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0. Introduction

The mathematical research in the field of pseudodifferential operators most frequently concentrates on operators with
smooth symbols. However, applications to several problems in PDE, from nonlinear problems to problems on non-smooth
domains, require symbols with minimal smoothness, i.e., non-regular symbols. With this expression we mean symbols
which are smooth in the variable ξ but less regular in x (for instance in some Sobolev space or Hölder–Zygmund class).
Pseudodifferential operators with non-regular symbol have been studied by different authors in particular in connection
with their mapping properties on L p and Sobolev spaces. We recall the work of M. Nagase and H. Kumano-go at the end of
the 70’s in [25,29], the work of J. Marschall for differential operators with Sobolev coefficients in [26,27] and the deep study
of pseudodifferential operators with non-regular symbol of Hölder–Zygmund type in [36, Chapters 1, 2] and [37, Chapter 1].
For some recent work on non-regular symbols and boundedness results on L p spaces, Besov spaces or weighted Sobolev
spaces we refer the reader to [2,3,5–9,23,24,34,35,40–42].

In this paper we study pseudodifferential operators with non-regular symbols a(x, ξ) in the exotic class C r∗ Sm
1,1, i.e., of

type (1,1), smooth in ξ and in the class C r∗ with respect to x. For a survey on symbols of type (1,1) we refer the reader
to [14,20–22,30–32,43]. Inspired by the continuity result of G. Bourdaud in [4] and the pioneering work of E.M. Stein [33],
M.E. Taylor has proved that if r > 0 then a pseudodifferential operator with symbol in C r∗ S0

1,1 is bounded on Hs,p provided
that 0 < s < r and p ∈ (1,∞) (see [36, Theorem 2.1.A]). Our aim is to enlarge the family of Sobolev spaces on which this
type of non-regular pseudodifferential operators are bounded. We do this via approximation/regularisation methods, in the
sense that given a ∈ C r∗ S0

1,1 we study a net of pseudodifferential operators aε(x, D) with regular symbol aε converging to
a when ε tends to 0. The symbol aε is regular in x since it is obtained via convolution with a mollifier ρ , i.e., aε(x, ξ) =
(a(·, ξ) ∗ ρε)(x), with ρε(x) = ε−nρ(x/ε). From the boundedness result of Taylor we clearly expect a blow-up in ε when
s > r. Our main achievement is a precise estimate of this blow-up which can still detach the boundedness on Sobolev
spaces when s ∈ (0, r). In detail, for a pseudodifferential operator with symbol a in C r∗ S0

1,1 we get a blow-up of type ε−h
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in the Hs,p-norm when r > 0 and s ∈ (0, r + h), i.e., ‖aε(x, D) f ‖Hs,p � Cε−h‖ f ‖Hs,p for all f ∈ Hs,p and ε ∈ (0,1]. More
general nets of pseudodifferential operators, depending on the parameter ε but not necessarily defined via convolution with
a mollifier ρε , are investigated in the final part of the paper under the point of view of L p and Sobolev continuity.

We now describe the contents of the paper in more detail.
Section 1 provides some background on Hölder–Zygmund classes and their regularisation. It is inspired by the inves-

tigation of Hölder–Zygmund regularity in the Colombeau framework initiated by G. Hörmann in [16] and is motivated by
geophysical problems (see [17–19]) modeled through differential equations with Hölder–Zygmund coefficients. More pre-
cisely, we study how the net u ∗ ρε depends on the parameter ε when u ∈ C s∗(Rn) and we compare its C s+r∗ - and C s∗-norms
for arbitrary positive r. We complete this section with some interpolation and continuity results for nets of linear operators
which will be employed in the Sobolev context in Section 2. Section 2 is the core of the paper where the L p- and Hs,p -
boundedness of regularised nets of pseudodifferential operators is proved. The results obtained for operators with symbol
aε(x, ξ) = (a(·, ξ) ∗ ρε)(x) when a in C r∗ Sm

1,1 follow the line of proof of Taylor in [36, Chapters 1, 2] and [37, Chapter 1] and

make use of concepts as S1
0-partition of unity, equivalent Sobolev norms and decomposition into elementary symbols. The

novelty represented by the parameter ε is certainly crucial and requires, at every step of the proof, precise estimates which
keep track of it. Our main result is not the continuity estimate per se but rather the understanding of how the continuity
constant (now depending on the parameter ε) is related to the Hölder–Zygmund properties of the non-regular symbol a.
By means of its refined methods and boundedness results, Section 2 also provides a new way to look at nets of pseudo-
differential operators of the type recently studied in [11,12] in the framework of Colombeau algebras. The paper ends with
Section 3 where we consider arbitrary nets (aε)ε of regular symbols and we prove L p and Sobolev boundedness of the
corresponding nets of pseudodifferential operators.

1. Regularisation in the space Cs∗(RRRn) and some notions of interpolation

This section provides the technical background necessary for the investigation of L p and Sobolev boundedness in
Section 2. We begin by studying the regularisation, via convolution with a mollifier, of tempered distributions in Hölder–
Zygmund classes and we then pass to consider nets of linear operators acting on interpolation couples of Banach spaces.

1.1. Regularisation via convolution with a mollifier in the space C s∗(Rn)

Following [15, Section 8.5] we introduce the Hölder–Zygmund classes via a continuous Littlewood–Paley decomposition:
let ϕ be a real-valued and symmetric function in C∞

c (Rn) such that ϕ(ξ) = 0 for |ξ | > 1 and ϕ(ξ) = 1 for |ξ | � 1/2. Let
ψ = d

dt ϕ(ξ/t)|t=1 = −ξ · ∇ϕ(ξ). Then,

1 = ϕ(ξ) +
+∞∫
1

ψ

(
ξ

t

)
dt

t
,

and the decomposition formula

u = ϕ(D)u +
+∞∫
1

ψ

(
D

t

)
u

dt

t
(1.1)

holds for u ∈ S ′(Rn).
Given s ∈ R, we define the Zygmund space C s∗(Rn) as the set of all u ∈ S ′(Rn) such that

‖u‖C s∗ = ∥∥ϕ(D)u
∥∥∞ + sup

t>1
ts

∥∥ψ(D/t)u
∥∥∞ < ∞

with ϕ and ψ as above. Up to equivalence of the norm this definition is independent of the choice of the Littlewood–Paley
decomposition (ϕ,ψ). We recall that C s∗(Rn) coincides with the Hölder space C s(Rn) when s > 0 is not an integer. For a
survey on Hölder and Zygmund classes we refer the reader to [15, Sections 8.5, 8.6] and [39].

We now study the convolution of u ∈ C s∗(Rn) with a mollifier ρ , i.e. a function ρ in S (Rn) with
∫

ρ = 1. More precisely
we will convolve u with the delta-net ρε(x) := ε−nρ(x/ε). The following preliminary lemma can be found in [28, Section 2.6,
Lemma 12] and has been adapted to the case of rapidly decreasing functions in [16, Lemma 17]. We recall that for r ∈ N,
Sr(R

n) denotes the space of all smooth functions f such that supx∈Rn (1 + |x|)m|∂α f (x)| < ∞ for all m ∈ N and all α ∈ N
n

with |α| � r.

Lemma 1.1.

(i) Let s, r ∈ N with 0 � s � r. If f ∈ Sr(R
n) has vanishing moments up to order s, i.e.,

∫
xγ f (x)dx = 0 for |γ | � s, then there exist

functions fα ∈ Sr(R
n) with |α| = s such that
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f =
∑
|α|=s

∂α fα

and
∫

fα(x)dx = 0 for |α| = s.
(ii) If f ∈ S (Rn) has vanishing moments of any order then the representation above holds for all s ∈ N with fα ∈ S (Rn).

Proposition 1.2. Let ρ be a mollifier in S (Rn) and let s ∈ R. For all r � 0 there exists C > 0 such that

‖u ∗ ρε‖Cr+s∗ � Cε−r‖u‖C s∗

holds for all u ∈ C s∗(Rn) and all ε ∈ (0,1].

Proof. By definition of C s∗(Rn) we have

‖u‖C s∗ = ∥∥ϕ(D)u
∥∥∞ + sup

t>1
ts

∥∥ψ(D/t)u
∥∥∞

with ϕ and ψ as at the beginning of this subsection. By applying the operator ϕ(D) to uε := u ∗ ρε we have that∥∥ϕ(D)(uε)
∥∥∞ �

∥∥ϕ(D)u
∥∥∞‖ρε‖1 �

∥∥ϕ(D)u
∥∥∞ (1.2)

and

sup
t>1

ts
∥∥ψ(D/t)uε

∥∥∞ � sup
t>1

ts
∥∥ψ(D/t)u

∥∥∞‖ρε‖1.

This means that ‖uε‖C s∗ � ‖u‖C s∗ and therefore the case r = 0 is trivial. Let us consider an integer r > 0 and let us take

ψ̃ ∈ C∞
c (Rn) with ψ̃ = 0 near 0 and ψ̃ = 1 on supp(ψ). It follows that F −1ψ̃ has all the moments vanishing and that

ψ(D/t)u ∗ ρε = ψ(D/t)u ∗ ψ̃(D/t)ρε . Lemma 1.1(ii) applied to F −1ψ̃ allows us to find functions ψ̃α with |α| = r such that

F −1ψ̃ =
∑
|α|=r

Dα
(

F −1ψ̃α

) =
∑
|α|=r

F −1(ξαψ̃α

)
.

Combining basic properties of the Fourier transform with the convolution we have that ψ̃(D/t)ρε can be written as

t−rε−r
∑
|α|=r

ψ̃α(D/t)
(

Dαρ
)
ε
.

This yields the estimate∥∥ψ(D/t)uε

∥∥∞ � t−rε−r
∑
|α|=r

∥∥ψ(D/t)u ∗ ψ̃α(D/t)
(

Dαρ
)
ε

∥∥∞ � t−r−sε−r‖u‖C s∗
∑
|α|=r

∥∥ψ̃α(D/t)
(

Dαρ
)
ε

∥∥
1.

Arguing as in the proof of Theorem 1.1 in [16] we see that when t � ε−1 any ‖ψ̃α(D/t)(Dαρ)ε‖1 can be estimated by a
constant C depending only on ρ , ψ̃ , r and n. In other words,

sup
t�ε−1

tr+s
∥∥ψ(D/t)uε

∥∥∞ � C‖u‖C s∗ε
−r . (1.3)

Since

sup
1<t�ε−1

tr+s
∥∥ψ(D/t)uε

∥∥∞ � sup
1<t�ε−1

tr‖u‖C s∗ � ‖u‖C s∗ε
−r, (1.4)

combining (1.3) with (1.4) we conclude that

sup
t>1

tr+s
∥∥ψ(D/t)uε

∥∥∞ � C‖u‖C s∗ε
−r . (1.5)

The estimates (1.2) and (1.5) show that there exists some constant C such that for all u ∈ C s∗(Rn),

‖uε‖C s+r∗ � Cε−r‖u‖C s∗ .

If now r > 0 is not integer we have that the estimate∥∥ψ(D/t)uε

∥∥∞ � t−r′−sε−r′ ‖u‖C s∗
∑

′

∥∥ψ̃α(D/t)
(

Dα g
)
ε

∥∥
1

|α|=r
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is valid for some integer r′ � r. Under the hypothesis that t � ε−1 this leads to∥∥ψ(D/t)uε

∥∥∞ � C‖u‖C s∗t−r−sε−r(tε)−r′+r � C‖u‖C s∗t−r−sε−r .

Since (1.2) and (1.4) hold for every r > 0 the proof is complete. �
Corollary 1.3. If u ∈ C s∗(Rn) and s + r > 0 then there exists a constant C depending only on r such that

‖u ∗ ρε‖∞ � Cε−r‖u‖C s∗(Rn).

Proof. This corollary is easily proved by combining Proposition 1.2 with the embedding Ct∗ ⊆ L∞ , valid for t > 0 (see the
decomposition formula (1.1) or [39, 2.3.2, Remark 3]). �
Remark 1.4. Corollary 1.3 yields the estimate obtained by Hörmann in [16] for the net ‖∂α(u ∗ρε)‖∞ when α = 0 and s 	= 0
(see Definition 3 and Theorem 7 in [16]). Note that by assuming that the mollifier ρ has vanishing moments

∫
xαρ(x)dx

when α 	= 0, Hörmann has proved a more precise estimate of the norm ‖u ∗ ρε‖∞ when s = 0, namely ‖u ∗ ρε‖∞ =
O (log(1/ε)) as ε → 0.

1.2. Nets of linear operators and interpolation couples

We conclude this first section by considering a net of operators (Tε)ε∈(0,1] acting on the complex interpolation of a
couple {A0, A1} of Banach spaces. The notions of this subsections will be employed in Section 2 for proving results of
Sobolev boundedness.

We begin by recalling that given A0 and A1 complex Banach spaces, the couple {A0, A1} is called an interpolation couple
if there exists a linear complex Hausdorff space A such that both A0 and A1 are linearly and continuously embedded in A.
It follows that A0 + A1 is a well-defined subset of A. In addition A0 + A1 is a quasi-Banach space with respect to the
quasi-norm ‖a‖ = inf‖a0‖A0 +‖a1‖A1 , where the infimum is taken over all the representations a = a0 +a1 with a0 ∈ A0 and
a1 ∈ A1. Referring to [39, Section 1.6] we now define the set of functions F [A].

Definition 1.5. Let {A0, A1} be an interpolation couple of Banach spaces, A = A0 + A1 and σ = {z ∈ C: 0 < �z < 1}. By F [A]
we denote the collection of all function f on σ with values in A such that

(i) f is A-continuous on σ and A-analytic in σ with supz∈σ ‖ f (z)‖A < ∞,
(ii) f (it) ∈ A0 and f (1 + it) ∈ A1 for all t ∈ R, the corresponding operators from R to A0 and A1, respectively, are continu-

ous, and

‖ f ‖F [A] = sup
t∈R

(∥∥ f (it)
∥∥

A0
+ ∥∥ f (1 + it)

∥∥
A1

)
< ∞.

Note that F [A] is a Banach space for the topology induced by the norm above.

Definition 1.6. Let {A0, A1} be an interpolation couple of Banach spaces. Let A = A0 + A1 and θ ∈ (0,1). The interpolation
space [A0, A1]θ is the set of all a ∈ A such that there exists f ∈ F [A] with f (θ) = a.

It turns out that [A0, A1]θ is a Banach space with respect to the norm ‖a‖[A0,A1]θ = inf f ‖ f ‖F [A] , where the infimum is
taken over all f ∈ F [A] with f (θ) = a.

Proposition 1.7. Let {A0, A1} and {B0, B1} be two interpolation couples and let (Tε)ε∈(0,1] be a family of linear operators from
A = A0 + A1 to B = B0 + B1 such that Tε : A j → B j is continuous for j = 0,1 and all ε ∈ (0,1], i.e., for all i = 0,1 there exists a net
(ω j,ε)ε ∈ R

(0,1] such that

‖Tεa‖B j � ω j,ε‖a‖A j

for all a ∈ A j and ε ∈ (0,1]. Then, for all θ ∈ (0,1) and all ε ∈ (0,1], the operator Tε maps [A0, A1]θ into [B0, B1]θ and the inequality

‖Tεa‖[B0,B1]θ � max(ω0,ε,ω1,ε)‖a‖[A0,A1]θ
holds for all a ∈ [A0, A1]θ and all ε ∈ (0,1].
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Proof. We begin by noting that Tε is continuous from A to B . Indeed, by working with any representation a0 + a1 of a we
get

‖Tεa‖B � ‖Tεa0‖B0 + ‖Tεa1‖B1 � max(ω0,ε,ω1,ε)
(‖a0‖A0 + ‖a1‖A1

)
� max(ω0,ε,ω1,ε)‖a‖A .

It is easy to see that if f ∈ F [A] then Tε ◦ f ∈ F [B] for all ε. By definition of the norm ‖ · ‖[B0,B1]θ we have that

‖Tεa‖[B0,B1]θ � sup
t∈R

∥∥g(it)
∥∥

B0
+ ∥∥g(1 + it)

∥∥
B1

for all g ∈ F [B] with g(θ) = Tεa. It follows that for f ∈ F [A] with f (θ) = a we can write

‖Tεa‖[B0,B1]θ � sup
t∈R

∥∥(Tε ◦ f )(it)
∥∥

B0
+ ∥∥(Tε ◦ f )(1 + it)

∥∥
B1

.

The continuity of the operator Tε restricted to A0 and A1 yields

‖Tεa‖[B0,B1]θ � sup
t∈R

(
ω0,ε

∥∥ f (it)
∥∥

A0
+ ω1,ε

∥∥ f (1 + it)
∥∥

A1

)
� max(ω0,ε,ω1,ε)‖ f ‖F [A]. (1.6)

Since (1.6) holds for all f ∈ F [A] with f (θ) = a we conclude that

‖Tεa‖[B0,B1]θ � max(ω0,ε,ω1,ε) inf
f ∈F [A], f (θ)=a

‖ f ‖F [A] = max(ω0,ε,ω1,ε)‖a‖[A0,A1]. �
In this paper we are mainly interested in the interpolation of Sobolev spaces. We recall that, for s ∈ R and p ∈ (1,∞),

the Sobolev space Hs
p(Rn) is the set of all distributions u ∈ S ′(Rn) such that 〈Dx〉su ∈ L p , where 〈Dx〉s denotes the

pseudodifferential operator with symbol 〈ξ〉s = (1 + |ξ |2) s
2 . Hs

p(Rn) is a Banach space when equipped with the norm
‖u‖Hs

p
= ‖〈Dx〉su‖Lp . As shown in [39, p. 40], for p ∈ (1,∞), s0, s1 ∈ R and θ ∈ (0,1) one has[
Hs0

p , Hs1
p

]
θ

= Hs
p, (1.7)

with s = (1 − θ)s0 + θ s1.

2. L p and Sobolev boundedness of pseudodifferential operators with symbol in Cr∗ Sm
1,1(RRR

2n)

In the sequel we will consider a symbol a ∈ C r∗ Sm
1,1(R

2n), i.e., a function a(x, ξ) which is smooth in ξ and of class C r∗ in
x such that the following estimates hold:

∀α ∈ N
n ∃cα > 0 ∀ξ ∈ R

n
∥∥Dα

ξ a(·, ξ)
∥∥∞ � cα〈ξ〉m−|α|,

∀α ∈ N
n ∃Cα > 0 ∀ξ ∈ R

n
∥∥Dα

ξ a(·, ξ)
∥∥

Cr∗
� Cα〈ξ〉m−|α|+r .

Let h � 0. It is clear from Proposition 1.2 that if we convolve a ∈ C r∗ Sm
1,1(R

2n) with a mollifier ρε we obtain a net of symbols

aε(x, ξ) = (a(·, ξ) ∗ ρε)(x) ∈ C r+h∗ Sm
1,1(R

2n) such that

∀α ∈ N
n ∃cα > 0 ∀ξ ∈ R

n ∀ε ∈ (0,1] ∥∥Dα
ξ aε(x, ξ)

∥∥∞ � ‖ρε‖1
∥∥Dα

ξ a(x, ξ)
∥∥∞ � cα〈ξ〉m−|α|,

and

∀α ∈ N
n ∃Cα > 0 ∀ξ ∈ R

n ∀ε ∈ (0,1] ∥∥Dα
ξ aε(·, ξ)

∥∥
Cr+h∗ � Cαε−h

∥∥Dα
ξ a(·, ξ)

∥∥
Cr∗

� Cαε−h〈ξ〉m−|α|+r .

We recall the following boundedness result of M.E. Taylor [36, Theorem 2.1.A]: if r > 0 and p ∈ (1,∞), then for a(x, ξ) ∈
C r∗ Sm

1,1(R
2n),

a(x, D) : Hs+m,p → Hs,p

provided s ∈ (0, r).
Our goal is to drop the restriction on s by working with the convolved symbol aε and to obtain precise continuity

estimates of aε(x, D). We already know that since aε ∈ C r+h∗ Sm
1,1(R

2n) for any h � 0 the corresponding net of operators
maps Hs+m,p into Hs,p when s belongs to the interval (0, r + h). This means that by convolution we are able to enlarge the
s-interval of any positive real number h. A precise estimate of the Sobolev boundedness of the operator aε(x, D) requires a
decomposition into elementary symbols and some preliminary work involving S1-partitions of unity as in [36, Chapter 1].
0
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2.1. S1
0-partition of unity and equivalent Sobolev norm

Definition 2.1. We say that a family of real-valued smooth functions (ψ j) j is an S1
0-partition of unity (or Littlewood–Paley

partition of unity) if

(i) ψ0(ξ) = 1 for |ξ | � 1 and ψ0(ξ) = 0 for |ξ | � 2;
(ii) for each j � 1,

ψ j(ξ) = ψ0
(
2− jξ

) − ψ0
(
2− j+1ξ

) = ψ1
(
2− j+1ξ

);
(iii)

∑
j ψ j(ξ) = 1 for every ξ ∈ R

n .

Note that suppψ j ⊆ {ξ : 2 j−1 � |ξ | � 2 j+1} for all j � 1 and by (ii), for all α ∈ N
n there exists cα > 0 such that∥∥Dαψ j

∥∥∞ � cα2− j|α|

for all j ∈ N. In addition {ψ j(D): j ∈ N} and {∑l� j ψl(D): j ∈ N} are uniformly bounded on L∞ . For advantage of the
reader we provide a detailed proof of the following proposition: analogous results can be found in [1].

Proposition 2.2. Let (ψ j) j be an S1
0-partition of unity. Then there exists a constant c > 0 such that∥∥ψ j(D) f

∥∥∞ � c‖ f ‖∞
and ∥∥∥∥∑

l� j

ψl(D) f

∥∥∥∥∞
� c‖ f ‖∞,

for all j ∈ N and f ∈ L∞(Rn).

Proof. We begin by observing that ψ j(D) f (x) can be written as (2π)−nψ̂ j ∗ f̃ (−x), where f̃ (x) = f (−x). Hence∥∥ψ j(D) f
∥∥∞ � (2π)−n‖ f ‖∞‖ψ̂ j‖1.

Since ψ̂ j(ξ) = 2( j−1)nψ̂1(2 j−1ξ) we get∥∥ψ j(D) f
∥∥∞ � (2π)−n‖ψ̂1‖1‖ f ‖∞,

for all j � 1. Hence∥∥ψ j(D) f
∥∥∞ � (2π)−n max

(‖ψ̂1‖1,‖ψ̂0‖1
)‖ f ‖∞

for all j ∈ N. Note that
∑

l� j ψl(D) f = ψ0, j(D) f , with ψ0, j(ξ) = ψ0(2− jξ). Arguing as above we obtain the estimate∥∥∥∥∑
l� j

ψl(D) f

∥∥∥∥∞
� (2π)−n‖ f ‖∞‖ψ̂0, j‖1 � (2π)−n‖ψ̂0‖1‖ f ‖∞

which completes the proof. �
The following technical lemmas will be employed in proving Theorem 2.8. We refer to [38, Theorem 2.5.6], [27,

Lemma 1.2] and [36, Appendix A] for the corresponding proofs.

Lemma 2.3. For any S1
0-partition of unity (ψ j) j , any p ∈ (1,∞) and s ∈ R the norms ‖ · ‖Hs,p and

∥∥∥∥∥
{ ∞∑

j=0

4 js
∣∣ψ j(D)(·)∣∣2

} 1
2
∥∥∥∥∥

L p

are equivalent.
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Remark 2.4. Note that when (ψ j) j is a family of C∞
c functions such that suppψ0 ⊆ {ξ : |ξ | � 2} and suppψ j ⊆ {ξ : 2 j−1 �

|ξ | � 2 j+1} then there exists a constant C > 0 such that∥∥∥∥∥
{ ∞∑

j=0

4 js
∣∣ψ j(D)u

∣∣2

} 1
2
∥∥∥∥∥

L p

� C‖u‖Hs,p

for all u ∈ Hs,p . This result can be found in [27, p. 340] and is obtained by applying the multiplier theorem 2.5.6 in [38].

Lemma 2.5. For any p ∈ (1,∞) and s > 0 there exists a constant C > 0 such that for all sequences ( fk)k of distributions in S ′(Rn)

with supp f̂k ⊆ {ξ : |ξ | � A2k+1} for some A > 0 and for all k ∈ N, the following inequality holds:∥∥∥∥∥
∞∑

k=0

fk

∥∥∥∥∥
Hs,p

� C

∥∥∥∥∥
{ ∞∑

k=0

4ks| fk|2
} 1

2
∥∥∥∥∥

L p

.

We conclude this subsection by applying an S1
0-partition of unity to a regularised sequence Ak,ε := Ak ∗ρε of distributions

Ak in C r∗(Rn). In the proof of Proposition 2.6 we make use of the fact that C r∗(Rn) coincides with the Besov space Br∞,∞(Rn)

(see [16, Appendix] and references therein). Recall that Br∞,∞(Rn) is the space of all u ∈ S ′(Rn) such that ‖u‖Br∞,∞ :=
sup j�0 2 jr‖ψ j(D)u‖∞ < ∞, where (ψ j) j is an S1

0-partition of unity. The definition of Br∞,∞(Rn) is independent of the
choice of the partition (ψ j) j . It follows that if u ∈ C r∗(Rn) then

2 jr
∥∥ψ j(D)u

∥∥∞ � ‖u‖Br∞,∞ � c‖u‖Cr∗ .

Proposition 2.6. Let (Ak)k be a sequence in C r∗(Rn), r > 0, and (ψ j) j be an S0
1-partition of unity. If there exists C > 0 such that for all

k ∈ N,

‖Ak‖∞ � C

and

‖Ak‖Cr∗ � C 2kr

then

(i) for all k ∈ N,

‖Ak,ε‖∞ � C,

(ii) for all h � 0 there exists a constant C ′ > 0 such that for all k ∈ N and for all ε ∈ (0,1]
‖Ak,ε‖Cr+h∗ � C ′ε−h2kr;

(iii) finally, for all h � 0 there exists a constant C ′′ > 0 such that for all j,k ∈ N and all ε ∈ (0,1],∥∥ψ j(D)Ak,ε

∥∥∞ � C ′′2− j(r+h)2krε−h.

Proof. Let k ∈ N, ε ∈ (0,1]. Since by definition Ak,ε = Ak ∗ ρε we have that

‖Ak,ε‖∞ � ‖Ak‖∞‖ρε‖1 � C .

An application of Proposition 1.2 to Ak yields

‖Ak,ε‖Cr+h∗ � C0‖Ak‖Cr∗ε
−h,

where C0 does not depend on k but depends on h � 0. Combining this estimate with the hypothesis on ‖Ak‖Cr∗ we conclude
that for all h � 0 there exists a constant C ′ > 0 such that for all k ∈ N

‖Ak,ε‖Cr+h∗ � C ′ε−h2kr .

Finally, by definition of the class C r+h∗ we have that∥∥ψ j(D)Ak,ε

∥∥∞ � C12− j(r+h)‖Ak,ε‖Cr+h∗ � C ′′2− j(r+h)2krε−h,

for all k, j in N. �
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2.2. L p and Sobolev boundedness of pseudodifferential operators with symbol in C r∗ S0
1,1(R

2n)

We begin by considering pseudodifferential operators with elementary symbol.

Definition 2.7. We say that a(x, ξ) is an elementary symbol in C r∗ S0
1,1(R

2n) if it is of the form

∞∑
k=0

Ak(x)ϕk(ξ),

and has the following properties:

(i) the smooth functions ϕk are supported on {ξ : 2k−1 � |ξ | � 2k+1} with ϕk(ξ) = ϕ1(2−k+1ξ) for k � 1 and ϕ0 is supported
on {ξ : |ξ | � 2},

(ii) there exists a constant C > 0 such that for all k ∈ N,

‖Ak‖∞ � C, ‖Ak‖Cr∗ � C 2kr .

Analogously, a(x, ξ) is an elementary symbol in C r∗ Sm
1,1(R

2n) if and only if a(x, ξ)〈ξ〉−m is an elementary symbol in

C r∗ S0
1,1(R

2n).

Theorem 2.8. Let r > 0 and a(x, ξ) be an elementary symbol in C r∗ S0
1,1(R

2n). Let (ψ j) j be an S0
1-partition of unity and Akj,ε :=

ψ j(D)Ak,ε := ψ j(D)(Ak ∗ ρε). Set

aε(x, ξ) =
∑

k

{
k−4∑
j=0

Akj,ε(x) +
k+3∑

j=k−3

Akj,ε(x) +
∞∑

j=k+4

Akj,ε(x)

}
ϕk(ξ) = a1,ε(x, ξ) + a2,ε(x, ξ) + a3,ε(x, ξ).

Then, the following estimates hold:

(i) for all s > 0 and all p ∈ (1,∞) there exists C1 > 0 such that∥∥a1,ε(x, D) f
∥∥

Hs,p � C1‖ f ‖Hs,p ,

for all ε ∈ (0,1] and all f ∈ S (Rn);
(ii) for all s > 0 and all p ∈ (1,∞) there exists C1 > 0 such that∥∥a2,ε(x, D) f

∥∥
Hs,p � C2‖ f ‖Hs,p ,

for all ε ∈ (0,1] and all f ∈ S (Rn);
(iii) for all p ∈ (1,∞), for all h � 0 and all s ∈ (0, r + h) there exists C3 > 0 such that∥∥a3,ε(x, D) f

∥∥
Hs,p � C3ε

−h‖ f ‖Hs,p ,

for all ε ∈ (0,1] and all f ∈ S (Rn).

Proof. Our proof makes use of the methods employed by M.E. Taylor in [36, pp. 49–51]. Let s > 0 and p ∈ (1,∞). We begin
by considering a1,ε(x, D) f = ∑

k

∑k−4
j=0 Akj,ε(x)ϕk(D) f with f ∈ S (Rn) and ε ∈ (0,1]. Let fk,ε := ∑k−4

j=0 Akj,ε(x)ϕk(D) f . We

can write a1,ε(x, D) f as
∑∞

k=4 fk,ε . Since there exists A > 0 such that supp(F (Akj,εϕk(D) f )) ⊆ {ξ : |ξ | � A2k+1} for all
k � 4, j = 0, . . . ,k − 4 and ε ∈ (0,1], an application of Lemma 2.5 to the sequence ( fk,ε)k yields

∥∥a1,ε(x, D) f
∥∥

Hs,p � C

∥∥∥∥∥
{ ∞∑

k=4

4ks

∣∣∣∣∣
k−4∑
j=0

Akj,εϕk(D) f

∣∣∣∣∣
2} 1

2
∥∥∥∥∥

L p

.

From Proposition 2.2 we have that {∑l� j ψl(D): j ∈ N} is uniformly bounded on L∞ , and making use of the estimate on
‖Ak,ε‖∞ of Proposition 2.6 we conclude that there exist constants C0 and C ′ independent of ε such that∥∥∥∥∥

{ ∞∑
k=4

4ks

∣∣∣∣∣
k−4∑
j=0

Akj,εϕk(D) f

∣∣∣∣∣
2} 1

2
∥∥∥∥∥

L p

� C0

∥∥∥∥∥
{ ∞∑

k=4

4ks‖Ak,ε‖2∞
∣∣ϕk(D) f

∣∣2

} 1
2
∥∥∥∥∥

L p

� C ′
∥∥∥∥∥
{ ∞∑

4ks
∣∣ϕk(D) f

∣∣2

} 1
2
∥∥∥∥∥

p

.

k=0 L
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Remark 2.4 applied to (ϕk(D) f )k yields∥∥∥∥∥
{ ∞∑

k=0

4ks
∣∣ϕk(D) f

∣∣2

} 1
2
∥∥∥∥∥

L p

� C1‖ f ‖Hs,p .

Let us now take a2,ε(x, ξ) = ∑
k{

∑k+3
j=k−3 Akj,ε(x)}ϕk(ξ). As above, an application of Lemma 2.5 combined with Proposi-

tion 2.2 and Remark 2.4, entails

∥∥a2,ε(x, D) f
∥∥

Hs,p � C

∥∥∥∥∥
{ ∞∑

k=0

4ks

∣∣∣∣∣
k+3∑

j=k−3

Akj,εϕk(D) f

∣∣∣∣∣
2} 1

2
∥∥∥∥∥

L p

� C2‖ f ‖Hs,p ,

for some constant C2 independent of ε and f . In order to estimate a3,ε(x, D) f we recall that by Proposition 2.6 for all h � 0
there exists C ′ > 0 such that∥∥ψ j(D)Ak,ε

∥∥∞ � C ′2− j(r+h)2krε−h,

for all j, k and for all ε ∈ (0,1]. From Lemma 2.5 we have

∥∥a3,ε(x, D) f
∥∥

Hs,p =
∥∥∥∥∥

∞∑
k=0

∞∑
j=k+4

Akj,εϕk(D) f

∥∥∥∥∥
Hs,p

=
∥∥∥∥∥

∞∑
j=4

j−4∑
k=0

Akj,εϕk(D) f

∥∥∥∥∥
Hs,p

� C

∥∥∥∥∥
{ ∞∑

j=4

4 js

∣∣∣∣∣
j−4∑
k=0

Akj,εϕk(D) f

∣∣∣∣∣
2} 1

2
∥∥∥∥∥

L p

� C ′ε−h

∥∥∥∥∥
{ ∞∑

j=4

4 j(s−r−h)

( j−4∑
k=0

2k(r+h)
∣∣ϕk(D) f

∣∣)2} 1
2
∥∥∥∥∥

L p

.

Since

∞∑
j=4

4 j(s−r−h)

( j−4∑
k=0

2k(r+h)
∣∣ϕk(D) f

∣∣)2

=
∞∑
j=4

( j−4∑
k=0

2(k− j)(r+h−s)2ks
∣∣ϕk(D) f

∣∣)2

� 2
∞∑
j=4

j−4∑
k=0

2(k− j)(r+h−s)4ks
∣∣ϕk(D) f

∣∣2
,

changing order in the sums, we get∥∥∥∥∥
{ ∞∑

j=4

4 j(s−r−h)

( j−4∑
k=0

2k(r+h)
∣∣ϕk(D) f

∣∣)2} 1
2
∥∥∥∥∥

L p

�
√

2

∥∥∥∥∥
{ ∞∑

j=0

4 j(s−r−h)

∞∑
k=0

4ks
∣∣ϕk(D) f

∣∣2

} 1
2
∥∥∥∥∥

L p

.

Hence, if 0 < s < r + h there exists a constant C ′′ such that

C ′ε−h

∥∥∥∥∥
{ ∞∑

j=4

4 j(s−r−h)

( j−4∑
k=0

2k(r+h)
∣∣ϕk(D) f

∣∣)2} 1
2
∥∥∥∥∥

L p

� C ′′ε−h

∥∥∥∥∥
{ ∞∑

k=0

4ks
∣∣ϕk(D) f

∣∣2

} 1
2
∥∥∥∥∥

L p

.

Again by Remark 2.4 we conclude that there exists C3 > 0 such that for all ε ∈ (0,1] and f ∈ S (Rn),∥∥a3,ε(x, D) f
∥∥

Hs,p � C3ε
−h‖ f ‖Hs,p . �

Corollary 2.9. Let a(x, ξ) be an elementary symbol in C r∗ Sm
1,1(R

2n). If r > 0 and p ∈ (1,∞) then for all h � 0 and all s ∈ (0, r + h)

there exists C > 0 such that∥∥aε(x, D) f
∥∥

Hs,p � Cε−h‖ f ‖Hs+m,p

for all ε ∈ (0,1] and f ∈ Hs+m,p(Rn).

Proof. We begin by writing ‖aε(x, D) f ‖Hs,p as∥∥(
aε(x, D)〈Dx〉−m)〈Dx〉m f

∥∥
s,p . (2.8)
H
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Observing that (a(·, ξ) ∗ ρε)〈ξ〉−m = (a(·, ξ)〈ξ〉−m) ∗ ρε with a(·, ξ)〈ξ〉−m an elementary symbol in C r∗ S0
1,1(R

2n), by applying
Theorem 2.8 we have that if r > 0 and p ∈ (1,∞) then for all h � 0 and all s ∈ (0, r + h) there exists C > 0 such that∥∥(

aε(x, D)〈Dx〉−m)〈Dx〉m f
∥∥

Hs,p � Cε−h
∥∥〈Dx〉m f

∥∥
Hs,p . (2.9)

Combining (2.8) with (2.9) we conclude that for all h � 0 and all s ∈ (0, r + h) there exists C > 0 such that∥∥aε(x, D) f
∥∥

Hs,p � Cε−h‖ f ‖Hs+m,p

for all ε ∈ (0,1] and all f ∈ Hs+m,p(Rn). �
It is well known that a symbol a ∈ C r∗ S0

1,1(R
2n) can be decomposed into a sum of elementary symbols. More precisely,

referring to [36, pp. 48–49] and [37, pp. 18–20], we have that

a(x, ξ) =
∞∑

ν=1

cν

∞∑
k=0

aν
k (x)ϕν

k (ξ),

where, the sequence cν is rapidly decreasing (i.e., the sequence (1 + ν)N |cν | is bounded for all N ∈ N) and
∑∞

k=0 aν
k (x)ϕν

k (ξ)

is an elementary symbol. In addition there exists a constant c > 0 such that∥∥aν
k

∥∥∞ � c,
∥∥aν

k

∥∥
Cr∗

� c 2kr (2.10)

for all values of k and ν . Passing to the regularisation via convolution with a mollifier ρε we easily see that

aε(x, ξ) = (
a(·, ξ) ∗ ρε

)
(x) =

∑
ν

cν

∑
k

aν
k,ε(x)ϕν

k (ξ),

where aν
k,ε(x) = aν

k ∗ ρε(x). We are now ready to prove the following theorem.

Theorem 2.10. Let a(x, ξ) be a symbol in C r∗ Sm
1,1(R

2n). If r > 0 and p ∈ (1,∞) then for all h � 0 and all s ∈ (0, r + h) there exists
C > 0 such that∥∥aε(x, D) f

∥∥
Hs,p � Cε−h‖ f ‖Hs+m,p

for all ε ∈ (0,1] and f ∈ Hs+m,p(Rn).

Proof. It is not restrictive to assume that a has order 0. Making use of the decomposition into elementary symbols above
we concentrate on∑

k

aν
k,ε(x)ϕν

k (ξ),

where we can assume that ‖ϕν
0 ‖1 and ‖ϕν

1 ‖1 do not depend on ν . We recall that in the estimates (2.10) the constant c does
not depend on ν and k. An investigation of the proof of Theorem 2.8, in which we make use of the results of Propositions 2.2
and 2.6, shows that if r > 0 and p ∈ (1,∞) then for all h � 0 and all s ∈ (0, r + h) there exists C1 > 0, independent of ν
and k, such that∥∥aν

k,ε(x, D) f
∥∥

Hs,p � C1ε
−h‖ f ‖Hs+m,p

for all ε ∈ (0,1] and f ∈ Hs+m,p(Rn). Since the sequence cν is rapidly decreasing in ν we can conclude that for each h � 0
and s ∈ (0, r + h) there exists a constant C > 0 such that∥∥aε(x, D) f

∥∥
Hs,p � Cε−h‖ f ‖Hs+m,p

for all ε ∈ (0,1]. �
We conclude this section with the following continuity result for pseudodifferential operators with regular symbol of

type (1, δ).

Proposition 2.11. Let a ∈ Sm
1,δ(R

2n) with δ ∈ [0,1). If p ∈ (1,∞) then for all s ∈ R there exists C > 0 such that∥∥aε(x, D) f
∥∥

Hs,p � C‖ f ‖Hs+m,p

for all ε ∈ (0,1].
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Proof. We begin by observing that Sm
1,δ(R

2n) ⊆ Ck∗ Sm
1,1(R

2n) for all k ∈ N. This is due to the fact that the space of con-

tinuous and bounded functions with continuous and bounded derivatives up to order k is contained in Ck∗(Rn) (see [36,
Appendix A]). In detail,∥∥Dα

ξ a(·, ξ)
∥∥

Ck∗
� C sup

|β|�k

∥∥Dα
ξ Dβ

x a(x, ξ)
∥∥

L∞(Rn
x)

� Cα〈ξ〉m−|α|+δk � Cα〈ξ〉m−|α|+k

and from the definition of Sm
1,δ(R

2n),∥∥Dα
ξ a(·, ξ)

∥∥∞ � cα〈ξ〉m−|α|.

We can therefore fix s ∈ (0,k) and apply Theorem 2.10 with h = 0. We obtain that∥∥aε(x, D) f
∥∥

Hs,p � C‖ f ‖Hs+m,p .

Making now k vary in N we conclude that the previous mapping property holds for all s ∈ (0,+∞) with C depending on s.
Let us consider the transpose operator taε(x, D) of aε(x, D). We can write

t(aε(x, D)
)

f = ãε(x, D) f ,

where ã(x, ξ) = a(x,−ξ). Arguing as above and applying Theorem 2.10 to ãε(x, D) we have that for all s > 0 there exists a
constant C > 0 independent of ε such that for all ε ∈ (0,1],∥∥taε(x, D) f

∥∥
Hs,p � C‖ f ‖Hs+m,p .

Since (Hs,p′
(Rn))′ = H−s,p(Rn) with 1/p + 1/p′ = 1 by duality methods we obtain that∥∥aε(x, D) f

∥∥
H−s−m,p � sup

‖g‖
Hs+m,p′ �1

∣∣〈aε(x, D) f , g
〉∣∣ = sup

‖g‖
Hs+m,p′ �1

∣∣〈 f , taε(x, D)g
〉∣∣

� ‖ f ‖H−s,p

∥∥taε(x, D)g
∥∥

Hs,p′ � C‖ f ‖H−s,p .

This means that for all s < 0,∥∥aε(x, D) f
∥∥

Hs−m,p � C‖ f ‖Hs,p ,

or in other words,∥∥aε(x, D) f
∥∥

Hs,p � C‖ f ‖Hs+m,p

for s < −m.
We now take the interpolation couples {Hs0+m

p , Hs1+m
p } and {Hs0

p , Hs1
p }, with s0 = −m − λ, s1 = λ, λ > 0. The net of

operators aε(x, D) maps H
s j+m
p into H

s j
p for j = 0,1 and fulfills the hypothesis of Proposition 1.7 with ω0,ε = c0 > 0 and

ω1,ε = c1 > 0. Making use of (1.7) and of Proposition 1.7 we conclude that∥∥aε(x, D) f
∥∥

Hs+m
p

� max(c0, c1)‖ f ‖Hs,p

for all ε ∈ (0,1] and for s = (1−θ)s0 +θ s1 with θ ∈ (0,1). This means that also for s ∈ [−m,0] (if m > 0) and for s ∈ [0,−m]
(if m < 0) there exists some constant C > 0 such that∥∥aε(x, D) f

∥∥
Hs,p � C‖ f ‖Hs+m,p

for all ε ∈ (0,1]. �
3. L p and Sobolev boundedness of nets of pseudodifferential operators with regular symbol

This section is devoted to nets of pseudodifferential operators aε(x, D) with regular symbol, i.e. aε ∈ Sm(R2n), depending
on the parameter ε ∈ (0,1]. We recall that a ∈ Sm(R2n) if and only if

|a|(m)
α,β = sup

(x,ξ)∈R2n
〈ξ〉−m+|α|∣∣∂α

ξ ∂
β
x a(x, ξ)

∣∣ < ∞,

for all α,β ∈ N
n . Unlike the previous sections, we do not require that aε is generated by a symbol a via convolution with

a mollifier ρε . We therefore consider a wider class of nets aε(x, D) with respect to Section 2. We want to investigate the
L p and Sobolev boundedness of a net of pseudodifferential operators aε(x, D) with (aε)ε ∈ Sm(R2n)(0,1] . This requires the
following lemmas whose proof can be found in [44, Lemma 10.9], [13, Theorem 2.5] and [44, Lemma 10.10].
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Lemma 3.1. Let Q 0 be the cube with centre at the origin and edges of length 1 parallel to the coordinate axes in R
n. Let η ∈ C∞

c (Rn)

be identically 1 on Q 0 . Let a ∈ S0(R2n), am(x, ξ) = η(x − m)a(x, ξ) for m ∈ Z
n and

âm(λ, ξ) =
∫
Rn

e−iλxam(x, ξ)dx.

Then, for all α ∈ N
n and all N ∈ N there exists C > 0 depending only on n, η and N such that∣∣Dα

ξ âm(λ, ξ)
∣∣ � C sup

|β|�N
|a|(0)

α,β〈ξ〉−|α|〈λ〉−N ,

for all (λ, ξ) ∈ R
2n.

Lemma 3.2. Let f ∈ Ck(Rn \ {0}), k > n/2, be such that there exists B > 0 for which∣∣Dα f (ξ)
∣∣ � B|ξ |−|α|, ξ 	= 0,

for all α ∈ N
n with |α| � k. Then, for all p ∈ (1,∞) there exists C > 0 depending only on p and n, such that∥∥ f (D)ϕ

∥∥
p � C B‖ϕ‖p,

for all ϕ ∈ S (Rn).

Lemma 3.3. Let a ∈ S0(R2n) and Ka be the distribution F −1
ξ→z(a(x, ξ)) in S ′(R2n). Then,

(i) for each x ∈ R
n, Ka(x, ·) is a function defined on R

n \ {0},
(ii) for each N sufficiently large there exists a constant c, depending only on N and n such that∣∣Ka(x, z)

∣∣ � c sup
|α|�N

|a|(0)
α,0|z|−N

for all z 	= 0,
(iii) for each x ∈ R

n and ϕ ∈ S (Rn) vanishing in a neighbourhood of x,

a(x, D)ϕ(x) =
∫
Rn

Ka(x, x − z)ϕ(z)dz.

Theorem 3.4. Let (aε)ε ∈ S0(R2n)(0,1] and p ∈ (1,∞). Then, there exist N ∈ N and a constant C depending only on n, N and p such
that ∥∥aε(x, D)ϕ

∥∥
p � C sup

|α+β|�N
|aε|(0)

α,β‖ϕ‖p,

for all ϕ ∈ S (Rn) and ε ∈ (0,1].

Proof. As in the proof of Theorem 10.7 in [44] we write R
n as a union of cubes Q m , where Q m is the cube with centre

m ∈ Z
m and edges of length 1 which are parallel to the coordinate axes. Let Q ∗

m and Q ∗∗
m be cubes with centre m and edges

parallel to the coordinate axes with length 3/2 and 2, respectively. It follows that Q m ⊂ Q ∗
m ⊂ Q ∗∗

m and that for some δ > 0
one has |x − z| � δ for all x ∈ Q m and z ∈ R

n \ Q ∗
m .

Let now ψ ∈ C∞
c (Rn) be such that 0 � ψ � 1, suppψ ⊆ Q ∗∗

0 and ψ(x) = 1 on a neighbourhood of Q ∗
0 . It follows that

ψm(x) = ψ(x − m) has support contained in Q ∗∗
m and ψm(x) = 1 on a neighbourhood of Q ∗

m . For each ϕ ∈ S (Rn) we can
write ϕ = ϕ1,m + ϕ2,m , where ϕ1,m = ψmϕ and ϕ2,m = (1 − ψm)ϕ , and then

aε(x, D)ϕ = aε(x, D)ϕ1,m + aε(x, D)ϕ2,m.

It is clear that∥∥aε(x, D)ϕ
∥∥p

p =
∑

m∈Zm

∫
Q m

∣∣aε(x, D)ϕ(x)
∣∣p

dx

� 2p
( ∑

m∈Zn

∫
Q m

∣∣aε(x, D)ϕ1,m(x)
∣∣p

dx +
∫

Q m

∣∣aε(x, D)ϕ2,m(x)
∣∣p

dx

)
. (3.11)

Our proof consists of three steps:
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1. estimate of
∫

Q m
|aε(x, D)ϕ1,m(x)|p dx,

2. estimate of
∫

Q m
|aε(x, D)ϕ2,m(x)|p dx,

3. combination of 1 and 2.

Step 1. We begin by considering∫
Q m

∣∣aε(x, D)v(x)
∣∣p

dx,

where v ∈ S (Rn). Let η ∈ C∞
c (Rn) be identically 1 on Q 0 and am(x, ξ) = η(x − m)a(x, ξ). Hence,∫

Q m

∣∣aε(x, D)v(x)
∣∣p

dx �
∫
Rn

∣∣am,ε(x, D)v(x)
∣∣p

dx. (3.12)

Since am,ε is compactly supported in x we can write am,ε(x, D)v(x) as∫
Rn

eixλ
∫
Rn

eixξ âm,ε(λ, ξ)v̂(ξ)d−ξ d−λ =
∫
Rn

eixλâm,ε(λ, D)(v)(x)d−λ.

From Lemma 3.1 we have that for all N ∈ N∣∣Dα
ξ âm,ε(λ, ξ)

∣∣ � C sup
|β|�N

|am,ε|(0)
α,β〈ξ〉−|α|〈λ〉−N ,

where C depends only on n, η and N . We can therefore apply Lemma 3.2 to f (ξ) = âm,ε(λ, ξ) with

B = C sup
|β|�N, |α|��n/2�+1

|am,ε|(0)
α,β〈λ〉−N

and obtain that there exists a constant C ′ , depending on n, N , η and p such that∥∥âm,ε(λ, D)(v)(x)
∥∥

L p(Rn
x)

� C ′ sup
|β|�N, |α|��n/2�+1

|am,ε|(0)
α,β〈λ〉−N‖v‖p (3.13)

for all λ ∈ R
n , for all ε ∈ (0,1], for all m ∈ Z

n and for all v ∈ S (Rn). An application of the Minkowski integral inequality
leads from (3.13) to

∥∥am,ε(λ, D)(v)
∥∥

p =
{∫

Rn

∣∣∣∣ ∫
Rn

eixλâm,ε(λ, D)(v)(x)d−λ
∣∣∣∣p

dx

} 1
p

�
∫
Rn

{∫
Rn

∣∣âm,ε(λ, D)(v)(x)
∣∣p

dx

} 1
p

d−λ

=
∫
Rn

∥∥âm,ε(λ, D)(v)
∥∥

p d−λ � C ′ sup
|β|�N, |α|��n/2�+1

|am,ε|(0)
α,β

∫
Rn

〈λ〉−N d−λ‖v‖p .

Thus, choosing N = n + 1 we get∥∥am,ε(λ, D)(v)
∥∥

p � C ′ sup
|β|�n+1,

|α|��n/2�+1

|am,ε|(0)
α,β ‖v‖p, (3.14)

valid for all m ∈ Z
n , for all ε ∈ (0,1] and v ∈ S (Rn). Going back to

∫
Q m

|aε(x, D)ϕ1,m(x)|p dx, the estimate (3.14) combined
with (3.12) yields∫

Q m

∣∣aε(x, D)ϕ1,m(x)
∣∣p

dx �
∥∥am,ε(λ, D)(ϕ1,m)

∥∥p
p � C p

(
sup

|β|�n+1,
|α|��n/2�+1

|am,ε|(0)
α,β

)p‖ϕ1,m‖p
p, (3.15)

where C p does not depend on m and ε.

Step 2. We now want to estimate
∫

Q m
|aε(x, D)ϕ2,m(x)|p dx. We start by studying |aε(x, D)ϕ2,m(x)| when x ∈ Q m . Since ϕ2,m

is identically 0 on Q ∗
m ⊃ Q m , from Lemma 3.3 we have∣∣aε(x, D)ϕ2,m(x)

∣∣ =
∣∣∣∣ ∫
Rn

Kaε (x, x − z)ϕ2,m(z)dz

∣∣∣∣ � c sup
|α|�2N

|aε|(0)
α,0

∫
n ∗

|x − z|−2N
∣∣ϕ2,m(z)

∣∣dz, (3.16)
R \Q m
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valid for 2N > n and for all x ∈ Q m with some constant c depending only on n and N . Let us fix λ �
√

n +1. Since |x− z| � δ

for all x ∈ Q m and all z ∈ R
n \ Q ∗

m , there exists a constant Cλ,N such that

|x − z|−2N

(λ + |x − z|)−2N
� Cλ,N (3.17)

on the same domain and, for all x ∈ Q m ,

λ + |x − z| � λ + |m − z| − |x − m| �
(

λ −
√

n

2

)
+ |m − z| �

√
n

2
+ 1 + |m − z| = μ + |m − z|. (3.18)

Combining (3.16) with (3.17) and (3.18) we get the estimate

∣∣aε(x, D)ϕ2,m(x)
∣∣ � c sup

|α|�2N
|aε|(0)

α,0

∫
Rn\Q ∗

m

Cλ,N
(
λ + |x − x|)−2N ∣∣ϕ2,m(z)

∣∣dz

� c Cλ,N sup
|α|�2N

|aε|(0)
α,0

∫
Rn\Q ∗

m

(μ + |x − z|)−N

(μ + |m − z|)N

∣∣ϕ2,m(z)
∣∣dz, (3.19)

valid for all x ∈ Q m and all ε ∈ (0,1]. By Minkowski’s inequality and Hölder’s inequality we can write

( ∫
Q m

∣∣aε(x, D)ϕ2,m(x)
∣∣p

dx

) 1
p

� c Cλ,N sup
|α|�2N

|aε|(0)
α,0

∫
Rn\Q ∗

m

{ ∫
Q m

(μ + |x − z|)−Np

(μ + |m − z|)Np

∣∣ϕ2,m(z)
∣∣p

dx

} 1
p

dz

= c Cλ,N sup
|α|�2N

|aε|(0)
α,0

∫
Rn\Q ∗

m

|ϕ2,m(z)|
(μ + |m − z|)N

{ ∫
Q m

(
μ + |x − z|)−Np

dx

} 1
p

dz

= Cλ,N,p sup
|α|�2N

|aε|(0)
α,0

∫
Rn\Q ∗

m

|ϕ2,m(z)|
(μ + |m − z|)N

dz

� Cλ,N,p sup
|α|�2N

|aε|(0)
α,0

{ ∫
Rn\Q ∗

m

(
μ + |m − z|)−Np′

2 dz

} 1
p′ { ∫

Rn\Q ∗
m

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz

} 1
p

.

At this point, choosing N large enough (Np′/2 > n) we obtain that there exists a constant Cλ,N,p , depending only on λ, N
and p such that∫

Q m

∣∣aε(x, D)ϕ2,m(x)
∣∣p

dx � Cλ,N,p

(
sup

|α|�2N
|aε|(0)

α,0

)p
∫

Rn\Q ∗
m

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz, (3.20)

for all m ∈ Z
n and ε ∈ (0,1].

Step 3. A combination of (3.11) with (3.15) and (3.20) yields∥∥aε(x, D)ϕ
∥∥p

p � 2pC p

∑
m∈Zn

(
sup

|β|�n+1,
|α|��n/2�+1

|am,ε|(0)
α,β

)p‖ϕ1,m‖p
p

+ 2pCλ,N,p

(
sup

|α|�2N
|aε|(0)

α,0

)p ∑
m∈Zn

∫
Rn\Q ∗

m

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz,

with λ �
√

n + 1 and Np > 2n(p − 1). From the definition of am,ε , ϕ1,m and ϕ2,m we get (for some new constant C p ),
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∥∥aε(x, D)ϕ
∥∥p

p � 2pC p

(
sup

|β|�n+1,
|α|��n/2�+1

|aε|(0)
α,β

)p ∑
m∈Zn

∫
Q ∗∗

m

∣∣ϕ(x)
∣∣p

dx

+ 2pCλ,N,p

(
sup

|α|�2N
|aε|(0)

α,0

)p ∑
m∈Zn

∫
Rn\Q ∗

m

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz

� 2pC p

(
sup

|β|�n+1,
|α|��n/2�+1

|aε|(0)
α,β

)p ∑
m∈Zn

∫
Q ∗∗

m

∣∣ϕ(x)
∣∣p

dx

+ 2pCλ,N,p

(
sup

|α|�2N
|aε|(0)

α,0

)p ∑
m∈Zn

∑
l 	=m

∫
Q l

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz. (3.21)

Arguing as in (3.18) we have that μ + |m − z| � 1 + |m − l| when z ∈ Q l with l 	= m. Hence∑
m∈Zn

∑
l 	=m

∫
Q l

|ϕ2,m(z)|p

(μ + |m − z|) Np
2

dz �
∑

m∈Zn

∑
l 	=m

(
1 + |m − l|)− Np

2

∫
Q l

∣∣ϕ2,m(z)
∣∣p

dz

�
∑

m∈Zn

∑
l∈Zn

(
1 + |m − l|)− Np

2

∫
Q l

∣∣ϕ2,m(z)
∣∣p

dz �
∑

m∈Zn

(
1 + |m|)− Np

2
∑
l∈Zn

∫
Q l

∣∣ϕ(z)
∣∣p

dz.

At this point, choosing Np > max(2n(p − 1),2n) and going back to (3.21) we obtain the estimate∥∥aε(x, D)ϕ
∥∥p

p � C p,n,N

((
sup

|β|�n+1,
|α|��n/2�+1

|aε|(0)
α,β

)p +
(

sup
|α|�2N

|aε|(0)
α,0

)p)
‖ϕ‖p

p, (3.22)

valid for all ε ∈ (0,1] and ϕ ∈ S (Rn). This completes the proof. �
Remark 3.5. We recall that a net of symbols (aε)ε in Sm(R2n) is moderate if for all α,β ∈ N

n there exists N ∈ N such that

|aε|(m)
α,β = O

(
ε−N)

as ε → 0. This is the typical representative of a generalised symbol in the Colombeau framework as defined in [10,11].
Theorem 3.4 shows that the net (aε(x, D)ϕ)ε has in the norm ‖ · ‖p the same kind of dependence on ε of the symbol (aε)ε .
It follows that, via action of the corresponding pseudodifferential operator, moderate nets of symbols provide moderate nets
of L p functions.

Corollary 3.6. Let (aε)ε ∈ Sm(R2n)(0,1] and p ∈ (1,∞). Then, for all s ∈ R there exist N ∈ N and a constant C depending only on n,
N, m, s and p such that∥∥aε(x, D)ϕ

∥∥
Hs,p � C sup

|α+β|�N
|aε|(m)

α,β‖ϕ‖Hs+m,p ,

for all ϕ ∈ S (Rn) and ε ∈ (0,1].

Proof. Apply Theorem 3.4 to the pseudodifferential operator 〈Dx〉s a(x, D)〈Dx〉−s−m with symbol∫
R2n

e−iyη〈ξ − η〉saε(x − y, ξ)dy d−η 〈ξ〉−s−m

of order 0. �
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