JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 218, 561-568 (1998)
ARTICLE NO. AY 975742

On the Asymptotics of the Dirichlet Eigenfunctions of
A’ + g on the Square

Vassilis G. Papanicolaou

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas
67260-0033

Submitted by Joyce R. McLaughlin

Received October 7, 1996

We obtain an asymptotic formula for the eigenfunctions of
A%y + q(x)u = Au, x€D=(0,7) X (0,7),
with boundary conditions

ulop = Aulyp = 0.
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1. INTRODUCTION

The asymptotics of the eigenfunctions of partial differential operators
cannot be satisfactory computed by the so-called WKB method. Here we
introduce an alternative approach, inspired by Yu. Karpeshina’s article [5],
for computing the asymptotics of the eigenfunctions of the problem

Ay + q(xy, x)u=Au,  (x,x,) €D =(0,7) % (0,m), )

MlﬁD = AM|aD =0,

where g is in L*(D). These asymptotics are needed for attacking inverse
problems related to (1), which is the long term goal of this work. We
remark that (1) has potential applications in elasticity, since it involves the
biharmonic operator A?.

Previous literature related to eigenfunction asymptotics of multidimen-
sional Schrodinger-type operators includes the impressive works of O.
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Hald and J. McLaughlin (see, for example, [3]) on the reconstruction from
nodal sets, and of Yu. Karpeshina (see, for example, [5]) on the proof of
the Bethe—Sommerfeld conjecture for nonsmooth potentials. In [3] the
authors compute the asymptotics for the Dirichlet eigenfunctions of —A
+ g on a rectangle. Their formula is valid for “most” eigenvalues (i.e., all
except a set of zero density), while our formula (see the theorem at the
end of the next section) is true for all eigenvalues, but it gives asymptotics
of eigenspaces rather than independent eigenfunctions, because of the
high multiplicities of the eigenvalues of A% Karpeshina’s work on the
other hand is concerned with the case of periodic (or more generally
Floguet) boundary conditions.

Let {A,J;_,, where it is assumed that A, < A,,, for all n, be the
spectrum of (1) and ¢,(x,, x,), n = 1,2,3,..., the corresponding normal-
ized eigenfunctions (the problem is, of course, self-adjoint). In the unper-
turbed case, namely when ¢(x,, x,) = 0, we denote the spectrum by { w J°_,
(again we assume that u, < w,., for all n) and the nth eigenfunction by
¥, (xq, x,). In fact, the eigenfunctions ¢, of the unperturbed case are in
one to one correspondence with the set of all ordered pairs (k,, k,), where
k, and k, are strictly positive integers, so that the pair (k;, k,) corre-
sponds to the eigenfunction

2
¥, (xy, x5). = ;Sin(klxl)sm(kzxz)- (2)
The eigenvalue corresponding to ¢, is, of course,

= (kK2 +K2) (3)

(e, gy =4, py = py =25 p, =64, u = pg = 100, etc.). The asymp-
totics of u, are (see [1, Sect. V1.4])

W, = [%n + 0(\/;)} = 717—62n2 + 0(n%?) (4)

(in fact, one has the better estimate y/u, = (4/7)n + O(n®), where
a > 35/108—see [2, Sect. 2.7)).

Suppose that for some n we have w,_; < w, =, 1= " = typtp1
< M4, With w, = N2 Then v = »(N?) = v(u,) (the multiplicity of the
eigenvalue N2) is the number of ways that N can be written as a sum of
squares of two strictly positive integers (e.g., »(25) = 2, v(25%) = 2). It
follows that (see [4, Sect. 18.7]), for every £ > 0 there is a ¢ > 0 such that

1/( n ) < C2(1+g)(|nn/|n|nn)l (5)
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This implies the slightly weaker estimate
v(p,) =0(n®), foranys > 0.

Usually authors avoid multiple eigenvalues, but for our analysis they are
rather helpful! The main reason is that, on one hand (5) gives a quite
satisfactory bound for the multiplicity, while on the other hand, if w, #
W, +1, then by (3) and (4)

8

A standard minimax argument (see [1, Sect. 1.4]) implies that the
eigenvalues of (1) satisfy

A, =l < liglle. (7)

2. THE EIGENFUNCTION ASYMPTOTICS

Let G(x, y; A) be the Green’s function associated to (1), where we have
set x = (x4, x,) and y = (y,, y,). By definition, G(x, y; A) is the integral
kernel of the operator (L — A)~!, therefore we have the eigenfunction
expansion

Gryin) = ¥ W

j=1 j

In particular, if T" is a simple closed curve in the complex plane that
encloses A,, A, ., ..., A,,,;, and no other eigenvalue of (1), then

1

2

PG(x. i) dX = 6,()D(¥) + br(2) d,0a(y) + -
+ b, i(x) (). (8)

In the unperturbed case, we denote the Green’s function by K(x, y; A). Of
course,

Keyin) - 3 BOBO)

j=1 M A

(9)
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This series is dominated by

1

4
2 |lJ«j_/\|

w

o]
)y
j=1

which, by (4), converges as long as A # w;, for all j. Hence dominated
convergence implies the following:

PropPoSITION 1. Given any & > 0, there is a constant M = M(¢&) such
that, if |\ — p,jI > M, for all j, then |K(x,y; M| < & (here A is a complex
number).

It is easy to see that G(x, y; A) is the unique solution (as long as A # A,
and A # u,) of the integral equation

G(x,yi ) =K(x,yi0) = [ K(x, £ 0)9(£)G(£,yi 1) dé. (10)

By iterating (10) we obtain a formal (perturbation) series for G(x, y; A),
namely

Gryid) = ¥ (~1)"Gy(xyi ), (11)
m=0
where
Go(x,yi A) = K(x, 31 ), (12)

G, (x,y;A) = fDK(x,g;A)q(g)Gm,l(g,y;A) dé, m=1. (13)

Notice that, if m > 1, (14) implies that G,,(x, y; A) has the expansion

Gu(x, i A) = [ o [ K(x, €% 0)a(€)K (& €% 0)
D D
q(€m)K(E™, y; ) dgt - dE™, (14)
where we have set &/ = (¢&], ).
Now, by Proposition 1 we have that, for any & € (0, 1), we can make

simultaneously |K(x,y; Ml <1 — 8 and 73gll|K(x,y; M| <1 — 8§, by
taking [A — w;| = M(8), for all j. Using this in (14), we obtain

|G, (x,y; )] <(1—-8)"1,
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and hence we have established the following:

PROPOSITION 2. There is a constant r > 0 such that if |X — ;| =, for
all j, then the series in (11) converges absolutely and uniformly in x, y, and A
(and therefore it satisfies (10)).

Next we introduce the following sequence of circles in the complex
plane

C,={recC:|r— p,l=n} (15)

If n is sufficiently large, say if n > ng, then by (6), C, encloses exactly
v(u,) equal eigenvalues of the unperturbed problem (»(pw,) being, as
usual, the multiplicity of u,) and, due to (7), exactly »( u,) eigenvalues of
(1), counting multiplicities. Furthermore, again by (6) we have that

if n > ng, then dist( w;, C,) > n, forall j. (16)

Therefore, by Proposition 2, the series in (11) converges absolutely and
uniformly in x and y, if A € C,, n > n, (the convergence is also uniform
in A). Thus, for n > ny, (11) gives

1 (— )
—Q@Q G(x,y;A)dAr =
For convenience, let n be such that
M’n—1<lu’n:Mn+l= :“’n+v—1<“’n+vl (17)

where v = v(u,) is the multiplicity of w,. Using (8), (9), (11), (12), and the
fact C, encloses exactly v(u,) eigenvalues A, and exactly »(u,) (equal)
eigenvalues of the unperturbed problem we get

¢n(x)¢n(y) + +¢n+v—l(x)¢n+v—l(y)
= () () + i, (D), ()

1 (;Tz ¢ (X, y1A) dA. (18)

It remains to obtain a bound for the sum in (18).

LEMMA. For a fixed o > 0 we set

£ ealnk/lnlnk
n) = - 5
f( ) kgl |k2_n2|
k#n

Then, as n — o,

f(n) = O(In_nealnn/lnlnn)
n .
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Proof.  Without loss of generality, n > 16. We set

f(n) = fi(n) + fr(n) + f3(n),

where
15 ealnk/lnlnk n—1 ealnk/lnlnk
n)= — 5, n) = — 5,
fl( ) k§1 n? — k2 fz( ) k=216 n? — k2
o ealnk/lnlnk
fi(n) = >

2 _ 2
k=n+1 k n

(we need f; since the quantity (In k)/InIn k is increasing in k, as long as
k > e ie., k > 16). It is easy to see that

1
=0|—].
fi(n) (nz)
Now
ealnn/lnlnn o ealnk/lnlnkfalnn/lnlnn 1
fo(n) = ———— % = (19)
: n k=n+1 (k/n)2—1
Next we observe that, if kK > n > 16,
In k Inn In(k/n) In(k/n)
0< — < < .
Inink  Ininn Inin k InIn(3k/n)
Thus, (19) implies
ealn n/Ininn o eln(k/n)/ InIn(Bk / n)
fo(n) < ———— - (20)

r
ka1 (k/n)’ =1
The sum in (20) is a Riemann sum dominated by the integral

eln x/InIn3x)

o

————dx=Inn+ O(1).
‘/;Jr(l/n) x? -1 8 ()

Hence

f(n) = O(In_nealnn/lnlnn)
3 " .
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Finally
alnn/Inlnn -1 ealnk/lnlnk—alnn/lnlnn 1
fz(”) = Z 2 T
n k=16 1 - (k/n) n
ealnn/lnlnn n—1 1 1
< Y s —,
n k-16 1 — (k/n)" n
thus
alnn/Ininn alnn/Ininn
e 1-aym dx e
n)y < —— = Inn
f2( ) n j; 1_x2 n

and this finishes the proof. |

The lemma, together with (5), implies that if A € C,, where C,, is given
by (15), then, for any & > 0, there is a ¢ > 0 (depending only on &) such
that

i v(w) <C(Inn)2(1+g)(|nn/|n|nn)_
n

Thus, if A € C,, (9) implies

|K(x,y,N)]|<c

n )2(1+g)(|n n/lnlnn)’ (21)

where ¢ is independent of x, y, and A. Since, by (15), the length of C, is
21n, (21) applied to (14) gives

QSG(xy A) dA

Inn m+1
< 7TZm”q”m m+1[( )2(1+a)(|nn/ln|nn):| n.
2mi n

(22)
Therefore, if n is sufficiently large,

(-

. 2w

2

95Gm(x yiA)dA

n )2(2+£)(|n n/Inlnn)

< collqllm(

ﬁMS

Using this in (18), we obtain the following:

THEOREM. Let ¢,(x) be the nth eigenfunction of (1) and ,(x) be, as in
(2), the nth eigenfunction of the corresponding unperturbed problem, where n
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satisfies (17), with w, as in (3). Then, there is an n, (depending on l|qll..) such
that, if n > n,, the quantity

|6 (2) Bu(¥) + - F by a(X) by o1 (¥) = () h(y) —

_d]n+ V—l(x) l?ljn+v—l(y)|
is bounded by

2

C o
ollq

)2(2+a)(|n n/Inlnn)

where & > 0 is arbitrary, and c, depends only on &.

Remark. For any § > 0 we have

In’n 1
2(2+a)(|r‘| n/lninn) _ 0 .
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