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Limiting distributions of a score statistic and the likelihood ratio statistic for testing a composite 
hypothesis involving several parameters in non-ergodic type stochastic processes are obtained. It is 
shown that, unlike in the usual theory (ergodic type proo=sses), the limiting distributions of these 
statistics are different both under the null and a contiguous sequence of alternative hypotheses. The 
results are applied to a regression model with explosive autoregressive Gaussian errors. In the 
discussion of this example a modified score statistic is suggested where the limiting null and 
non-null distributions are the same as those of the likelih, ood ratio statistic. 
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1. Introuitaction 

This paper is concerned with the limiting distribution of the score and likelihood- 
ratio (L.R.) test-statistics for testing composite hypotheses involving several 
parameters in the non-ergodic type (see Section 2 for definitions) stochastic proces- 
ses. Under a suitable sequence of alternatives the limit distributions of these statistics 
will be shown to be mixtures of non-central chi square distributions, We defer 
discussion of optimality of these tests to a forthcoming paper, 

Non-ergodic processes (in the sense of this paper) arise in several applications such 
as supercritical branching processes, explosive autoregressive processes, classical 
mixture experiments leading to exchan 
a simple hypothesis about a sin 
processes was broached by 
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and noted certain difficulties regarding the efficiency question. Feigin [13] and 
Sweeting [22] investigated some further properties of the tests discussed by Basawa 
and Scott. 

Our results in this paper extend the work of Weiss [24] and Dzhaparidge [l l] 
concerning tests for ergodic models to the non-ergodic situation. Section 2 is 
concerned with the specification of a non-ergodic model. The limit distributions of 
the score and L.R. statistics are derived in Section 3 using ideas analogous to those 
used by Weiss [24] and Dzhaparidge [ 111. In Section 4 we discuss an application of 
the results to as simple regression model with explosive autoregressive errors. 

2. A regular momergodic model 

Let X, = (A’?., . . . , Xn) be a realization from a stochastic process with a joint 
density pn (xn ; B) with respect to some g-finite measure, where 8 is a (k x 1) vector of 
unknown real parameters taking values in a subset Sz of the k-dimensional euclidean 
space. Consid::s the random variable (for each fixed 0 E a), 

A,(,%, 6)=loe{pn(Xn; &)lpn(&; 6% 8, = 6 +I,‘/* (6)h, (2.1) 
where & is a (k x 1) vector of finite real numbers and I,(6) is a (k x k) non-random 
diagonal mattix, to be further syccified later, with positive diagonal entries 
(i&i(e), i = 1,2, . . . , k) such that k,i(@) are continuous in 8 and ~CKJ as n + 00. The 
asymptotic behavior of A,(&, 0) will determine in some sense the large sample 
performance of the tests to be discussed later on. Assume now that the following 
conditions are fulfilled: 

(A.1) There exists a (k x 1) random vector d,(e) and a (k x k) random matrix 
B,(6) such that as n + 00, 

IA,&&, e)-[hTA,(6)-~h7j1,“*(e)Bn(e)I,“*(e)}h]~~0 

both under P&9) and P,(&) probabilities. 
(A.2) Let G,,(O) = Ii*‘* (e)B,,(e)I,‘/* (e). Then G,&9) -% G(8), both underPJ60 

and Pn (&) probabilities, where G(B) is a possibly random (k X k) non-negative 
definite matrix with rank I g k. 

(A.3) (A,(6), G,,(e)) -% (A(B), G(e)), under P,,(e), where A(e) is some random 
vector. 

Definition 2.1. The (density p,(x, ; 19) is said to belong to an ergo&c fumily if it 
satisfies (A.l)-(4~3) with G(8) being non-random. If, on the other hand, at least one 
element of G(e) is a non-degenerate random variable we say that pn (xfi, ; 6) belongs 
to a non-ergo&c family. l 

The above definition is a generalization of the one given by Basawa [:2]. Also, see 
[9]. The models discussed in [6-S, 11,17,20,23,24], belong to the ergodic family. 

Examples and subclasses of the non-ergodic family have been previously studied, in a 
different context in [l, 3-5, l&12-16,191. 
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In the present paper we will be concerned with a special version of the non-ergodic 
family specified by conditions (B.l) to (B.3) below: 

(B.l) Condition (A.1) holds under P,,(6) with the choice 

A,($) = I;1’2 (e)&(e) and S,(e) = d2 10~~~~;8))\ 
(( i j / 

(i,j,=l,2,..., k), where SpI (0) is a (k x I j vector of scores 

all:pn, 
i 

(i=1,2,..., k)). 

(B.2) Condition (A.2:1 holds under P&9) only with at least one element of G(8) 
being a non-degenerate random variable. 

(B.3) Condition (A.3) is satisfied with the choice A (0) ZG “l’(O)Z, where 2 is 
a (k x 1) vector of indep’endent identically distributed N(0, 1) variates and 2 is 
independent of G(8). 

Remarks on conditions (B). (i) With the above choice of A, (0) and B, (t?), and under 
fairly mild regularity conditions, a large class of P,&; 0) will satisfy (B. 1) via the 
Taylor expansion. The assumption ,that 1, (0) is diagonal was also made by Weiss and 
Wolfowitz [25, Ch. 71, Weiss [24], and Dzhaparidge [ 111. Note that this assumption 
does not necessarily imply that the Fi.sher information matrix E(BJ8)) is diagonal. 
Also, the matrix G(8) is not necessarily diagonal and it is allowed to be singular. The 
case when the norming matrix I,(e) is non-diagonal involves certain complexities in 
the derivation and will not be considered in the present paper. 

(ii) Under a mild regularity conditions, {S,(B), n = 1,2, . . .} is known to be a 
zero-mean martingale. Under (B.2), and some further conditions such as those in 
[4,5], a multivariate version of the central limit theorem for martingales ensures that 
(B.3) holds. 

(iii) Under (B.l) to (B.3), 

A,(&, 0) 5 A i hTG’/2(e)Z -$h”G(e)h 

under P,(O) probability. Using the independence of 2 and G(8) one sees E(e”) = 1. 
Thus, condition (&) of Roussas [20, Ch. 11, is satisfied and consequently, the 
sequences of probability measures {P&l)} and {P&l,,)} are contiguous. This partic- 
ular property will enable us to derive the limit distributions of various statistics under 
the alternatives {en} from the limit distributions under the null 8 in an entirely 
standard way (see [20]). 

3. Limit distributisns of the score an eli 

We assume throughout that pn (x~ ; 0) satisfies (B. 1) to (B.3). Suppose we partitio 
eT= (LY=, p’), where CY is an (s x I) vector and p, (k -s)x 1 vector. Consider the 

problem of testing H : p = PO against K : p # PO, where cy is treated as a nuisance 
parameter. We shall study the following test-statistics for this problem: 
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Scose statistic. T, 1 = A:(& 0, /i34,, (&O, PO), where &o is an estimator 
specified later. 

Liklelihood-ratio (LX.) statistic. The L.R. statistic is defined as 

of ar to be 

T nZ = 2A,((&, &A (&IO, Pal))9 

where A, is defined in (2.1) and cy”,~, & and &, are the estimators of cy and p to be 
specified later. 

In order to derive the linilit distributions of {T,, 1) and { Tn2} we first introduce some 
conventions and notation. I 

Let hT = (h:, h:) be a 1 :I< k vector of real numbers with hl being s x 1 and h2 being 
(k - s) x 1. Write 

Jd~) 0 
1de)= ( 0 > In**(e) ’ 

eT = (ctT, p3, 

where I, 11 and &,22 are, ret#pectively, s x s and (k - s) x (k - s) diagonal matrices. We 
now specify our alternatives 

K,: P = Pn = &+I,: $* (a, Poh, 

where PO is the .H value of p and Q! is the nuisance parameter vector. Throughout the 
rest of the papler cyll = a! + I,:{* (cu, &)hl. 

HII what follows all 1imir.s are to be: understood as it + 00; all O,,(H) statements are 
under {&,(a, 13~)). By remark (iii) following assumptions (B), {P&a,, &)I and 
(P,(a, PO)} are: mutually contiguous for any real k-vector h. Therefore taking hl = 0 
in h implies that {B~(LY, PI:,,)} and {p,, (a, PO)} are mutually contiguous and hence all 
op(l) statements can be made under the alternatives {.P&, &)} also, whatever may 
be the parameter cy. Finally for a sequence of r.vs. Yn, 5?( Y,)P,)) denotes the 
distribution oQ Y, under a sequence of probability distributions P,. 

Limiting distri’bution of the score statistic. Partition the score matrix S,, as S’f;(a, p) = 

(Cd& P), S:i*b, PII corresponding to the first s parameters a! and the last (k -s) 
parameters /3 respectively. Similarly Ipartition the matrix 

Glib, P) 

Gb’ ‘) = (G&Y, /3) 
G72r:a, PI 

G22k p) > ’ 
(3.1) 

where Gll is s x s, G2* is (k -s) x (k --s) and G12 is s x (k -s). We assume that the 
rank of the matrix Cl1 is s, s < I = rank(G) for all cy, /3. 

Let &O be an estimator of cy such that 

Gl lb, Po)I% b, po)(cu”,o -a) = I,,‘l’ (a, /3O)Sml(~, PO) +0,(l). (3.2) 

he restricted (under 
(0) has first deriva 

of a! typically sa 
and hence the 
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Recall that the rank(G) = E s k. Rewrite, after interchanging rows and columns if 
necessary, the matrix G as 

(3.9) 

The rank(G*) = I, rank(G11) = s and the remaining rows and columns of G are 
partitioned appropriately in the submatrices indicate by El. It then follows that a 
generalized inverse (see [ 181) of G is 

A BT 0 

G-= B C,' 0 , C, = Gz2 -Gf2G;;IGT;T, 

i I 0 0 0 

(3.10) 

where A and B are some matrices. 
We partition An and h in conformity with (3.9) aimd write 

An= i”:], h= [j, (3.11) 

where An 1 and h1 are s x 1 vectors as before, AZ2 is a (I - S) x 1 vector and h z is a 
(I--s) X 1 vector. 

After some lengthy but routine calculations similar to those that occur in the 
ergodic case (e.g. see [ 111) one can verify, using the above notation, that 

where & = (a, PO) and 2; is a vector of (I --s) x 1 i.i.d. N(0, 1) r.vs. Using contiguity 
one also can deduce that 

dZ( Tn2 1 Pn(a, fin)) + cZ((Z’~ + Ck’2hf)T(Zz + Ci’*hz)). (3.13) 

The limit distribution in (3.13) is a mixture of non-central chi-square r.vs. with 
mixing variable being the noncentrality parameter A = hzC,hz, where h f is as in 
(3.1 a>. 

Thus, the limit distributions of Trill and Tn2 are different both under H and the 
sequence of alternatives M,. In the ergodic models it is well known (see e.g. [ 11,241) 
that these statistics have asymptotically the same limit distributions both under H 
and rC,, except for a scale change. If G were known and non-random (i.e. in the 
ergodic model) one may consider a modified score-statistic TE1 = 

AZ(Gnov Po)G-An(aino, /30) whose limit distribution would be the ‘same as that of T,2 
(cf. [ll]). I-Iowever, ilrl the present case G is an unobserved random matrix. In the 
following application we briefly consider Tzl where G- is replaced by its consistent 
estimator. In the latter case results similar to the ergodic case are obtained (insofar as 
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the asymptotic equivalence of TE1 and T,,z is concerned); however, the limiting 
non-null distributions are still non-standard (i.e. mixtures of non-central chi- 
squares rather than non-central chi-squares). 

4. An application 

Let the observable r.vs. {Xi, 1 s i 6 IV} satisfy 

Xi = CvCi + Yi, 

where the errors ( Yj} satisfy 

(4.1) 

with (Zi, 
roots ml 

K=p&-l+p*yi-*+Zi, l=GQz 44.21 

1 s i G n} i.i.d. N(0, 1) r.vs. and Zi = 0 = Ci for is 0. We assume that the 
and m2 of the equation 

m2-p zrn-&=O (4.3) 

are distinct and there exists a unique root, say ml and call it p, such that 

Ip I> max(lm21, 1). (4.4) 

The process {Xi} satisfying (4.1) through (4.4) is known as the regression process 
with explosive autocorrelated Gaussian errors. The numbers {Ci} are known and the 
parameter vector is eT = (a, &, &). 

Before discussing the inferential prob1em.s about 8, we first study the likelihood 
function and obtain the limiting matrix G and the limiting distribution of various 
underlying entities. To that effect observe that the log likelihood functiorr in this case 
1s 

log pn (X,, 0) = const -$ i {(Xi-cYCi)-_P1(Xi-I -LyCi-1)-p*(Xi-z-gCi-2)}2~ 
i = 1 

Therefore when 8 is the true parameter vector 

A,riB)=$logE 

= i [(Xi -Ck!Ci)-Pl(Xi-1 -cYCi-1)-p2(Xi-2--QlCi-2)] 
i = 1, 

X(Ci -plCi-1 -P2ci-2) 

= i (Ci -plCi-1-@2Ci-2)~i, 
i=l 
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A&O ’ =aplogpn i 
= i (Xj-j_cUCi-j) 

i=l 

n 
= 

%y i-j+l& j = 293. 
i=j 

The Bn(B) matrix of the assumption (El) will have the entries ((bnif)) given by 

bnll(e) = i (G -PlG-1 -P2G-d2s 
i=l 

bnli(S) = f C’i-j+lZi + i (C_i -piG-l -fl2Ci-2) Yi-j+l, j = 2,3, 
i=j i-j 

&(@I = i Y?-j+l, j=2,3 
i=j 

and 

bn23((3)= i Yi-lK-2* 
i=3 

Now let us consider some preliminary facts. In what follows all calculations are 
carried out under the assumption that (cu, /31, &) are the true parameters and the 
above model holds. 

Let Al and A2 be real numbers such that 

Al+&= 1, Alp-‘+A2m~l =O. 

Then one can write [19] 

= Al Wj +A2Rj (say), 

(ibserve that 

IRj12= g pB2’ jil (m2)2k < E j(m2/p)2’< m 
j-l j=1 k=O j=l 

because IrnJp I< 1. 
Therefore the arkov inequality and the Borel-Cantelli lemma imply 

(4.5) 

(4.6) 

(4.7) 

j + 0 a.s. and Rj+OinL2Y asj+m. (4.8) 
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Next note that { Wi, j Z= 1) form an L2-martingale and IpI > 1 implies 

Wf = my .il p-*’ = (p* - 1)-l c 00. 
3 

Hence by the Martingale Convergence Theorem 3a r.v. W such that 

Wj+ Wa.s. and Wj+ W in L2, asj-,oo. 

The assumption of normality yields that for every real t 

E ei’wi = e-(t2/*)Z~,Ip-2r -) e--(12/*)(P2-1)-* as j+oo. 

Hence W of (4.lO) is a 

N(0, (p’- l)-’ r.v. 

Combining (4.10) and (4.8) with (4.6) one gets 

p-%+hA W a.s. and in L2, as j-+00. 

Next define 

(4-9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

and 

k;(8) = i (Ci _PlCi-1 -p*Ci-*)* (G =0, js0) 
i=l 

a:= 2 c: 
i=l 

IA IP 
n 

, where s,, = 
(pl- 1)’ 

Lemma. Suppose the model (4.1) - (4.4) holds. Suppose, in addition 

max C&* +O asn+oO 
ISiGn 

and 

ai2 i CiCi-l+b asn+a,(b<a). 
i=l 

Then 

(a) a,*k&)+1-b2+(b-&-@2)*)0, 

(b) Iil’* (e)Bn(0)I,‘/* (0)s. G(8) as n + a, where 

(4.14) 

(4.15) 
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(c) {k,* @)A,&), s,‘(B)A,&?), s,‘(@)A,&)} z G1’2Z, where ZT = 
(21, 22, Z3) - Ns(O, &) and is independent of G and where G is the same as in (b). 

roof. (3) follows from (4.14), (4.15), the expansion of ki and the Cauchy-Schwarz 
inequality. 

(b) A variation of this result with a.s. replaced by “in probability” has been proved 
by Rao [19]. His proof is direct but somewhat lengthy. A careful evaluation of his 
proof together with the Borel-Cantelli lemma gives the a.s. result. Or alternatively 
we can use (4.13), the Borel-Cantelli and the Toeplitz lemmas directly to conclude 
(b) above. We demonstrate this just for two terms. Suppress 6 and let D, = 
I;93J,1/2 = ((dnij))3x3* Clearly 

d nll=l, n24. 

d nij = k,‘silb,ij = k,‘gna,‘s,‘b,ij, i, j = 233. 

now 

o,1s,1b,12 = &,’ f Ci-tZi + i (Ci -plCi-1 -p2Ci-2) x-1 
i-2 i=2 

Observe that 

= u, + u:, (say). (4.16) 

i EU:= i cri2si2 f cf <(p2- q2AT2 E /r2” coo. (*.+I> 1). 
?I= 1 n=l i=l n= 1 

The BoreLCantelli lemma implies 

u a.s. 
n -0. 

Next write 

UkZiE2 a,i(K-l/p’-‘)= i a,i[(Yi-l/Pi-l)-hlW]+ 2 a,iAlW, 
i=2 i=2 

(4.17) 

where for 2sisn 

a ni = O~lS~lpi-l (Ci -p*Ci-1-@2Ci-2) = e l fl,‘p-“+‘-‘(Ci -@*Ci-1-@2Ci-2) 

with e = lAll-1(p2- 1). 
Using (4.14) and IpI > 1, one gets that ]a,iI + 0 for every 2 G i s n as n + 00. Using 

the Cauchy-Schwarz inequality one has 

$ lanilGe{2(1+/3: +@s)}1’2p-n{ i p2’i-1’}1’2<00, n > 1. 
i=2 

Moreover 

i Iani1 s t?C,’ 
i=2 

maXIGI(l +IPlI + I&I)p-” i pi + 0 by (4.14). 
i=O 
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Hence using (4.13) and the Toeplitz lemma one has 

$20. (4.1.8) 

Therefore in view of the part (a) of the lemma, (4.18) and (4.17) one has 

d n12 B.sL,o. 

Next consider 
n n 

d n22 =si2bn22= e2p-2n C Yf-1 = e2 C p -2(n-l+lI( yi_llpi-l)2 

i=2 i=2 

-B.S., e2. A;($ -1)-‘w2=(p2_1)w2= v2 

by (4.13) and the Toeplitz lemma. One completes the rest of the proof by using 
similar arguments. 

(c) Consider 

s,lAni = ep-” i yi-j+IZi, j = 29 3 

Let 

Observe 

i=j 

=e tp -(n-i+i-*)Zi( yi_i+l/p i-i+l) (e = lAl(-l(p2 - 1)). 
n=j 

eni = i p-(n-ifl)Zi, j = 2,3* 
i=j 

that with W defined in (4.13) 

Els,‘Ani -e~N’i-2’~niA1 WI 2 

s e 2 JpI-‘“-‘+‘-“{E(( Yi_i+l/p’-‘+‘)-A IL W)2}1’2 + 0 
i=j 

(4.19) 

by the Toeplitz lemma and the C2 part of (4.13). 
WC next show that the vector A: = (kilAnlp ,5;12, (Ens) is asymptotically indzpen- 

dent of W, where Wn is defined in (4.5). We a’lso show that the asymptotic 
distribution of A’: is N&I, X), where 

1 0 0 

c= 

l I 

0 C2 a2 withCr2=(p2-1)-1. (4.20) 

0 *2 G2 

To *this effect let uT = (aI, u2, a3, as) be any reaL1 vector of dimension 4. Let 

di = (Ci -p1C’i-1 -~2Ci-2)k~1, 1 s i s n. Then 

L = aT(An, W,) 

= al i dizi + 02 ,i2 p-(n-i+l)Zi + Q3 i$3 P-(“-~+~)ZJ + ~4 iil p-‘Zi 
i-l *= - 1 

= (aId + a4g?)Z1 + (aIda+ mp -(n-l) ,_ a4p-2)p 

_ 
+ 2 {aIdI + (Q2 -t a&-tnw’+l) + a4p-‘}Zi. 

i=3 
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Now [Zi} i.i.d. N(0, 1) imply 

E eiLn - - exp{-$[(aldl + a&‘)* + (aId + a2p-(n-*)+ a&*)* 

+ i {aIdi + (a2 -+ a&-‘“-‘+” + a4fi}*]). 
i=3 

Part (a) of the lemma and assumptions (4.14), (4.15) imply 

max i (dip-(n-i+t)l, f1 Idip-‘I, ifl Ip-‘n-i+“p-i( I -0 asn+W 
i = 1 i = 

Hence one readily sees that 

(4.2 1) 

which establishes the claimed result. 
Finally in view of (4.211, (4.19) and the fact that W, + W a.s., part (c) of the lemma 

is completely proved. 

Remarks. (1) From the above calculations it is clear that the lemma holds even when 
the errors in (4.1) are obeying a pth order autoregressive equation where one root? 
say p, of the equation 

mp_p,mP-*_. . .-pl=() (4.22) 

is larger than 1 and all others in absolute value. 
Here the analogue of G would be 

(2) If one would be interested in looking at the explosive autoregressive errors, ,’ 

where some (more than 1) roots of (4.22) are larger than 1 and some are smaller then 
one can also get an analogue of the lemma using Stigum’s [21] results. Perhaps it 
should be noted that Stigum also does not use the Martigale Convergence Theorem 
and Toeplotz’s lemma. 

(3) Finally we should point out, as is evident from either the above proof or 
otherwise, that part (b) of the lemma is also true when one has non-Gaussian errors. 
but finite second moments. However, part (c) of the lemma need not hold for 
non-Gaussian errors, 

NQW turning to the testing problem about the parameters BT = (a, PI, &) we first 
observe that in view of the definition of {Anj, j = 1,2,3} and part (c) of the lemma the 
likelihood function of our model (4.1)-(4.4) satisfies the assumptions (B.l)-(B.3) 
lwith §f = (AnI, &2, An3), I, defined prior to the above lemma and G as in (b). 
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Now suppose we wish to test Ho: pi = &,, j = 1,2 treating 0 
parameter. Here s = l,k=3,k-s=2J%ypart(b)ofthelemma 

G=[i P;VZ ;:;I], VaN1(O,l)r.v. 

The rank I of G is 2 and a generalized inverse is 

Note that 

303 

as a nuisance 

c=v2/ l p 
-1 

b-l > K2 ’ 
c* = v2. 

We use au”,0 as the MLE of CY under H and d?‘,, &, /?2,, asI the MLE of cy, PI, p2 under 
no restrictions. These estimators are readily seen to satisfy (3.1) through (3.3) with 
S n1=Ad:2 - - (An2, A&. Wiih these choices of 6’,0 and bnj, j = 2,3 the asymptotic 
distributions of T,, and Tn2 are given by (34, (3.7) and (3.12), (3-13) respectively 
with the above C and C*. 

Note that the limit distribution of Tn2 is x: under Ho and x: @)-a noncentral x: 
with 6 = (hf V)2 (i.e. a mixture of noncentral x: r.vs. mixed with another ,v: r.v.) 
under the sequence of alternatives K ln) = pi = pie+ s,’ (pi,)hT, j = 2,3. The limit 
distribution of Tnl, however, does not have a simple form. 

For the first order autoregressive case (i.e. p = 1 in Remark (1)) we get 

where V2 now is a xf random variable, and G is non-singular. For this special case 
(i.e. p = 1) note that., for testing p1 = PO, we have C = V2 = C*. Thus, T, 1 s U2 V” 
under the null hypothesis, where U is a N(0, 1) variate independent of V”, ie. the 
asymptotic null distribution of T, 1 is that of a predict of two independent x: vairiates. 
The asymptotic distribution of T, 1 under the sequence of alternatives does not have a 
simple form. It is interesting that the limiting null and non-null d.istributions of T”z 
for the case p = 1 remain the same as in the case p = 2 with V” now having a xi 
distribution. In the special case p = P we can consider a modified soore statistic 

where vi = cl (Xi - 6,OCi)‘/fig” is a consistent estimator of V’. Here one 

i (Xi -p(&-1)(Ci -p()Ci-1) 2 (Ci -PoCi-~)2 -I* 
i = 1 i = 1 I 
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This is the MLE of ar under Ho : p1= 190 and it has all desirable properties. It can be 
shown (we omit details) that Tz1 has the same asymptotic distributions as Tn2 both 
under the null and the alternative hypotheses. 

In general, whenever a consistent estimator of G-(cr, PO) can be fount:! say 
6, (C&O, PO), one could consider the modified score statistic 

Cl = A:(&,, &,)6,(&o, PoMnGno, PO) 

which will have 
p=2, we have 

the same limiting distributions as Tn2. In the present exampie with 

Suppose now one has the regression model with errors following a @h order 
explosiire autoregressive Gaussian process as described in Remark (1). Then the G 
matrix iis given by (4.22) and its rank is still 2. For testing H : & = pie, j = I., . . . p 

treating a! as a nuisance parameter the limit distribution of T,, and T,,2 remain the 
same as for the case p = 2. This is so because of the high singularity of 6. Part of the 
reason :is that the scores A ni+l's corresponding to pi’s, j = 1, . . . , p, are asymptotic- 
ally linearly related among themselves as is evident from (4.19), which continues to 
hold folr the present model. Furthermore p’s enter G only through the single root p 
(the dominating root). These observations seem to lead to the conclusion that we 
should either treat all p’s as nuisance parameters or all p’s should be under test in 
order to avoid degeneracy in the limit distribution of Trill and Tn2. 

If we consider the dual problem of testing cy = are treating the p’s as nuisance 
parameters in the present example we find that Tnl and T,,2 for this problem are 

T nl = A:(Qo, &to) 
and 

They have asymptotically the same limiting distributions both under the null and 
non-null hypotheses. This is due to the special form of the G matrix which leads the 
problem of testing Q! = cyo to a problem in an ergodic type model and it is not 
surprising that the ergodic type results obtain for this case. 
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