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A Nonlinear Problem Having a Continuous Locus 
of Singular Points and No Multiple Solutions 

MOSTAFA A. ABDELKADER 

25 Sh. Champollion, Alexandri’a, Egypt 

The boundary-value problem CZ” = (22 - r2)z’, c > 0, z(- I) = a, z(0) = 8, t E 
[ - 1, 01, has been shown to have a solution, and moreover, depending on the choice 
of a and /3, multiple solutions to it exist. We consider the more general equation 
f(z, t)z” = (z’ - P)z‘ for a particular non-negative function f(z, t), and integrate 
the equation exactly. Depending on a and p, we find that either there are no 
solutions, or that only unique solutions exist. The conclusion is that the presence of a 
continuous locus of singular points, given by z ’ = P, does not necessarily produce 
multiple solutions. 

1. INTRODUCTION 

The class of nonlinear boundary-value problems 

f(t, t)z” = (z’ - P)Z’, t E [ -l,O], (1) 
z( - 1) = (Y, z(0) = p, (2) 

has continuous branches of singular points, depending upon the choice of (Y 
and /3, for the coefficient of the first derivative in (1) vanishes along the line 
+ t in the (t, z) plane. The special problem for which (1) is 

cz” = (z’ - P)z’, (3) 

where e is a positive constant that may tend to zero, has been treated in 
[l-3] by various approximation methods (since no exact solution to (3) has 
been found), in which use was made of the equation 

Z’ = z’(T) ap( ~J’[z(s)’ - S*] A), 
7 

where T E [ - 1, 0), as well as of the equation 

z’ = Z’(T) + k{z(t)3 - Z(T)‘} - ys’z’(s) ds. 
7 
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We note in passing that we also have the nonobvious equation 

where 

C = exp g 
( )i 

44’ 2’(7)-3t . 
I 

The existence of a solution to (3), (2) was proved in [l]; if 0 Q a < /3, or 
/I f a Q 0, the solution is unique. It was shown in [2] and proved in [3] that, 
for other ranges of a and p, the problem (3), (2) has multiple solutions 
which are characterized by the number of “turning points,” i.e., those points 
at which the solution curves cross the line ft. The more general case in 
which the locus of singular points is an arc may be exemplified by 

f(z, t)z” = (z’ - P)z’, (4 

where r and s are such that the locus of singular points, given by z’ = P, has 
at least one real branch for t E [ - 1, 01. 

It might be thought that the presence of a continuous locus of singular 
points must engender multiple solutions for some ranges of values of a and 
& So, it is of interest to determine whether multiplicity of the solutions is a 
general phenomenon associated with the problem (4) (2) when f( z, t) is not 
identically a constant, and r * s. We choose a certain functional form for 
f(z, t) 2 0, obtain the exact solution of the problem (4), (2) and, depending 
on the choice of a and p, find that: 

(i) a solution may not exist, 
(ii) a unique solution may exist, 
(iii) there are no multiple solutions. 

These results show that the existence of a continuous locus of singular 
points does not necessarily produce multiple solutions to the boundary-value 
problem, so that the existence of such solutions to (3) (2) must be 
considered as an isolated phenomenon. This calls for an investigation of the 
conditions guaranteeing the existence of multiple solutions for the problem 
(4X (2% 

2. THE BOUNDARY-VALUE PROBLEM AND ITS SOLUTION 

We consider the particular case of (4) given by 

-tz’z” = (1 - s){z’ - P}z’, t E [ - l,O], 

2(-l) = a, z(0) = j3, 

(5) 

(6) 
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where 

1 < r = 2p/q, 0 < s = 2P/Q < 1, 

with p, P positive integers, and q, Q positive odd integers, so that f( z, t) > 0 
on [ - JO], and a real locus of singular points exists. 

In order to obtain the exact solution of (5), we first transform it into a 
first-order equation. We make the substitutions 

x = ZP, 0 = -s/r, 2y=tg, 

and obtain the nonlinear differential equation 

4 G(x) 
-;i;=go+y 

where 

(7) 

(8) 

g(x) = $20 + s) + ;x-r, U=l-S, 

G(x) = - ;(IJ + s)x - 7x’-. 

The general solution of (8) is given by 

2a(l - r)x-‘wm + sjw”(w-;)-‘dw+sC=O, (9) 

where 

u( w - f) = y(x)x’-’ - ;xr, 

r m=->1 1 
r-l ’ 

n=->O, 
r- 1 

and C is a constant of integration. 
From (9) we have 

bw” 
x’=I(w)+c’ 

where 

I(w)=jw’fw-;)-‘dw, b=$ 

(11) 

(12) 
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and from (7) and (10) we get 

d(x’)/d(log]tl) = 2ar( W - ;) - sx’. (13) 

Integrating (13) parametrically, using (1 l), we ultimately obtain 

t = D”“{ z( w) + C}““, (14) 

where D is a constant of integration. 
From (11) and (14), using (7), we get 

w = cz’-‘, cm = I/bD, 

so that (14) becomes 

where c, C are constants of integration. 
Differentiating (16), using (15) and (12), we get 

t’-“z’ = 2a c - tzlmr}, 

( 

05) 

(16) 

which by differentiation yields (5); this verifies the solution. From (15) and 
(17) we have 

tl-SZr-Iz’ = 2a( w - f}, 

so that if z’ = 0, we have w - (n/2) = 0, and from (12), Z(w) has a pole, 
and t is infinite. Hence, ]z’( > 0 on [ - 1, 01, as was found for (3) in [2] when 
a * j3; but, whereas when (Y = j3 it was considered in [3] that (3) has the 
unique solution z(t) = (Y, for (5) no such solution exists, since z’ = 0 is 
impossible. Thus, for (Y = ~9, the problem (5), (6) has no solution. 

Applying now the boundary conditions (6) to (16), we find for the 
solution of (5), provided that (r f /3, the inverse function 

( 
Z(w) - z(wo) lb 

t= - z(w,) -z(w,) ’ 1 
where w is given by (15), the function Z(w) by (12), 

(1% 

WI = cd-‘, w, = @-I, 
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and the constant c is a non-zero root of the transcendental equation 

bc” = I(y) - I(++& (19) 

b = +(l - S)(T - 1) > 0; 

we note that cm > 0 for all c. Any non-zero root of (19) is a function of r, S, 
a, and p. 

3. NECESSARY EXISTENCE CONDITIONS 

A solution (18) exists if and only if (Y and p are such that I( w,) > I(w,), 
and that, as t increases from I = - 1 to t = 0, the function I(w) decreases 
monotonically from I( w,) to I( wa). 

From (12) and (19) we have 

bc” =j+;w-{ w - ;)-‘dw, (20) 

provided that the integrand is continuous on [wa, w,], i.e., if w = n/2 does 
not belong to this interval. We see from (12) that as w increases, the 
function I(w) decreases only on the interval (0, n/2), and is otherwise an 
increasing function. It rises from - 00 at w = - cc, attains a (positive or 
negative) local maximum at w = 0, drops to - cc at w = n/2, and rises to 
cc asw+ co. 

Accordingly, for a solution (18) to exist, it is necessary that one of the 
following inequalities hold: 

In case (19) has a positive root c, and since n is the ratio of positive odd 
integers, the boundary values (Y and p must satisfy one of the following 
inequalities: 

0 -c (n/2c)” < fi < a, (21) 

0 d a < /3 < (n/2c)n, (22) 

p<CX<0. (23) 
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In case (19) has a negative root c, then CY and /3 must satisfy one of the 
following inequalities: 

a < /3 < (n/2c)” < 0, (24) 

(n/2c)” < p < a Q 0, (25) 

o<a<p. (26) 

We see that when a and /3 have different signs, a solution to the 
boundary-value problem does not exist. 

4. UNIQUENESS 

The transcendental equation (19) for c may be written 

w = NC), 

where 

L(c) = bcm, R(c) = I(a’-‘c) - I@-‘c), 

and we have 

dL = bmc” 
dc ’ 

dR 
x = c” 

a - 
c - (n/2C’) 

(27) 

(28) 

(29) 

The function R(c) has two stationary points, one at c = 0, and the second 
at 

c = T+xp - ,t.P) 
2b-48) . 

Graphs of R(c) may be easily sketched for both signs of c, CX, and /3, and 
for the relative orderings of LY and 8, given in (21)-(26); from these graphs, 
one deduces the following results: 

(a) For inequality (21), a positive root of (27) satisfies 

(n/2/3’-‘) < c < co. 

As c increases from (n/2/3’- ‘), R(c) decreases steadily from cc, attains a 
relative minimum, and then increases steadily at a rate asymptotically less 
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than that of L(c), as shown by (28) and (29). Hence, L(c) can cross R(c) 
only at one point. 

(b) For inequality (22), a positive root of (27) satisfies 

0 < c < (n/2J3-9, 

and since R(c) rises steadily from zero at c = 0 to cc at c = n/2/S’ - ‘, L(c) 
can cross it only at one point. 

(c) For inequality (23), both L(c) and R(c) tend steadily to cc as 
c + oo, and they can cross only at one point. 

(d) For inequality (24), a negative root of (27) satisfies 

c < (n/2/3-‘) < 0. 

As c decreases from (n/2/Y-‘), R(c) decreases steadily from co, attains a 
relative minimum, and then increases steadily at a rate asymptotically less 
than that of L(c). Hence, L(c) can cross R(c) only at one point. 

(e) For inequality (25) a negative root of (27) satisfies 

(n/2p’) < c < 0, 

and since, as c increases from (n/2P’-‘), R(c) decreases steadily from cc 
to zero at c = 0, L(c) can cross it only at one point. 

(f) For inequality (26), both L(c) and R(c) tend steadily to cc as 
C’ - cc, and they can cross only at one point. 

To summarize, we have now shown that, in all admissible cases of (Y and 
p, there is at most one root to (27), and hence that a solution of the 
boundary-value problem (5), (6) either does not exist, or that it exists and is 
unique, i.e., no multiple solutions exist, contrary to what was found for the 
problem (3), (2). 
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