

E1159 JACC April 5, 2011 Volume 57, Issue 14

限 QUALITY OF CARE AND OUTCOMES ASSESSMENT

MOLECULAR AUTOPSY FOR SUDDEN CARDIAC DEATH USING WHOLE GENOME SEQUENCING

ACC Oral Contributions Ernest N. Morial Convention Center, Room 238 Tuesday, April 05, 2011, 11:30 a.m.-11:45 a.m.

Session Title: Genetics and Cardiovascular Outcomes Abstract Category: 48. Genetics and Clinical Outcomes Presentation Number: 924-6

Authors: <u>Frederick E. Dewey</u>, Matthew T. Wheeler, Sergio Cordero, Marco V. Perez, Aleks Pavlovic, Dmitry Pushkarev, James V. Freeman, Steve R. Quake, Euan A. Ashley, Stanford University School of Medicine, Stanford, CA

Background: Arrhythmic sudden cardiac death (SCD) is a significant cause of mortality in industrialized countries. Clinical assessment and molecular diagnosis identifies a cause in only ~ 40% of patients. Whole genome sequencing (WGS) may identify causative genetic variants with sensitivity superior to targeted commercial sequencing approaches.

Methods: We performed WGS of genomic DNA isolated from paraffin embedded formalin fixed tissue from a previously healthy 19 year-old man who died of presumed arrhythmic SCD. We identified rare and novel variants (allele frequency < 5%) in genes known to be associated with sudden death and genes coding for ion channel, sarcomeric, costameric, sarcolemmal and Z-disc proteins. Variants of interest were confirmed with Sanger sequencing and first-degree relatives were genotyped for these variants.

Results: Toxicology screen, family history, gross autopsy, histological examination of myocardium, and commercial testing for variants associated with SCD were un-revealing. Using WGS to provide 48x coverage of 95% of genomic positions, we identified 326,000 rare/novel variants and used custom software to annotate them for cardiovascular relevance. We identified 14 rare/novel non-synonymous coding variants and two splice site variants in genes associated with cardiovascular diseases or important to cardiomyocyte function. Family genotyping revealed that two ion channel mutations assorted in a trans-acting manner with a complex inheritance pattern. The first was in exon 1 of KCNJ12, which encodes for the inward rectifying potassium channel Kir2.2 that maintains resting membrane potential and mediates late repolarization. The second was in a region of CACNA1S that encodes for a highly conserved calmodulin-binding domain of the L-type calcium channel Cav1.1, which is expressed in cardiac tissue but has unknown contribution to action potential.

Conclusions: We present the first whole genome sequence of a patient who died of SCD. Putative trans-acting mutations may comprise a new syndrome of inherited cardiac ion channelopathy associated with SCD and suggest a novel role for Cav1.1 in cardiac action potential duration.