results, the models obtained performed
close to the best models reported in the literature, since they
explained up to 83% of the variation. Specially, considering that
the stands sampled in the current study were not only pure conif-
erous stands, but also of uniform age within each site, and growing
under intensive management (at different fertilization rates, tree
spacing, and little or no understory vegetation). The use of multiple
return data might have made the characterization of such variation
across the study sites feasible, since many of the variables included
in the model were based on the number of returns, instead of using
the number of pulses.

A group of models explaining between 61% and 83% of the LAI
variation was reported. The reason for this range is the number
of variables in each model. Although the most parsimonious model
is generally considered best, this applies to cases when the stability
of the model can be compromised or when the estimation of an
additional variable impact on the research or operation costs,
which is usually the case in biological sciences (Rawlings et al.,



Table 5
Best predictive models of LAI using lidar metrics only, n = 109. The statistics R2

adj’ , CV-RMSE, SSCC, VIF, and CI are the adjusted coefficient of determination, the RMSE from the
cross validation analysis, the squared semipartial correlation coefficient from partial sum of squares, the variance inflation factor and the condition index, respectively. Since all
the explanatory variables were centered, the intercept parameter for all models is 2.767. All variables in the models were highly significant at a p-value <0.0001, except for
Cd+1stdv with a p-value <0.01 (in the 5-variable model), and Cd+4cv with a p-value <0.005 (in the 2-variable model). For a description of the variable names refer to Table 1.

Variable No. R2
R2

adj’
RMSE CV-RMSE Variable Coefficient SSCC VIF CI

2 0.61 0.60 0.67 0.67 LPI �7.518 0.61 1.05 1.10
Cd+4cv �0.237 0.04 1.05 1.24

3 0.71 0.70 0.58 0.59 Vegstdv 0.318 0.11 1.60 1.14
LPI �5.393 0.26 1.26 1.23
Imean 0.099 0.09 1.54 2.07

4 0.79 0.779 0.50 0.51 Vegmean 0.330 0.19 5.68 1.40
Veg20th �0.268 0.14 4.86 1.45
LPI �5.522 0.30 1.14 1.72
Imean 0.106 0.11 1.44 4.67

5 0.80 0.791 0.48 0.50 Vegmean 0.324 0.19 5.70 1.29
Veg20th �0.262 0.13 4.89 1.45
LPI �5.275 0.26 1.19 1.60
Imean 0.104 0.11 1.45 1.75
Cd+1stdv �13.046 0.01 1.07 4.68

6 0.83 0.82 0.45 0.46 Vegmean 0.345 0.20 5.93 1.27
Veg20th �0.236 0.10 5.26 1.42
LPI �6.475 0.34 1.38 1.52
Imean 0.113 0.12 1.47 1.84
Cd+1 �10.772 0.03 1.64 2.68
Cd�4 �18.581 0.04 1.64 4.98
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Fig. 5. Relationship between estimated LAI and measured LAI using the 4-variable model with lidar metrics only (n = 109). Plots were classified first by stem density, and then
by control and treatment. Model (refer to Table 1 for variable names): LAI = 2.767 + 0.330 (Vegmean) � 0.268 (Veg20th) � 5.522 (LPI) + 0.106 (Imean).
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2001). Adding a lidar metric to the model will not increase the cost
in a significant matter, since the highest cost is the acquisition of
the lidar data itself. It will only add computational time, therefore
a 6-variable model (with stable regression estimates) for predict-
ing LAI can only increase the accuracy of the predictions. The deci-
sion of which model should be used will depend on a forest
manager’s needs. If a good approximation of the estimates and rel-
ative variation of LAI values is sufficient, the 2-variable model will
be appropriate, but if higher accuracy is wanted, a 6-variable mod-
el will be the best choice.

LAI is a useful index for intensive plantation management be-
cause it provides an estimate of the amount of light captured by
the stand and is thus a proxy variable that defines the stand’s
current growing conditions. For instance, LAI allows foresters to
identify stands that are in need of fertilization (e.g., when LAI is
low) or thinning (e.g., when LAI is high), in order to improve tree
growth and maximize returns. The 6-variable model, with an RMSE
for prediction (CV-RMSE) of 0.46, provides a precise tool for this
type of management, in which decisions are usually made based
on LAI thresholds. In this case, an error of this magnitude in esti-
mating LAI for forest management purposes is not as important
as the consistency of the estimated values across stands under
different conditions (the ability to use the same model across dif-
ferent stand ages, fertilization regimes, vegetation controls, etc.).
For forest managers, the advantage of having a model that esti-
mates LAI using remotely sensed data resides in the accuracy and
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Fig. 6. Relationship between estimated LAI and measured LAI using the 6-variable model with lidar metrics only (n = 109). Plots were first separated by stem density, and
then by control and treatment. Model (refer to Table 1 for variable names): LAI = 2.767 + 0.345 (Vegmean) � 0.236 (Veg20th) � 6.475 (LPI) + 0.113 (Imean) � 10.772
(Cd+1) � 18.581 (Cd�4).
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robustness of such models. Although satellite-derived LAI esti-
mates rely on models with R2 values similar to those of the lidar
model developed in this research (Flores et al., 2006), such esti-
mates have not been consistent, mainly due to issues associated
with sensor saturation, atmospheric conditions, and the inability
to account for the vertical structure of the stand (Peduzzi et al.,
2010). Lidar data are not without acquisition issues; in the past,
there have been concerns about the consistency of metrics derived
from lidar returns given variations in lidar sensor configurations,
flight characteristics, atmospheric conditions, topography, and tar-
get objects (Bater et al., 2011). In view of creating a robust model,
this research has taken into account much of the variation associ-
ated with these issues. For all sites, the sensor configuration was
similar; however, the acquisition date and time did not coincide
for most of them, topography differed, and, given the different
stand ages, stem densities and fertilization regimes included in
the dataset, target objects also varied.

5. Conclusion

Laser technology has been successfully used in the past to esti-
mate forest height, volume and biomass to the stand and plot lev-
els. Lately, attempts to estimate leaf area index have broadened the
potential of this tool. The results from this research complement
these efforts. A robust model with a unique set of variables was
developed that explained 83% of the variation of LAI in loblolly pine
plantations. The model was constructed from and tested through
cross validation on multiple research studies across a wide range
of site conditions and silvicultural regimes, giving foresters manag-
ing for different purposes (i.e., sawtimber, pulp, etc.) the opportu-
nity to use it as a robust application in decision making.
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