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Consider the Sturm-Liouville boundary-value problem 

(1) y”-q(x) y= -t*y,--co<a<x<b<cc 

(2) y(a) cos a + y’(a) sin a =0 

(3) y(b) cos /I + y’(b) sin j = 0, 

where q(x) is continuous on [a, b]. Let 4(.x, t) be a solution of either the initial- 
value problem (1) and (2) or (1) and (3). In this paper we develop two techniques 
to invert the integral F(f) = jf: f(x) 4(x, t) d x, where f(x) E L*(a, b); one technique 
is based on the construction of some biorthogonal sequence of functions and the 
other is based on Poisson’s summation formula. c 1992 Academic Press, Inc. 

1. INTRODUCTION 

Recently there has been some interest in the study of a certain class of 
integral transforms which contains the continuous Jacobi, Gegenbauer, 
Legendre, Laguerre, and Hermite transforms as special cases. The impor- 
tance of these integral transforms lies not only in their intrinsic properties 
but also in their connection with sampling theory and signal analysis. They 
lead to various sampling expansions similar to the one given by the 
celebrated Whittaker-ShannonKotelnikov sampling theorem [2, 151 
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which states that if f(t) is band-limited to [ -rr, rc], then f(t) can be 
expanded in the form 

f(r) = f f(n) si;;t”;;‘. 

“= --co 
(1.1) 

Analogously, it was shown in [29] that if f’*,“‘(t) is the continuous 
Jacobi transform off(x), i.e., if 

pyt) = jl, f(x) qq”B,‘(x) dw’*J’(x); a,p> -1, ZEC (1.2) 

for some suitable function f(x), where 4 i*‘“‘(x) is the Jacobi function, 
dw’“~“‘(x) = 2 -‘“( 1 - x)’ (1 + x)~ dx and 2q = a + B + 1 is an integer 30, 
then a sampling expansion of3’“,B’(t) can be given by 

where 

f’“J’(t) = f “wyn + q) SZ(t - q), 
fl=O 

(1.3) 

sg t - q) = 
2(n + q) sin rr(t - n - 4). 

n[t2 - (n + q)2] 
(1.4) 

When q=O, (1.4) is a symmetric version of (1.1). When a=fi=I-4, 
f’“,8)(t) reduces to the continuous Gegenbauer transform studied in [28] 
and when CI =0 =/I, it reduces to the continuous Legendre transform 
studied in [3, 17, 301. The continuous Laguerre and Hermite transforms 
and their sampling expansions have also been investigated in [9-12, 14, 16, 
25, 333. 

It seems desirable to have a more unified approach to all these integral 
transforms and their sampling expansions. One such approach which is due 
to Weiss [31] and Kramer [ 191 goes as follows: Suppose that 4(x, t) is a 
real continuous function on Ix J where Z is a bounded interval and J is a 
domain such that for some sequence It,}:= o in J, {4,(x) = 4(x, t,)},“_ o is 
a complete orthogonal family of functions on Z with respect to some 
measure dp. Then, for f(x) E L2(Z, dp), we have 

(1.5) 

where 

u?(n) = @4 4n(x) 44x). (1.6) 



INVERSION OF INTEGRAL TRANSFORMS 287 

If we call the sequence {~(n)}~=, the discrete #-transform of f(x), then it 
is natural to call f(ct) = S,f(x) 0(x, t) dp the continuous &transform of 
f(x). 

It is our interest to find a sampling expansion and an inversion formula 
for this transform. As for the sampling expansion, one can easily find from 
(1.5) that 

where 

1 
s,(t) = jp-jp .i I h(x) 4(x, f) & (1.8) 

are the sampling functions. However, finding an inversion formula for the 
continuous &transform is not, in general, as easy. 

To see where the function 4(x, t) arises naturally let us consider the 
regular Sturm-Liouville boundary-value problem 

y”-q(x)y= -t2y, --co <adxdb< co (1.9) 

y(a) cos c1+ y’(u) sin 01= 0, (1.10) 

y(b) cos /I + y’(b) sin /? = 0. (1.11) 

Let {t~}~=, denote the eigenvalues of this problem and let 4(x, t) be a 
solution of (1.9) together with one of the boundary conditions, say (l.lO), 
then it is well known that {4,,(x) = 4(x, t,)},“=o, the eigenfunctions, form 
a complete orthogonal family on [a, b] with respect to Lebesgue measure. 
Therefore, the so-called continuous &transform in this case takes on the 
form 

(1.12) 

The function 4(x, t) with its main property of producing the eigenfunctions 
when the parameter t is replaced by the t,, may also arise from some 
singular Sturm-Liouville boundary-value problems. Since the Legendre, 
Gegenbauer, Jacobi, Laguerre, and Hermite functions are solutions of 
Sturm-Liouville boundary-value problems, the importance of (1.12) 
becomes evident. 

The sampling expansion (1.7)-(1.8) of f(t) has recently been shown in 
[33, 361 to be nothing more than the Lagrange interpolation off(t). 

As for an inversion formula for (1.12), no general procedure seems to 
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exist; only a few scattered results are known. For the continuous Legendre 
transform, inversion formulae were found earlier by MacRobert [23,24] 
and more recently by Butzer, Stens, and Wehrens [3]. An inversion for- 
mula for the continuous Gegenbauer transform was found by Walter in 
[28]. As for the continuous Jacobi transform, an inversion formula was 
found by Deeba and Koh for c1+ fl= 0 in [7, S] and extended by Walter 
and Zayed [29] to a + fi + 1 a nonnegative integer, and by Koornwinder 
and Walter for general c(, ,Q > - 1 [IS]; see also [34, 351. 

The aim of this paper is to find an inversion formula for (1.12). The rest 
of this article will be divided into five sections. Section 2 contains some of 
the preliminary results that will be used in the sequel. In Section 3 we 
develop a technique to invert (1.12) based on the construction of a 
biorthogonal sequence. In Section 4 another technique based on the 
Poisson’s summation formula is derived. In Section 5 we give some examples, 
and in Section 6 discuss the singular case. 

2. PRELIMINARIES 

Consider the regular Sturm-Liouville boundary-value problem 
(S-LBVP) given by (1.9)-( 1.1 l), where q(x) is real and continuous on 
(a, 6) and tends to finite limits as x -+ a+ and x + b-. Let 6(x, t) and 
$(x, t) be solutions of (1.9) such that 

~)(a, t) = sin c(, &(a, t) = -cos CI (2.1) 

IC/(b, t) = sin /I, iy(b, t) = -cos p. (2.2) 

It was shown in [36, Lemma 2.11 that both g)(x, t) and $(x, t) can be 
chosen as even entire functions in t of exponential type <(h-a) and as 
functions in x they are real-valued whenever t* is real; they do not vanish 
identically for any t whether real or complex, and are uniformly bounded 
for all real t and a 6 x 6 b. Indeed if sin c1# 0, 

fj(x, t) = cos(t(x- a)) sin a + 0( lt( -I e’rm” (x--u)) 

and if sin CI = 0 

(2.3) 

$(x, t)= -7 sin(t(x - a)) + 0( It1 -* elrm Ii (-X-u)) (2.4) 

[27, p. lo]. 
At most a finite number of the eigenvalues of problem (1.9t( 1.11) are 

nonpositive; therefore we can assume, without loss of generality, all are 
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positive; otherwise we choose a fixed number c and consider the boundary- 
value problem 

y”+ {(A-c)-qq(x)}y=O 

together with (1.10) and (1.1 1 ), where c is larger than the magnitude of all 
nonpositive eigenvalues. Hence, from now on, we shall denote the eigen- 
values by {~,z}~~ ,, and set A,,= ti, TV,= -t,. We shall also denote the 
eigenfunction corresponding to the eigenvalue 1, by $,Jx) and since 4(x, t) 
is an even function in t, we have 

$n(x) = 4(x, t,) =4(x, t-J = L(X)> n = 1, 2, 

and 

=-I 0 if n#+m 

II*nllZ n= +m 
m,n= 5-1,+2 ,.... 

Let f(x) E L2(a, b), f(n) = <.A $,, >, then 

Since 4(x, t) is bounded in x for each t, it has a similar expansion. In (2.5), 
the series converges in the sense of L2(a, 6), and CA” -~ =C,“= -m,nZO. 
We also have the following estimates [22, pp. 8-131: 

1 
t,=&+&+. 2 0 as n-+co, (2.6) 

where s,=(n-1), or (n-i), or n as (i) sinccsinb#O, (ii) sincc=O or 
sin /I=0 but not both, or (iii) sin CI= sin /3=0. Similarly in these three 
cases we have respectively for sin a # 0 

t),(x) = sin a cos (n-1)4x-a) +. A 
b-a > 0 n 

as n-+cc (2.7) 

and for sin rx = 0, 

as n-+cO. 
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The normalized eigenfunctions are [27, p. 191 

~=($-)“2cos((n-~“h”-“‘)+O(~) (2.8) 

and 

3. INVERSION FORMULAE 

In this section we develop a technique for inverting any integral trans- 
form whose kernel is a solution of the regular Sturm-Liouville differential 
equation (1.9) and satisfies one of the initial conditions (1.10) or (1.11). 

This technique is based on the construction of a biorthogonal sequence 
of functions to be used in the derivation of the kernel of the inversion 
formula. This idea was used earlier by Walter and Zayed [29] and 
Walter [28]. 

Since the substitution R = x(x - a)/(b - a) transforms the interval [a, h] 
into the interval [0, rc] without changing the form of the boundary-value 
problem, we shall from now on suppose that a = 0, b = 7~. 

We denote by G(t) the Wronskian W(& II/) of 4, II/ which is known to be 
independent of x (cf. [27, p. 73); 

G(t) = 4(x, t) Ic/‘(x, t) -$(x, t) 6(x, t). 

The continuous Sturm-Liouville transforms will be denoted by 

E;(t) = (@f)(t) = jf f(x) 4(x, t) dx (3.la) 

and 

FAtI = (@,f)(t) = j; f(x) $(A t) dx. (3.lb) 

PROPOSITION 3.1. The map @ given by (3,la) (respectively @, given by 
(3.lb)) maps L2(0, 71) into the Paley-Wiener space B, offunctions in L*(R) 
which are even, entire, and of exponential type dn. It is continuous and one 
to one and F(t) (resp. F,(t)) admits the sampling representation 

F(t) = 4 f’ FC’(t,) G,(t), (3.2) 
“= -02 
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where G,(t) = 2t,G( t)/( t2 - ti) G’( t,), and G(t) is the Wronskian given by 

Ref [36]. (3.3) 

Proof: We only prove the results for F(t) since the proof for F,(t) is 
similar. That F(t) is an even entire function of exponential type q with 
0 < q 6 n was shown in [36]. From (2.5), (3.la), and Parseval’s equality, 
one obtains 

(3.4) 

since F(t,) =f(n), n = +l, +2, . . . . From the relation 

jr W)(Wx)) dx -jn G(x)(LF(x)) dx = W,=,(F, G) - W,=,(F, G), 
0 0 

(3.5) 

where 

~=-$iW, (3.6) 

it follows that 

since WXzo(& tj,) = 0. But since 4(x, t) and $(x, t) are linearly dependent 
at t = t,, n= +l, +2, . . . (cf. [27, p. S]), we have 4(x, t,)= $,Jx) = 
k,$(x, t,); k, ~0, co. Thus since $(n, t,) = Il/(rr, t), (3.7) becomes 

(t2 - $1 j-’ d(x, t) @n(x) dx = k, W,=,(h ICI)= k,G(t), (3.8) 
0 

and 

(3.9) 

By differentiating (3.8) with respect to t and then taking the limit as t + t, 
we find that 

II~.li”=~~li.,(l)l’d~=~, _ ,- n= fl +2, . . . . (3.10) 
” 
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By substituting (3.9) and (3.10) into (3.4) we obtain (3.2). That G(t) has 
the form (3.3) was shown in [36]. 

From the asymptotic formula (2.3) it follows that for sin a # 0, 

F(t)=sina “costxf.(x)dn+O(~t~ -I). s 0 

Hence, FE L’(R). Similar calculations follow for sin a = 0. If F(t) = 0 
almost everywhere, then since F is entire, FE 0. In particular, F(t,) = 0, 
n= +1 +2 - , - , . . . . and hence f(n) =O, which, since $Jx) is complete in 
L’(O, z), implies that f = 0 a.e. Q.E.D. 

Integration by parts together with the asymptotic formulae give us the 

COROLLARY. Let Hr be the Sobolev space on (0, n) (consisting of the 
completion of Cr [0, z] with respect to the norm 11 f II m = C,“= o II f (j)ll). Then 
f E Hr implies that F(t) = 0( ItI -“). 

To derive the inversion formula for (3.la) or (3. lb) we need 

LEMMA 3.1. Let G(t) be the Wronskian given in (3.3). Then G(t) is 
an even entire function of exponential type <x with G(t)/(t2 - tz) E 
L2(-co, c0). 

Proof That G(t) is an entire function of exponential type follows from 
the fact that 4(x, t) and +(x, t) and their derivatives are. The estimates 
(2.3) and (2.4) and similar ones for It/(x, t) [27, p. 111 may be used to 
show that the type of G(t) < x. They may be used as well to obtain bounds 
for G(t) on the real axis. Indeed, corresponding to the three conditions in 
(2.6) we find for real t as (tl + 00, 

0) G(t)=Wtl) 
(ii) G(t) = 0( 1) (3.11) 

(iii) G(t)=U(ltl-‘). 

In each of these cases G(t)/(t’ - ti) E L2( - 00, 00). Q.E.D. 

The Wronskians for the three cases in (2.6) may be calculated explicitly 
for the differential equation y”+ Ay=O with (i) cc=B= 7t/2, (ii) LY =O, 
/?=7c/2, (iii) cr=p=O. They are (i) zt2flzz,(1-t’/n’)=tsinnt, (ii) 
nrCo (1 - t2/(n + Jj)‘) = cos xt, (iii) 7t jJ:= I (1 - t2/n2) = (sin nt)/t. 
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THEOHEM 3.1. Consider the regular Sturm-Liouville boundary-value 
problem (1.9))( 1.11) on the interval [0, 711 with sin a sin a # 0. Let 

F(t) = j”* f(x) 4(x, t) dx 
0 

(3.12) 

for some ,f(x) E H: the Sobolev space on (0,7c), m > 1. Then, 

fW=s:, F(t) K(x, t) dt, (3.13) 

where 

B,(t) = 
sinrc(t-tt,) 1 n 

7c(t-rt,) =2n pr s 
e’“(f ~ 1.) dw, 

(3.14) 

(3.15) 

the sine function. 

Proof: The series defining K(x, t) converges absolutely and uniformly 
for all x E [0, rc] and fixed t on the real line. To see this, first let us observe 
that K(x, t) can be written in the form 

ni $n(x) D,(t) K(x,t)= 1 - 
n= 1 ll$nl12 4t2 - ty 

where D,(t) = t sin 7tt cos m, - t, cos nt sin nt,. The result now follows 
from the estimate 

+,(x)=sincrcost,x+O A 
0 n 

and from the fact that t, sin nt,, is uniformly bounded (cf. (2.6)). 
Moreover, K(x, t) is bounded in t for almost all x. This follows from 

(3.15) since 

D,(t) B,(t) + Bn( - t) 1 
7c( t* - tf ) = 

=- 
2 s 

a cos wt cos wt 
n 
dw 

7-L 0 

=~(Coswt,$,,)+O ; . 
0 

409’164 I-20 
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Hence, K(x, t) is given by the series expansion of (l/n) cos xt plus an L* 
function which is bounded in t; i.e., 

K(x,t)-;cosxt dC c ___ 
I I 

m tii7(x) 
n=, n llbu12 ’ 

where C is a constant independent of x and t. 
Since f~ H;(O, rc) for m > 1, it follows from (2.5) that f(n)n E I* and 

hence C’_“, If(n)1 < co. Since F(t,)=f(n), and G,(t) = G(t) 2t,/[(t* - ti;) 
G’(t,)] is uniformly bounded for all n it follows that the series in (3.2) 
converges to F(t) absolutely and uniformly on the real line and that 
F(t) = 0(1/t*) as (tl + co. Therefore, the integral in (3.13) is absolutely 
convergent. 

From Lemma 3.1, G(t) is an even entire function of exponential type <n: 
and G(t)/(t2 - ti) is in L2( - co, co), hence by the Paley-Wiener 
theorem [21,26], 

h,(x) = & ii.m. IA G,(t) eeirXdt, n = + 1 +2, . . _ , _ (3.16) 
-cc ~- A 

exists and 

G,(t)=jn h,(x)ei’“dx, n= +1 +2, . . . . _ ,- (3.17) 
-71 

Since G(t,) = 0 for n = +l, f2, . . . . it follows that G,(t,) = 0 if n # fm, 
G,(t,) = 1 if n = fm and G,(t) = G-,(t). Thus, 

s n h,(x)ei’mxdx= 
{ 

(f 
if n#fm 

--x if n= +m. 

From (3.15) we also have 

Since B,( - t) = B-,(t), it follows from Parseval’s equality that 

(3.18) 

(3.19) 

SW G,(t) B,(t) dt = jn h,(x) e”“” dx= 
-cc -K 

y ;; “,I i”, (3.20) 
- . 
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Therefore, from (3.2), (3.14), and (3.13) we obtain 

which upon using (3.20) and (2.5), and taking the limit as N+ co, yields 

Interchanging the integration and the summation signs is permissable 
because of the dominated uniform convergence of the series involved. 

Q.E.D. 

Remarks. (1) For the cases where sin CI sin /I = 0, the theorem still 
holds except that the inversion formula (3.13) now is 

where 

and is valid for Sobolev spaces Hr with m > 2. 

(2) One can easily verify that if zero is an eigenvalue, then the kernel 
K(x, t) can be written in the form 

where B,(t) = sin d/at, and 

F(t)= F(0) G,(t) + 4 2' F('(t,,) G,(t). 
n= -2 

(3) An inversion formula for the integral (3.1 b) can also be derived 
in a similar way. 

The integral operator with kernel K(x, t) is also a right inverse of our 
operator Q, defined by (3. la). Indeed we have 
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COROLLARY 3.1. Let F(t) be an even entire function in the Paley-Wiener 
space satisfying F(t) = O(ltlp”) f or some s > 3, let sin CI sin fl # 0, and let 

f(x) = j”= K(x, t) F(t) dt. 
-r 

Then f E L’(O, TC) and 

F(t) = [I W, t) f(x) dx. 

Proof. We denote by H(t) the function given by 

H(t) =; f’ F(t,) G,,(t) 
n= -cc 

(3.22) 

since G,(t) = j; 4(x, t) r+kJx) dx, it follows from the asymptotic formulae 
that G, is uniformly bounded in both n and t, and hence this series 
converges uniformly on R. It also converges uniformly on bounded sets in 
C and hence H(t) is an entire function. Furthermore, the series for t’H(t) 
is given by 

t’H(t)=& f’ F(t,)(t;G,(t)+k,G(t)) 
l7= -m 

by (3.8), which again converges uniformly on bounded sets in @. The sum 
of the terms involving k,zG(t) converges since k, satisfies 

ki j; ti’( x, t,) dx= 11$,112 

and [I$( ., tn)ll is bounded below by a positive constant, and hence is 
bounded. Also since G,(t) may be given by (3.17) where ((h,(( is bounded, 
it follows that H(t) is the Fourier transform of an L2 function with support 
on [0, 7x1, i.e., a Paley-Wiener function. 

By the uniqueness theorem for such functions [ 1, p. 1631, it follows from 
the fact that H(t,) = F(t,) for all n and 

ItI’IH(t)-F(t)\ <CC~“I’~‘I 

for fl= 2 > $, that 

H(t)=F(t). 



INVERSIONOFINTEGRALTRANSFORMS 297 

We now may substitute the series (3.22) into the integral (3.13) and inter- 
change the integral and summation to obtain 

This is then substituted into (3.12) and the process repeated to obtain the 
conclusion. Q.E.D. 

4. INVERSION BY A POISSON SUMMATION FORMULA 

The inversion formula (3.13) involves a kernel given by a series related 
to, but itself not, a solution of the differential Eq. (1.9). It would be more 
desirable to obtain a closed form expression which is a solution. In order 
to do so, we need a version of a Poisson summation formula. The classical 
version of this formula is given by 

g &w+27cn)= f &n)e’““, WER, (4.1) 
?I= -cc “= -a 

where C$ is a function in L’(R) satisfying 

&w)=O(l+ IWl))pe, E>O (4.2) 

and 6 is its Fourier transform which also satisfies (4.2). The proof involves 
finding the Fourier series of the periodic function on the left of (4.1). 

We shall need a version of (4.1) involving nonharmonic Fourier series. 
Accordingly let { t,}T= -~ be a sequence such that 

VT 3c n= -J39 1’4 < % 

is a Riesz basis of L2[ -rc, n] [32, p. 1961. 
We shall suppose that the t, satisfy the conditions of the last sections, 

i.e., 

t,=O(l4), 

t -n= -tn, n = 1, 2, . ..) 

but with to =O. Then (h,(w)} g iven by (3.16) (modified to include to), is 
the sequence biorthogonal to {e”““‘) [32, p. 1491. Hence, fe L2( -q T-C) 
may be expressed as 

30 

with convergence in the sense of L2( --n, 7-c). 
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The series in (4.3) may be extended to all of R in two ways. One way is 
by extending it periodically to obtain 

f*(W)= f (J h,) 5 errJM -2k”)Xn(w-22kn) ) 
> 

(4.4) 
)I= cc k= --z 

where xn is the characteristic function of [--n, x]. The other involves 
extending it by the analytic continuation of eigw, i.e. 

f+(w) = f (f, h,) e”““‘, WEE& (4.5) 
“= --oo 

The two series converge in L& and hence in the sense of distributions on 
R. Thus by taking f(w) = H(w) for --7c < w < n, the Heaviside function, 
and differentiating, we obtain a convergent expansion of 6 +(w) from (4.5). 

We may also extend 6 periodically to obtain 6*. This is not the same as 
the derivative of H*, but rather we have 

6*(w) - 6*(w - 7-c) = DH*(w), 

where D is the derivative operator. Hence the difference between this and 
6+ is 

s+(U)-d*(u)+6*(u-n)=D[H+(u)-H*(u)]. (4.6) 

Now let 4 be as in (4.2). Then 

cd+, 4>= E a?k)~ 
?I= -a 

(4.7) 

where C, = it, j; h,, while 

(6*-6;, 4) = f &27ck)-qq(2k+ 1)7r) 
k= -m 

=,=t, Fl)“cw). 

We combine these last three formulae into 

(4.8) 

which is our substitute for the Poisson summation formula. 
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Remark. If {t,} are integers or if 4 has support on [ -71, n] then the 
expression on the right hand side vanishes. If as in the case of 
Sturm-Liouville problems 

(i) t, = n + 0( l/n), then (1 - e-irn2nk) = O(k/n). 

We now return to our Sturm-Liouville problem. In the three cases we 
have considered in (2.6), it is possible to show [27, p. 111 that 

(i) G(t) - sin CI sin /3 (t sin 7-d) for sin cI sin /? # 0, (4.10a) 
(ii) G(t)-cos u sin Bcos nt for sin a=O, sin b#O and 

similarly for sin CI # 0, sin /3 = 0, and (4.10b) 
(iii) G(t) - cos a cos fl (sin a/t) for sin CI = 0 and sin /I = 0. (4.1Oc) 

Thus in the second case we have a function of sine type [32, p. 1711 
while in the other two cases G(t)/(t + tl) and tG(t) are functions of sine 
type. The zeros of a function of sine type are such that {e”““} is a Riesz 
basis of L2( -71, rc). Thus by removing the function ep”‘M’ in case (i) and 
inserting the function { 1 } in case (iii) we obtain a Riesz basis in all three 
cases. The Fourier transform of e”““~,Jw) is exactly B,(t) of (3.15) which 
is then a Riesz basis of the Paley-Wiener space B,. 

We shall for the moment consider case (ii) only since we can use the 
notation of the last section without modification. The dual basis of B,(t) 
then is just given by 

S,,(t) = G(t) 
G’(t,)(t - tn)’ 

n= +1 +2 - 1 - , . . . . 

and 

G,(t) = S,(t) + S-,(t), n = 1, 2, . . . . 

Hence, for any sequence {a,} E 12, 

f UC(t) 
n=l 

converges to some even function in B,. This enables us to construct the 
weight function 

r(t) = t4 f 
G,(t) 

n=, t: IllClnl12 CM 
(4.11) 

where C, = it, Jo” h,(w) dw. 
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Since in this case we have 

sin tx 
4(x, t) = -cos LY - t + WItI -2L 

it follows that II+, I(’ = O(n-‘), and since 

+#+ G((1)2t, 
-2t,G’(t,) 

it follows from the asymptotic formula for G’(t) [27, p. 1 l] and that of t,, 
that C, = O( 1). Hence, r(t)/t4 is a Paley-Wiener function in B,. 

LEMMA 4.1. Let f E L2(0, n) with expansion in terms of {$“> given by 

then 

f(x) = ft c, CtmJl CaJl~~l C&x, t,)l, (4.12) 
II= -2 

where t4F(t), r(t)/t4, and 4(x, t) are entire functions of exponential type <n. 
Furthermore, iff E: Hi(O, rc), each of these functions is in L2(R) as well. 

Proof: We observe that 

F(t,z) Ic/,(xMIIc1,112 = W!~kJCWnt: ll~nll’)l 4(x, t,) 

which by (4.11) and the sampling property of G,(t) gives us the first 
conclusion. The second follows from the fact that if f E Hi(O, rc), integration 
by parts gives us the fact t4F(t) is in L’(R). Q.E.D. 

We now define a function q5 by means of its Fourier transform 

J(t) = F(t) r(t) 4(x, t) (4.13) 

and use our modified Poisson summation formula (4.9) applied to it. 
Clearly 4 is of exponential type < 3n and belongs to L(R) since it is the 
product of two L’(R) functions with a bounded function. Thus (4.9) 
becomes 

,ie2 cW~)(--~)~- f’ GF(t,)r(t,)4(x, t,)= <H*-Hf, 4’). (4.14) 
“=-or 
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By the Fourier inversion formula d(w) = (1/27r) joO& ~‘““&t) dt 
(6~ L(R)), and we have for the left side of (4.14) 

=- :,i”, (1 -,~in’-ein’+e~‘2”‘+e’2”‘)~(t)dt-f(x) 

=?t;;jy (l-2 cos nt + 2 cos 2nt) F(t) r(t) c&x, t) dt -f(x). (4.15) 
r: 

The right side of (4.14) may be expressed, by using the evenness of 4, as 

(H* - H+, 4’) = j’” [H*(w)- H+(w)] d’(w) dw 
x 

[H*(w) - H+(w)] d’(w) dw 

= s ’ {[H(w)-H+(w-2x)] qY(w-271) 
-I 

+ [H(w)-H+(w+2n)] @(w+27r)} dw 

= &7c - 2n) - qqo - 271) + fj(7r + 2n) - qqo + 271) 

- n [H+(w-~Tc)-H+(-w+~~)]~Y(~-~~)~w 

=fp(n)-2q5(2n)-jr u+(w-271)&(w-22n)dw, (4.16) 
-7l 

where ~+(w-~~T)=H+(w-~~T-H~(-w+~~c) is the extension of the 
sgn function. We may replace 4 and 4’ in this expression by the inverse 
Fourier integral since tq!( t) E L(R) as well. This gives us 

(H*-H+,qY)=&~~ (e-ir[f-2e-2”i’)&t)dt 
cc 

u+(w-27~) e-‘(“‘-2n)‘(it) dw 

1 Cc 
=5i -rn s [cos xt - 2 cos 27rt - g(t)] J(t) dt, (4.17) 

where 
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We define u(t) as 

u(t)=&(l-3cosrrt+4cos2ar+g(t))r(t). 

This gives us our inversion formula. 

(4.18) 

THEOREM 4.2. Let f E H;(O, z), m > 4; let 

F(t) = j-; f(x) 4(x, t) dx; 

then f(x) is given by the convergent integral 

f(x) = j- 4(x, t) F(t) u(t) & 
- a 

where u(t) is given by (4.18). 

The remainder of the proof merely requires that we rewrite (4.14) as 

f(x)= i &~x)(-~)~-(H*-H+,&) 
k= -2 

(4.19) 

and substitute (4.15) (4.17), and (4.18) into it. 
Similar results are possible in the other two cases (i) and (iii) with 

appropriate modification of the definitions. 

5. EXAMPLES 

( 1) Consider the regular Sturm-Liouville problem: 

y” = -t’y Odxd7l 

y(0) = 0 = y(7c). 

In this case CI = 0 = j3 and 4(x, t) = sin tx/t. The eigenvalues are n2, 
n= +l +2 - , - , ... and the eigenfunctions $,,(x) = sin nx/n, for n = +l, +2, 
Therefore, 

2t sin 7Ct co 
w, t) = 712 

1 (-1) ” n sin nx 

n=, (t2--‘) 

2t sin nt =- 
x2 

O<xdn, te(W, 
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and consequently Theorem 3.1 gives the known inversion formula that if 

then 

With a slight change of variable these become the Fourier sine transform 
pairs. 

(2) Consider 

y” = -py 2 o<x<lr 

y’(0) = 0 = y’(7c). 

The same consideration lead to the Fourier cosine transform. Thus, by 
Theorem 3.1 we have that if 

then 

F(t) = jon f(x) cos xt dx, j-E H;(O, 7c), t E R; 

f(x) =z jr F(t) cos tx dr, 06x671. 

(3) Consider again the problem 

y” = -t*y, o<x<rc 

Y(O) = 0, Y’(X) = 0, 

to c( = 0, /? = n/2. Then 4(x, t) = (sin tx)/t again, but the ^ which corresponds 
eigenvalues now are (n + +)‘, n = 0, f 1, +2, . . . . while the eigenfunctions are 

tin(x)= 
sin(n + +)x 

n+’ . 
2 

Therefore, 

N sin(n+i)x(n+&)sin7t(t-n-4) KN(X, t) = c 
n= -N 7l 7r(t-n-;) ’ 

which may be shown to converge weakly to (t/n) sin XX. This gives 
formally the same results as in example 1. 
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6. THE SINGULAR CASE 

The argument given in Theorem 3.1 can be extended to singular Sturm- 
Liouville poblems but under further restrictions since, for example, the 
spectrum is not always discrete and even if it is, the eigenvalues &, are not 
necessarily of O(n2) as n + co, hence the canonical product given in (2.10) 
may not converge. 

In some cases of interest the eigenvalues are 0(n’) but do not satisfy the 
other asymptotics of the regular case. This happens, for example, in 
the case of Jacobi polynomials as mentioned in the introduction 
(t, = n(n + c( + jl + 1)). The inverse transform has already been found in this 
case [18,29] by the same methods. 

In other singular cases, the series method still works even though the 
eigenvalues are merely O(n). This happens with the Laguerre functions as 
may be seen from straightforward calculations. 

In order to illustrate the method of series in the singular case, we apply 
it in one case and show that the result is the same as that obtained by 
direct calculations [ 31. 

EXAMPLE 4. Consider the singular Sturm-Liouville problem 

y” + t (set’ x) y = -t2y, -IT/2 <x < n/2 

IA +7c/211 -=I 03. 
(6.1) 

The eigenvalues are (n + f)’ and the corresponding eigenfunctions are 
P,(sin x) r cos x, w h ere P,(z) is the Legendre polynomial of degree n. The 
function 4(x, t) in this case is chosen as 

where 

qi(x, t) = P,- ,,,(sin x) &ZG, 

is the Legendre function. It is known that I/ P,lj’ = (n + 1))’ and hence the 
inverse kernel (3.14) will have partial sums given by 
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The corresponding series does not converge pointwise but does converge 
weakly to 

t sin 7ct P, _ ,,2 (sin x) Jcos x 

with respect to Paley-Wiener functions F(t) = U(t-‘). This still holds if we 
let w = sin x. Then we find that 

I 
5 

F(t) t sin nt P, ,,2( - w) dt 
-m 

This is exactly the inverse given in [3] for Legendre transforms. 
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