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We obtain an asymptotic formula for the eigenfunctions of

D2 u q q x u s lu , x g D s 0, p = 0, p ,Ž . Ž . Ž .

with boundary conditions

< <u s Du s 0. D  D
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1. INTRODUCTION

The asymptotics of the eigenfunctions of partial differential operators
cannot be satisfactory computed by the so-called WKB method. Here we

w xintroduce an alternative approach, inspired by Yu. Karpeshina’s article 5 ,
for computing the asymptotics of the eigenfunctions of the problem

D2 u q q x , x u s lu , x , x g D s 0, p = 0, p ,Ž . Ž . Ž . Ž .1 2 1 2 1Ž .
< <u s Du s 0, D  D

`Ž .where q is in L D . These asymptotics are needed for attacking inverse
Ž .problems related to 1 , which is the long term goal of this work. We

Ž .remark that 1 has potential applications in elasticity, since it involves the
biharmonic operator D2.

Previous literature related to eigenfunction asymptotics of multidimen-
sional Schrodinger-type operators includes the impressive works of O.¨

561

0022-247Xr98 $25.00
Copyright Q 1998 by Academic Press

All rights of reproduction in any form reserved.



VASSILIS G. PAPANICOLAOU562

Ž w x.Hald and J. McLaughlin see, for example, 3 on the reconstruction from
Ž w x.nodal sets, and of Yu. Karpeshina see, for example, 5 on the proof of

w xthe Bethe]Sommerfeld conjecture for nonsmooth potentials. In 3 the
authors compute the asymptotics for the Dirichlet eigenfunctions of yD

Žq q on a rectangle. Their formula is valid for ‘‘most’’ eigenvalues i.e., all
. Žexcept a set of zero density , while our formula see the theorem at the

.end of the next section is true for all eigenvalues, but it gives asymptotics
of eigenspaces rather than independent eigenfunctions, because of the
high multiplicities of the eigenvalues of D2. Karpeshina’s work on the

Žother hand is concerned with the case of periodic or more generally
.Floquet boundary conditions.
� 4̀Let l , where it is assumed that l F l for all n, be then ns1 n nq1

Ž . Ž .spectrum of 1 and f x , x , n s 1, 2, 3, . . . , the corresponding normal-n 1 2
Ž .ized eigenfunctions the problem is, of course, self-adjoint . In the unper-

Ž . � 4̀turbed case, namely when q x , x ' 0, we denote the spectrum by m1 2 n ns1
Ž .again we assume that m F m for all n and the nth eigenfunction byn nq1
Ž .c x , x . In fact, the eigenfunctions c of the unperturbed case are inn 1 2 n

Ž .one to one correspondence with the set of all ordered pairs k , k , where1 2
Ž .k and k are strictly positive integers, so that the pair k , k corre-1 2 1 2

sponds to the eigenfunction

2
c x , x s sin k x sin k x . 2Ž . Ž . Ž . Ž .n 1 2 1 1 2 2? p

The eigenvalue corresponding to c is, of course,n

22 2m s k q k 3Ž .Ž .n 1 2

Ž .e.g., m s 4, m s m s 25, m s 64, m s m s 100, etc. . The asymp-1 2 3 4 5 6
Ž w x.totics of m are see 1, Sect. VI.4n

24 16
2 3r2'm s n q O n s n q O n 4Ž . Ž .Ž .n 2p p

aŽ Ž . Ž .in fact, one has the better estimate m s 4rp n q O n , where' n
w x.a ) 35r108}see 2, Sect. 2.7 .

Suppose that for some n we have m - m s m s ??? s mny1 n nq1 nqny1
2 Ž 2 . Ž . Ž- m , with m s N . Then n s n N s n m the multiplicity of thenqn n n

2 .eigenvalue N is the number of ways that N can be written as a sum of
Ž Ž . Ž 2 . .squares of two strictly positive integers e.g., n 25 s 2, n 25 s 2 . It

Ž w x.follows that see 4, Sect. 18.7 , for every « ) 0 there is a c ) 0 such that

n m - c2Ž1q« .Ž ln n r ln ln n. . 5Ž . Ž .n



DIRICHLET EIGENFUNCTIONS 563

This implies the slightly weaker estimate

n m s O nd , for any d ) 0.Ž . Ž .n

Usually authors avoid multiple eigenvalues, but for our analysis they are
Ž .rather helpful! The main reason is that, on one hand 5 gives a quite

satisfactory bound for the multiplicity, while on the other hand, if m /n
Ž . Ž .m , then by 3 and 4nq1

8 'm y m G 2 m q 1 s n q O n . 6Ž .' Ž .nq1 n n p

Ž w x.A standard minimax argument see 1, Sect. I.4 implies that the
Ž .eigenvalues of 1 satisfy

< < 5 5l y m F q . 7Ž .`n n

2. THE EIGENFUNCTION ASYMPTOTICS

Ž . Ž .Let G x, y; l be the Green’s function associated to 1 , where we have
Ž . Ž . Ž .set x s x , x and y s y , y . By definition, G x, y; l is the integral1 2 1 2

Ž .y1kernel of the operator L y l , therefore we have the eigenfunction
expansion

` f x f yŽ . Ž .j j
G x , y ; l s .Ž . Ý

l y ljjs1

In particular, if G is a simple closed curve in the complex plane that
Ž .encloses l , l , . . . , l , and no other eigenvalue of 1 , thenn nq1 nql

1
G x , y ; l dl s f x f y q f x f y q ???Ž . Ž . Ž . Ž . Ž .E n n nq1 nq12p i G

q f x f y . 8Ž . Ž . Ž .nq l nql

Ž .In the unperturbed case, we denote the Green’s function by K x, y; l . Of
course,

` c x c yŽ . Ž .j j
K x , y ; l s . 9Ž . Ž .Ý

m y ljjs1
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This series is dominated by

`4 1
Ý2 < <m y lp jjs1

Ž .which, by 4 , converges as long as l / m , for all j. Hence dominatedj
convergence implies the following:

Ž .PROPOSITION 1. Gï en any « ) 0, there is a constant M s M « such
< < < Ž . < Žthat, if l y m G M, for all j, then K x, y; l F « here l is a complexj
.number .

Ž . ŽIt is easy to see that G x, y; l is the unique solution as long as l / ln
.and l / m of the integral equationn

G x , y ; l s K x , y ; l y K x , j ; l q j G j , y ; l dj . 10Ž . Ž . Ž . Ž . Ž . Ž .H
D

Ž . Ž . Ž .By iterating 10 we obtain a formal perturbation series for G x, y; l ,
namely

`
m

G x , y ; l s y1 G x , y ; l , 11Ž . Ž . Ž . Ž .Ý m
ms0

where

G x , y ; l s K x , y ; l , 12Ž . Ž . Ž .0

G x , y ; l s K x , j ; l q j G j , y ; l dj , m G 1. 13Ž . Ž . Ž . Ž . Ž .Hm my1
D

Ž . Ž .Notice that, if m G 1, 14 implies that G x, y; l has the expansionm

G x , y ; l s ??? K x , j 1 ; l q j 1 K j 1 , j 2 ; l ???Ž . Ž . Ž . Ž .H Hm
D D

q j m K j m , y ; l dj 1 ??? dj m , 14Ž . Ž . Ž .

j Ž j j.where we have set j s j , j .1 2
Ž .Now, by Proposition 1 we have that, for any d g 0, 1 , we can make

< Ž . < 2 5 5 < Ž . <simultaneously K x, y; l F 1 y d and p q K x, y; l F 1 y d , by`

< < Ž . Ž .taking l y m G M d , for all j. Using this in 14 , we obtainj

my 1G x , y ; l F 1 y d ,Ž . Ž .m
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and hence we have established the following:

< <PROPOSITION 2. There is a constant r ) 0 such that if l y m G r, forj
Ž .all j, then the series in 11 con¨erges absolutely and uniformly in x, y, and l

Ž Ž ..and therefore it satisfies 10 .

Next we introduce the following sequence of circles in the complex
plane

< <C s l g C : l y m s n . 15� 4 Ž .n n

Ž .If n is sufficiently large, say if n G n , then by 6 , C encloses exactly0 n
Ž . Ž Ž .n m equal eigenvalues of the unperturbed problem n m being, asn n

. Ž . Ž .usual, the multiplicity of m and, due to 7 , exactly n m eigenvalues ofn n
Ž . Ž .1 , counting multiplicities. Furthermore, again by 6 we have that

if n G n , then dist m , C ) n , for all j. 16Ž .Ž .0 j n

Ž .Therefore, by Proposition 2, the series in 11 converges absolutely and
Žuniformly in x and y, if l g C , n G n the convergence is also uniformn 0

. Ž .in l . Thus, for n G n , 11 gives0
m`1 y1Ž .

G x , y ; l dl s G x , y ; l dl.Ž . Ž .ÝE E m2p i 2p iC Cn nms0

For convenience, let n be such that

m - m s m s ??? s m - m , 17Ž .ny1 n nq1 nqny1 nqn

Ž . Ž . Ž . Ž . Ž .where n s n m is the multiplicity of m . Using 8 , 9 , 11 , 12 , and then n
Ž . Ž . Ž .fact C encloses exactly n m eigenvalues l and exactly n m equaln n n n

eigenvalues of the unperturbed problem we get

f x f y q ??? qf x f yŽ . Ž . Ž . Ž .n n nqny1 nqny1

s c x c y q ??? qc x c yŽ . Ž . Ž . Ž .n n nqny1 nqny1

m` y1Ž .
q G x , y ; l dl. 18Ž . Ž .Ý E m2p i Cnms1

Ž .It remains to obtain a bound for the sum in 18 .

LEMMA. For a fixed a ) 0 we set
` a ln k r ln ln ke

f n s .Ž . Ý 2 2< <k y nks1
k/n

Then, as n ª `,
ln n

a ln n r ln ln nf n s O e .Ž . ž /n
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Proof. Without loss of generality, n ) 16. We set

f n s f n q f n q f n ,Ž . Ž . Ž . Ž .1 2 3

where

15 a ln k r ln ln k ny1 a ln k r ln ln ke e
f n s , f n s ,Ž . Ž .Ý Ý1 22 2 2 2n y k n y kks1 ks16

` a ln k r ln ln ke
f n sŽ . Ý3 2 2k y nksnq1

Ž Ž .we need f since the quantity ln k rln ln k is increasing in k, as long as1
e .k ) e , i.e., k G 16 . It is easy to see that

1
f n s O .Ž .1 2ž /n

Now

a ln n r ln ln n ` a ln k r ln ln kya ln n r ln ln ne e 1
f n s ? . 19Ž . Ž .Ý3 2n nkrn y 1Ž .ksnq1

Next we observe that, if k ) n G 16,

ln k ln n ln krn ln krnŽ . Ž .
0 - y F F .

ln ln k ln ln n ln ln k ln ln 3krnŽ .

Ž .Thus, 19 implies

a ln n r ln ln n ` lnŽk r n.r ln lnŽ3k r n.e e 1
f n - ? . 20Ž . Ž .Ý3 2n nkrn y 1Ž .ksnq1

Ž .The sum in 20 is a Riemann sum dominated by the integral

`
ln x r ln lnŽ3 x .e

dx s ln n q O 1 .Ž .H 2x y 1Ž .1q 1rn

Hence

ln n
a ln n r ln ln nf n s O e .Ž .3 ž /n
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Finally

a ln n r ln ln n ny1 a ln k r ln ln kya ln n r ln ln ne e 1
f n s ?Ž . Ý2 2n n1 y krnŽ .ks16

a ln n r ln ln n ny1e 1 1
- ? ,Ý 2n n1 y krnŽ .ks16

thus

ea ln n r ln ln n dx ea ln n r ln ln n
Ž .1y 1rn

f n - s ln nŽ . H2 2n n1 y x0

and this finishes the proof.

Ž .The lemma, together with 5 , implies that if l g C , where C is givenn n
Ž . Ž .by 15 , then, for any « ) 0, there is a c ) 0 depending only on « such

that

` n m ln nŽ .j Ž1q« .Ž ln n r ln ln n.- c 2 .Ý ž /< <m y l njjs1

Ž .Thus, if l g C , 9 impliesn

ln n
Ž1q« .Ž ln n r ln ln n.K x , y , l - c 2 , 21Ž . Ž .ž /n

Ž .where c is independent of x, y, and l. Since, by 15 , the length of C isn
Ž . Ž .2p n, 21 applied to 14 gives

mq 11 ln nm2 m mq1 Ž1q« .Ž ln n r ln ln n.5 5G x , y ; l dl - p q c 2 n.Ž .E `m ž /2p i nCn

22Ž .

Therefore, if n is sufficiently large,

m 2` y1 ln nŽ .
Ž2q« .Ž ln n r ln ln n.5 5G x , y ; l dl - c q 2 .Ž .Ý E `m 0 ž /2p i nCnms1

Ž .Using this in 18 , we obtain the following:

Ž . Ž . Ž .THEOREM. Let f x be the nth eigenfunction of 1 and c x be, as inn n
Ž .2 , the nth eigenfunction of the corresponding unperturbed problem, where n
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Ž . Ž . Ž 5 5 .satisfies 17 , with m as in 3 . Then, there is an n depending on q such`n 0
that, if n G n , the quantity0

f x f y q ??? qf x f y y c x c y y ???Ž . Ž . Ž . Ž . Ž . Ž .n n nqny1 nqny1 n n

yc x c yŽ . Ž .nqny1 nqny1

is bounded by

ln2 n
Ž2q« .Ž ln n r ln ln n.5 5c q 2 ,`0 ž /n

where « ) 0 is arbitrary, and c depends only on « .0

Remark. For any d ) 0 we have

ln2 n 1
Ž2q« .Ž ln n r ln ln n.2 s O .1ydž /ž /n n
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