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Limiting distributions of a score statistic and the likelihocd ratio statistic for testing a composite
hypothesis involving several parameters in non-ergodic type stochastic processes are obtained. It is
shown that, unlike in the usual theory (ergodic type procasses), the limiting distributions of these
statistics are different both under the null and a contiguous sequence of alternative hypotheses. The
results are applied to a regression model with explosive autoregressive Gaussian errors. In the
discussion of this example a modified score statistic is suggested where the limiting null and
non-null distributions are the same as those of the likelitiood ratio statistic.
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1. Introduction

This paper is concerned with the limiting distribution of the score and likelihood-
ratio (L.R.) test-statistics for testing composite hypotheses involving several
parameters in the non-ergodic type (see Section 2 for definitions) stochastic proces-
ses. Under a suitable sequence of alternatives the limit distributions of these statistics
will be shown to be mixtures of non-central chi square distributions. We defer
discussion of optimality of these tests to a forthcoming paper.

Non-ergodic processes (in the sense of this paper) arise in several applications such
as supercriticel branching processes, explosive autoregressive processes, classical
mixture experiments leading to exchangeable processes, etc. The problem of testing
a simple hypothesis about a single parameter against one-sided alternatives for such
processes was broached by Basawa and Scott [3, 4] who discussed some simple tests
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and noted certain difficulties regarding the efficiency question. Feigin [13] and
Sweeting [22] investigated some further properties of the tests discussed by Basawa
and Scott. _

Our results in this paper extend the work of Weiss [24] and Dzhaparidge [11]
concerning tests for ergodic models to the non-ergodic situation. Section 2 is
concerned with the specification of a non-ergodic model. The limit distributions of
the score and I..R. statistics are derived in Section 3 using ideas analogous to those
used by Weiss [24] and Dzhaparidge [11]. In Section 4 we discuss an application of
the results to & simple regression model with explosive autoregressive errors.

2. A regular non-ergodic model

Let X, =(X4,...,X,) be a realization from a stochastic process with a joint
density p.(x,; &) with respect to some o-finite measure, where 8 is a (k X 1) vector of
unknown real parameters taking values in a subset () of the k-dimensional euclidean
space. Considcr the random variable (for each fixed 6 € 2),

Ax(8,, 0)=log{pn(X.; 0,)/pa(X0; 0)},  6.=0+I,."2(0)h, (2.1)

where # is a (k X 1) vector of finite real numbers and I,,(0) is a (k X k) non-random
diagoral matrix, to be further spccified later, with positive diagonal entries
(kni(0),i=1,2,..., k) such that k,;(9) are continuous in  and 100 as n - . The
asymptotic behavior of A,(6,, 6) will determine in some sense the large sample
performance of the tests to be discussed later on. Assume now that the following
conditions are fulfilled:

(A.1) There exists a (k X 1) random vector 4,(9) and a (k X k) random matrix
B, (0) such that as n -» o,

|40 (8, 0)~[R"A,(8) — 50 {I; /2 (6)B,.(0)I; 2 (0)}h]] > 0

both under P,(0) and P,(6,) probabilities.

(A.2) Let G,(0)=1I,"%(6)B.(6)I;'*(8). Then G,(8) = G(6), both under P, (6)
and P,(6,) probabilities, where G(6) is a possibly random (k %X k) non-negative
definite matrix with rank /< k.

(A.3) (4.(8), G,.(G))i (4(6), G(6)), under P,(0), where A(6) is some random
vector.

Definition 2.1. The density p,(x.; 6) is said to belong to an ergodic family if it
satisfies (A.1)-(A.3) with G(6) being non-random. If, on the other hand, at least one

element of G(&} is a non-degenerate random variable we say that p,(x,; 8) belongs
to a non-ergodic family. .

The above definition is a generalization of the one given by Basawa [2]. Also, see
[9]. The models discussed in [6-8, 11, 17, 20, 23, 24], belong to the ergodic family.

Examples and subclasses of the non-ergodic family have been previously studied, in a
different context in [1, 3-5, 10, 12-16, 19].
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In the present paper we will be conczrned with a special version of the non-ergodic
family specified by conditions (B.1) to (B.3) below:
(B.1) Condition (A.1) holds under P,(8) with the choice

_r-1/2 _ azlogp,,(.!{,,;ﬁ)
4,(6)=13"2(0)8,(6) and Bu(6)=( ) ))

(4 J,=12,...,k), where S,(0) is a (k x 1) vector of scores

(6 log p»

oo, (z=]1,2,...,k)).

(B.2) Condition (A.2) holds under P,(8) only with at least one element of G(6)
being a non-degenerate random variable. |

(B.3) Condition (A.3) is satisfied with the choice A(8) =G '/*()Z, where Z is
a (k x1) vector of independent identically distributed N(0, 1) variates and Z is
independent of G(8).

Remarks on conditions (B). (i) With the above choice of 4,,(8) and B,.(8), and under
fairly mild regularity conditions, a large class of p,(x,; ) will satisfy (B.1) via the
Taylor expansion. The assumption that I, (9) is diagonal was also made by Weiss and
Wolfowitz [25, Ch. 7], Weiss [24], and Dzhaparidge [11]. Note that this assumption
does not necessarily imply that the Fisher information matrix E(B,(6)) is diagonal.
Also, the matrix G(0) is not necessarily diagonal and it is allowed to be singular. The
case when the norming matrix 7, (6) is non-diagonal involves certain complexities in
the derivation and will not be considered in the present paper.

(i) Under a mild regularity conditions, {S,.(9),n=1,2,...} is known to be a
zero-mean martingale. Under (B.2), and some further conditions such as those in

[4, 5], a multivariate version of the central limit theorem for martingales ensures that
(B.3) holds.

(iif) Under (B.1) to (B.3),
An(Boy )~ A = KTG(6)Z -30"G(8)N

under P, (0) probability. Using the independence of Z and G(8) one sees E(e")=1.
Thus, condition (S3) of Roussas [20, Ch. 1], is satisfied and consequently, the
sequences of probability measures {P,(0)} and {P,(6,)} are contiguous. This partic-
ular property will enable us to derive the limit distributions of various statistics under
the alternatives {6,} from the limit distributions under the null ¢ in an entirely
standard way (see [20]).

3. Limit distributions of the score and likelihood-ratio tests

We assume throughout that p, (x,.; 8) satisfies (B.1) to (B.3). Suppose we partition
6 =(a", BT), where a is an (s X ') vector and 3, a (k —s)x 1 vector. Consider the
problem of testing H : B = 3, against K : B # By, Where a is treated as a nuisance
parameter. We shall study the following test-statistics for this problem:
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Score statistic. Tu1 =AY (Gno, Bo)An(dEno, Bo), Where @,o is an estimator of « to be
specified later.

Likelihood-ratio (L.R.) statistic. The L.R. statistic is defined as

Tur =240 (G fin (@nor B,

where A, is defined in (2.1) and &, &, and 8, are the estimators of @ and 8 to be

ananifiad Intar
apb\dllwu 1ALl .

In order to derive the linltit distributions of {T},1} and {T,,2} we first introduce some

conventions and notation.

Let ¥ =(hT, hT)be a 1:<k vector of real numbers with h, being s x 1 and , being
(k—-s5)x1. Write

L) O )’

LO=("0" 10

T T T
6 =(,B)
where I,1; and 1,2, are, respectively, s X s and (k —s) X (k —s) diagonal matrices. We
now specify our alternatives

K.:  B=B.=po+I:15(a, Bohs,

where 3, is the H value of 8 and a is the nuisance parameter vector. Throughout the
rest of the paper a, = a + I ;11 (a, Bo)h:1.

In what follows all limits are to be understood as n - c0; all 0,(1) statements are
under {P,(a, 30)}. By remark (iii) following assumptions (B), {P.((as, B.)} and
{P.(a, Bo)} are mutually contiguous for any real k-vector h. Therefore taking h; =0
in h implies that {P,(a, B..)} and {P,(a, Bo)} are mutually contiguous and hence all
0,(1) statements can be made under the alternatives {P,(a, 8.)} also, whatever may
be the parameter a. Finally for a sequence of r.vs. Y,, £(Y,|P,) denotes the
distribution of Y, under a sequence of probability distributions P,.

Limiting distribution of the score statistic. Partition the score matrix S, as S (a, 8) =
(STi(a, B), Sta(a, B)) corresponding to the first s parameters « and the last (k —s)
parameters 3 respectively. Similarly partition the matrix

Gla, B) = (Gu(a, B) Glia, ﬁ))’

Gua,B) Gala, B) (3-1)

where Gy is s X5, G2, is (kK —s) X (k —s) and G, is s X (k —s). We assume that the
rank of the matrix G, is s, s <! =rank(G) for all a, 8.
Let a,o be an estimator of a such that

Gula, BT (a, Bo)@no—a)=I;1%(a, Bo)Sni(a, Bo)+0,(1). (3.2)

The restricted (under H) MLE of o typically satisfies (3.2). By assumption (B.1),
S»(0) has first derivative in 6 and hence the Taylor expansion, (3.2) and the
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continuity of 1,(8) in 6 imply
An1(dno, Bo) = I'511 (@no, Bo)Sn1(dEno, Bo)
=I.11" (@, Bo)Sni(a, Bo)
—{I711* (@, Bo)Bun1(, Bo) 211 (a, Bo)}
X I711% (@, Bo)@no—a) + 0p(1),

= op(l)' (3.3)
By the same reasons we have

An2(dino, Bo) = I735° (&nos Bo)Sn2(dnos Bo)
=134 (ct, Bo)Sna(, Bo)
~{I:28* (&, Bo)Bn12(@, Bo)i1” (@, Bo)}
X I3 (@, Bo)(@no—a) +0,(1) |
= An2(@, Bo) ~ G12(, Bo)G1i (@, Bo)Ami(e, Bo)+0,(1). (3.4)
From (3.3), (3.4) and assumption (B.3)'one has
L(An2(dino, Bo) | Pala, Bo)) > L(C'?2)), (3.5)

where C = Gza(a, Bo)— Grz2(a;, Bo)Gii (@, Bo)G12(a, Bo) and where Z, is a
(k —s)x1 vector of i.i.d. N(0, 1) r.vs. Note that the limit distribution in (3.5) is
non-normal since C is a random variatle.
A consequence of (3.5) is that
L(Tu1| Pula, Bo)) > £(Z3CZ,). (3.6)

The distribution of Z3 CZ, is not a chi-square but can be expressed as a mixture of a
linear combination of independent chi-square variables. Next we note that the
mutual contiguity of {P,(a, B8.)} and {P,(«a, Bo)} imply

L(Tu1| Pale, Br)) > L((Z2+ CV*h)TC(Z,+ C'*hy)). (3.7)

This limiting distribution is somewhat involved, but can be expressed as a2 mixture of
a linear combination of independent non-central chi-square variables.

Limit distribution of the L.R. statistic. Let d,, B, be estimators of a and 8 such that
under {P, (e, 8)}

Glo B (B

i ¢ 4
-8B
The maximum likelihood estimates of a and B typically satisfy (3.8). The likelihood
ratio (L.R.) statistic T, can be written as

Tn2 = 2An((a~m B~n)9 (0:, BO)) - 2An((&n0a BO)a {aa BO))9

where d,, B, satisfy (3.8) and &, satisfies (3.2).

) = V2 (a, B)Sa(a, B) + 0,(1). (3.8)
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Recall that the rank(G) = I < k. Rewrite, after interchanging rows and columns if
necessary, the matrix G as

G* O «_{Cn G’lk;r)
= = . 3.9)
G ( D D)kxk, G (G;kz G,2k2

The rank(G*)=1, rank(G1;)=s and the remaining rows and columns of G are
partitioned appropriately in the submatrices indicate by [J. It then follows that a
generalized inverse (see [18]) of G is

A BT 0
G =|B C;' 0|, C,=G%-GhG1iGE, (3.10)
0 0 ©

where A and B are some matrices.
We partition 4, and A in conformity with (3.9) and write

Anl hl
An= AﬁZ ’ h= hg: ’ (3'11)
O O

where A, and h; are s X 1 vectors as before, A¥, is a (I —s)x 1 vector and k3 is a
(I-s)x1 vector.

After some lengthy but routine calculations similar to those that occur in the
ergodic case (e.g. see [11]) one can verify, using the above notation, that

lim £(T.2| Pa(60)) = lim L(473(80)Cx" (80)472(80) | Pa(90)) = £(Z5" ZF),
(3.12)

where 6o = (a, Bo) and Z% is a vector of (! —s) X 1i.i.d. N(0, 1) r.vs. Using contiguity
one also can deduce that

L (Tuz| Pula, Ba)) > L(Z5 +ChE)(Z% +CYh%)). (3.13)

The limit distribution in (3.13) is a mixture of non-central chi-square r.vs. with
mixing variable being the noncentrality parameter A = h3C,h3, where h3 is as in
(3.11).

Thus, the limit distributions of T,; and T, are different both under H and the
sequence of alternatives K,.. In the ergodic models it is well known (see e.g. [11, 24])
that these statistics have asymptotically the same limit distributions both under H
and K, except for a scale change. If G were known and non-random (i.e. in the
ergodic model) one may consider a modified score-statistic T, =
A% (G0, Bo)G ™~ An(dino, Bo) Whose limit distribution would be the same as that of T,
(cf. [11]). However, in the present case G is an unobserved random matrix. In the
following application we briefly consider T, where G~ is replaced by its consistent
estimator. In the latter case results similar to the ergodic case are obtained (insofar as
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the asymptotic equivalence of T; and T, is concerned); however, the limiting
non-null distributions are still non-standard (i.e. mixtures of non-central chi-
squares rather than non-central chi-squares).

4. An application

Let the observable r.vs. {X], 1 <i < N} satisfy
Xi=aCi+Y, : (4.1)
where the errors { Y} satisfy
Yi=B1Yia1+BY2+2Z, 1<isn 4.2)

with {Z;, 1 <i<n}iid. N0, 1) r.vs. and Z; =0=C, for i <0. We assume that the
roots m, and m; of the equation

m2—32m_61=0 (43)
are distinct and there exists a unique root, say m; and call it p, such that
lo|>max(|m,|, 1). (4.4)

The process {X;} satisfying (4.1) through (4.4) is known as the regression process
with explosive autocorrelated Gaussian errors. The numbers {C;} are known and the
parameter vector is 6" =(a, B1, B2).

Before discussing the inferential problems about 6, we first study the likelihood
function and obtain the limiting matrix G and the limiting distribution of various
underlying entities. To that effect observe that the log likelihood function in this case
is

log pn (X, 0)=00ﬂ8t—'12" ) {(Xi—aci)‘ﬁl(Xi—1—aCi—l)—Bz(Xi-z“aCi-z)}z-
i=1

Therefore when 6 is the true parameter vector

d
A, 1(0)=—Ilog P,
da

= _i [(Xi—aC)—B1(Xi-1— aCi—1) — B2(Xi—2— aC;-»)]
X(C; —B1Ci-1— B2Ci-2)

= E::l (Ci—B1Ci-1—B2Ci-2)Z;,
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) 3
A,i(0) =55_log Pn
]

= ;1 (Xi—i —aCi—j)

xX[(X; —aC)—B1(Xi-1 —aCi1) — B2(Xi-2— aC;_3)]
= Z Yi—j+lzia j= 2a 3-

i=j

The B,(6) matrix of the assumption (B.1) will have the entries ((b,;;)) given by

bn11(0) = _;1 (Ci=B1Ci-1—B2Ci-s)’,
bn1;(0)= Z Ci-jr1Zi+ Z (Ci—BiCi-1—B2Ci-2)Yijr1, j=2,3,
i=j i=j

brii(0) = éi Y;?—i+1, i=2,3
and

bn23(0) = és Yi.1Yia.
Now let us consider some preliminary facts. In what follows all calculations are
carried out under the assumption that (a, 81, 82) are the true parameters and the

above model holds.
Let A, and A, be real numbers such that

)\L1+A.2=1, Alp—l+/\2m§1 =(. (4.5)

Then one can write [19]
p Y =p~! ;4’;.1 A" +AmbNZ, j=1
=A1W;+A2R; (say), (4.6)
W, = él p'Z, Rj=p~’ él ms'Z, j=1.
Observe that
T ERP= 5 S ma*< T j(ma/pl<oo @

because |m,/p|<1.
Therefore the Markov inequality and the Borel-Cantelli :emma imply

R;j»>0as. and R;»0inL,, asj->o0, 4.8)
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Next note that {W,, j = 1} form an L,-martingale and |p|> 1 implies

sup EW} =sup 3 o™ = (o~ 1) <co. @.9)

=1 i=1 r=1
Hence by the Martingale Convergence Theorem 3a r.v. W such that

W;>Was. and W;>WinL,, asj->co. (4.10)
The assumption of normality yields that for every real ¢

Ee'™V = e—(ﬂ/z»:,’,.p-zr e /DD as j > 0. 4.11)
Hence W of (4.10) is a

N, (p'-1)""r.v. (4.12)
Combining (4.10) and (4.8) with (4.6) one gets

p'Yj>A,Was.andin L,, asj->c0. (4.13)

Mext define

K3(60)= % (C=B1C1=B:Ciaf (G=0,/<0)

oi=Y% C?
i=1
and

kZ(6) 0 0 e
L@=\| 0 s2(6) 0 |, wheres, =( zlfl)'
0 0 s2(6) p

Lemma. Suppose the model (4.1)~-(4.4) holds. Suppose, in addition

max C?0:2->0 asn->o (4.14)
and
ol i CCi_1»b asn-,(b<o). (4.15)
i=1
Then

(@) 0.°ka(8)>1-b>+(b—B1—B2)*>0,
(b) I;172 (q‘))B,,(G)I,I”2 (6)—:'-5-'-% G(8) as n » 00, where
1 0 0

G(0)= 0 VZ p"l V2 , V=(p2—'1)l/2m
0 p—l V2 p—2vz
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d
© (k7' (0)An1(0), 5:'(6)Anx8), s:'(O)Ans(0)} > G'°Z, where Z™=
(Z1, Z2, Z3) ~ N3(0, I..3) and is independent of G and where G is the same as in (b).

Proof. (3) follows from (4.14), (4.15), the expansion of k2 and the Cauchy-Schwarz
inequalizy.

(b) A variation of this result with a.s. replaced by “in probability’’ has been proved
by Rao [19]. His proof is direct but somewhat lengthy. A careful evaluation of his
proof together with the Borel-Cantelli lemma gives the a.s. result. Or alternatively
we can use (4.13), the Borel-Cantelli and the Toeplitz lemmas directly to conclude
(b) above. We demonstrate this just for two terms. Suppress 6 and let D, =
I7V2BuI3"? = ((duy))sxa. Clearly

dnu =1, n=1.
duij=ky'sn ' bpj=ky'onor ' sn by §j=2,3.
Now

07 s bz =05 22 Ci1Zi+ Y (Ci—B1Ciey~B2Ci2) Yoy
i= i=2

=U,+U, (say). (4.16)
Observe that

Y EUL= Y o.%sa> ¥ Ci<(p®-1°A7% L p2"<o0. (|p|>1).
n=1 n=1 i=1 n=1
The Borei—Cantelli lemma implies

u,—0. 4.17)
Next write

U:;= '22 am.(},i_l/pi—l) = 22 ani[(yvi—l/pi—l)_Alw]-*' i am'Alu/a
= i= i=2

where for 2<i<n

-1_-1_i~1

@i =00 $n p (Ci=B1Cir1—B2Ciz)=e - o, p "' "H(Ci— B1Ci-1 ~ B2Ci-2)

with e = A4 1 (p2-1).

Using (4.14) and |p| > 1, one gets that |a,;|-> 0 for every 2<i <n as n - . Using
the Cauchy-Schwarz inequality one has

n n ) 1/2
;Ianilse{2(1+ﬁf+B§)}”Zp—"{_Zzpz“'”} <o, n>1.

Moreover

L lan|<eoy’ max|Gl(1+]B:|+[B2)p ™" T p'>0 by (4.14).

i=0
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Hence using (4.13) and the Toeplitz lemma one has

U,—0. (4.18)
Therefore in view of the part (a) of the lemma, (4.18) and (4.17) one has

du1a —0.

Next consider

n n 3
duzz=s:bun=e’p"" ¥ Yii=€* L p7 " (Y /0T
= i=

a.s.

—S e AP - 'Wi = (PP -1)W=V?

by (4.13) and the Toeplitz lemma. One completes the rest of the proof by using
similar arguments.
(c) Consider

S;lAnj =ep " Y Yijudi j=2,3
i=j

=e Z_'p—(n—i+i—l)Zi(Yi_i+1/pi—-i+1) (e - IA1|—-1(p2_ 1))'

n=j

Let

n

=Y p "z, j=2,3,

i=j
Observe that with W defined in (4.13),
Els;'A,—ep V28,0 W| =

<e ¥ JoI " TTHE(( Vi /0T M WYTH 250 (4.19)
i=j

by the Toeplitz lemma and the L, part of (4.13).

We next show that the vector Ax = (k; Ap1, £n2, &a3) is asymptotically indepen-
dent of W, where W, is defined in (4.5). We also show that the asympiotic
distribution of A}, is N3(0, X), where

1 0 O
3={0 o¢* o* witha®=(p*-1)"" (4.20)
0 o o
To this effect let a” = (ay, az, as, as) be any real vector of dimension 4. Let
di=(C;—B1Ci—1—B2Ci-2)k;', 1 <i<n. Then

L,=a"(A,, Wy)
=ai Z dizi+a2 2: p"(n—l'+l)zi+a3 Z p—(n—i+l)zi+a4 Z p—iZi
i =2 i=3 i=1

=(aid1+asp™ ) Z1+(a1d2+ azp” "+ W VA

n .
+ Y {aidi+(az+ az)p "Vt asp Y2

i=3
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Now {Z;} i.i.d. N(0, 1) imply
E e’ = exp{—3[(a1d1 + asp ") +(ard2+azp " P +asp™?)
+3 {aid; +(a:+asp "V +ap P
i=3

Part (a) of the lemma and assumptions (4.14), (4.15) imply
max{ Z ldip~(n—i+l)l, Z |dip—i|, Z |p—(n—-i+1)p-—i|}_)0 as n - 00.
i=1 i=1 i—1

Hence one readily sees that

E e > exp{—ilal +(az+a3)*(p*—1) " +ai(p’-1)7']} (4.21)

which establishes the claimed result.

Finaily in view of (4.21), (4.19) and the fact that W,, > W a.s., part (c) of the lemma
is completely proved.

Remarks. (1) From the above calculations it is clear that the lemma holds even when

the errors in (4.1) are obeying a pth order autoregressive equation where one root,
say p, of the equation

m? —Bym® ™ = - = By =0 (4.22)

is larger than 1 and all others in absolute value.
Here the analogue of G would be

1 p—l .. p—(p_l)
G= 1 0 = -1 -2 . ~(p-2)
= 0 Vzr s = P P v P
p+1xp+1 ~(p-1) -2(p-1)
P p pxp

(4.23)
and VZisar.v.

(2) If one would be interested in looking at the explosive autoregressive errors,
where some (more than 1) roots of (4.22) are larger than 1 and some are smaller then
one can also get an analogue of the lemma using Stigum’s [21] results. Perhaps it
should be noted that Stigum also does not use the Martigale Convergence Theorem
and Toeplotz’s lemma.

(3) Finally we should point out, as is evident from either the above proof or
otherwise, that part (b) of the lemma is also true when one has non-Gaussian errors

but finite second moments. However, part (c) of the lemma need not hold for
non-Gaussian errors.

Now turning to the testing problem about the parameters 8" = (a, 81, 82) we first
observe that in view of the definition of {A,;, j = 1, 2, 3} and part (c) of the lemma the
likelihood function of our model (4.1)-(4.4) satisfies the assumptions (B.1)-(B.3)
with §% = (An1, Anz, Ans), I, defined prior to the above lemma and G as in (b).
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Now suppose we wish to test Ho: B;=Bj, j=1,2 treating a as a nuisance
parameter. Here s =1, k =3, k —s = 2. By part (b) of the lemma

1 0 0
G=(0 V* p'v?, VaN;(0,1)r.v.
0 p—lV2 p—zvz

The rank / of G is 2 and a generalized inverse is

1 0 0
G =0 v? o]
0 0 0

Note that
1
C = Vz(p—l Z_z), C* = VZ.

We use a,,o as the MLE of « under H and &, ﬁ 1n> B2n as the MLE of a, 31, B> under
no restrictions. These estimators are readily seen to satisfy (3.1) through (3.3) with
Sn1=An1, Sr2 = (An2, An3). With these choices of d,o and B, j = 2, 3 the asymptotic
distributions of T, and T, are given by (3.6), (2.7) and (3.12), (3.13) respectively
with the above C and C,.

Note that the limit distribution of T, is y1 under H, and x?3(5)-a noncentral x}
with & = (h$V)? (i.e. a mixture of noncentral y7 r.vs. mixed with another x3 r.v.)
under the sequence of alternatives K,,=pB;=Bjo+sn (Bjo)h¥, j=2,3. The limit
distribution of T,,;, however, does not have a simple form.

For the first order autoregressive case (i.e. p =1 in Remark (1)) we get

)

where V? now is a 7 random variable, and G is non-singular. For this special case
(i.e. p=1) note that, for testing B; = Bo, we have C = V? = C,. Thus, T, S Urv?
under the null hypothesis, where U is a N(0, 1) variate independent of V2, ie. the
asymptotic null distribution of T, is that of a prodict of two independent x ] variates.
The asymptotic distribution of T,; under the sequence of alternatives does not have a
simple form. It is interesting that the limiting null and non-null distributions of T,
for the case p =1 remain the same as in the case p =2 with V* now having a X1
distribution. In the special case p =1 we can consider a modified score statistic

1 0

Tfl = AI(&no, Bo)(o ‘j,~2 )An (&n(), ﬂo),

where V2 =¥ (X; - d.0C;)?/B3" is a consistent estimator of V*. Here one may take

dno = [ i (Xi = BoXi-1)(Ci — BoCi- 1)] X [é:l (G _BOCi—l)z]_l-

i=1
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This is the MLE of « under Hy: 81 = 3¢ and it has all desirable properties. It can be
shown (we omit details) that T}, has the same asymptotic distributions as T},; both
under the null and the alternative hypotheses.

In general, whenever a consistent estimator of G (a, B¢) can be foun:! say
G (Gino, Bo), one could consider the modified score statistic

T%, = Ax(&no» Bo)Gr (Gno» Bo)An(Gno, Bo)

which will have the same limiting distributions as T,,,. In the present exampie witi
p =2, we have

1 0 0
G.=|0o V;?2 ol.
0 0 O

Suppose now one has the regression model with errors following a pth order
explosive autoregressive Gaussian process as described in Remark (1). Then the G
matrix is given by (4.22) and its rank is still 2. For testing H:8; =80, j=1,...p
treating « as a nuisance parameter the limit distribution of T,,; and T,,, remain the
same as for the case p = 2. This is so because of the high singularity of G. Part of the
reason is that the scores A,;.1’s corresponding to B/’s, j =1, ..., p, are asymptotic-
ally linearly related among themselves as is evident from (4.19), which continues to
hold for the present model. Furthermore 8’s enter G only through the single root p
(the dominating root). These observations seem to lead to the conclusion that we
should either treat all 8’s as nuisance parameters or all 8’s should be under test in
order to avoid degeneracy in the limit distribution of T,,; and T,,.

If we consider the dual problem of testing a = ay treating the B’s as nuisance
parameters in the present example we find that T,; and T, for this problem are

To1 = A (o, Bro)An(ao, Bro)

and

pn (Xn; o, B:nO)
Pn(X"; Gn, Bn)

They have asymptotically the same limiting distributions both under the null and
non-null hypotheses. This is due to the special form of the G matrix which leads the
problem of testing @ =ao to a problem in an ergodic type model and it is not
surprising that the ergodic type results obtain for this case.

T,,=-2 log
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