## Algebra

# Products of locally dihedral subgroups 

Bernhard Amberg ${ }^{\text {a,* }}$, Andrew Fransman ${ }^{\text {b }}$, Lev Kazarin ${ }^{\text {c, }}{ }^{1}$<br>${ }^{\text {a }}$ Fachbereich Mathematik, Universität Mainz, D-55099 Mainz, Germany<br>${ }^{\text {b }}$ Department of Mathematical Sciences, University of Stellenbosch, Private Bag x1, Matieland 7602, South Africa<br>${ }^{\text {c }}$ Department of Mathematics, Yaroslavl State University, 150000 Yaroslavl, Russia

## A R T I C L E I N F O

## Article history:

Received 18 June 2011
Available online 16 November 2011
Communicated by Gernot Stroth

## MSC:

20D40
20 F 50
Keywords:
Products of groups
Factorized groups
Soluble locally finite groups
Locally dihedral groups


#### Abstract

It is shown that a group $G=A B$ which is a product of two periodic locally dihedral subgroups $A$ and $B$ is soluble.


© 2011 Elsevier Inc. All rights reserved.

## 1. Introduction

If the group $G=A B$ is the product of two its subgroups $A$ and $B$, i.e. $G=\{a b \mid a \in A, b \in B\}$, the natural question is what can be said about the structure of the factorized group $G$ if the structure of the subgroups $A$ and $B$ is known.

If $A$ and $B$ are abelian, then $G=A B$ is metabelian by a celebrated theorem of $N$. Itô (see [3], Theorem 2.1.1). But very little is known for groups which are the product of two subgroups having abelian subgroups of finite index. It is therefore natural to study first products of groups possessing abelian subgroups of index at most 2 .

[^0]In [10] V.S. Monakhov has proved that a finite group $G=A B$ having cyclic subgroups $A_{0}$ and $B_{0}$ such that $\left|A: A_{0}\right| \leqslant 2$ and $\left|B: B_{0}\right| \leqslant 2$ is soluble. The solubility of every product of two groups containing cyclic subgroups of index $\leqslant 2$ was shown by B. Amberg and Ya. Sysak in [5].

A group is called locally dihedral if it has a local system of dihedral subgroups. An infinite periodic locally dihedral group $X$ is the union of an infinite ascending chain of finite dihedral subgroups and therefore it is locally finite. Such a group has the form $X=X_{0}\langle i\rangle$, where $i$ is an involution and $X_{0}$ is a locally cyclic normal subgroup of $X$ such that $x^{i}=x^{-1}$ for every $x \in X_{0}$. Every (locally) cyclic subgroup of $X$ whose order is greater than 4 , belongs to $X_{0}$ and each non-(locally) cyclic subgroup of $X$ contains its centralizer in $X$.

It was already shown in [2] that a periodic product of two locally dihedral subgroups is soluble. Here we generalize this as follows.

Theorem 1.1. Let $G=A B$ be a group, which is a product of two periodic locally dihedral subgroups $A$ and $B$. Then $G$ is soluble.

If a soluble group $G=A B$ is the product of two subgroups $A$ and $B$, which are $\pi$-groups for some set of primes $\pi$, then $G$ is also a $\pi$-group (see [3], Theorem 3.2.6). In particular the group $G$ in Theorem 1.1 is periodic and so locally finite. It may be conjectured that even the product of two (possibly non-periodic) locally dihedral groups and the product of two groups that have (periodic) locally cyclic subgroups of index at most 2 are also soluble.

It was proved in [1] that a group $G=A B$ which is a product of two subgroups $A$ and $B$ having abelian subgroups $A_{0} \leqslant A$ and $B_{0} \leqslant B$ with minimum condition such that $\left|A: A_{0}\right| \leqslant 2,\left|B: B_{0}\right| \leqslant 2$ is also soluble, provided that $A$ is a group of dihedral type, i.e. there exists an involution $a$ in $A$ that inverts every element in $A_{0}$. It is likely that this result in [1] also holds in the case when the subgroup $A$ is not of dihedral type.

The notation is standard and can for instance be found in [9]. We use extensively the fact that in any group two different involutions generate a dihedral group, the structure of which is well-known (see for instance [9], Chapter 1, Section I).

## 2. Finite products of dihedral subgroups

This section is devoted to establish bounds on the solubility length of finite products of dihedral groups.

The following slight extension of the theorem of Itô will be used repeatedly. It implies for instance that Theorem 1.1 is true when at least one of the two subgroups $A$ and $B$ is abelian.

Lemma 2.1. Let $N$ be a normal subgroup of a group $G$. Suppose that $G$ has two abelian subgroups $A$ and $B$ such that $N \subseteq A B$. Then $N$ is metabelian.

Proof. Obviously, $N A=A(N A \cap B)$. By the above-mentioned theorem of $N$. Itô the group $N A$ is metabelian. The result follows.

The next lemma is a reformulation of a result of 0 . Kegel (see Lemma 2 in [8]).
Lemma 2.2. Let the finite group $G=A B$ be the product of subgroups $A$ and $B$ and let $A_{0}$ and $B_{0}$ be normal subgroups of $A$ and $B$, respectively. If $A_{0} B_{0}=B_{0} A_{0}$, then $A_{0}^{x} B_{0}=B_{0} A_{0}^{x}$ for all $x \in G$. Assume in addition that $A_{0}$ and $B_{0}$ are $\pi$-groups for a set of primes $\pi$. If $O_{\pi}(G)=1$, then $\left[A_{0}^{G}, B_{0}^{G}\right]=1$.

The following lemma gives a bound on the solubility length of a finite 2-group which is the products of two dihedral subgroups.

Lemma 2.3. Let $G=A B$ be a finite 2-group, which is a product of a subgroups $A$ and $B$, where $A$ is dihedral and $B$ is either cyclic or a dihedral group. Then $G^{(5)}=1$.

Proof. Let $A=A_{0}\langle c\rangle, B=B_{0}\langle d\rangle$, where $A_{0}$ and $B_{0}$ are cyclic, $c$ is an involution such that cac $=a^{-1}$ for each $a \in A_{0}, d=1$ or $d$ is an involution such that $d b d=b^{-1}$ for each $b \in B_{0}$.

Case 1. $A$ is dihedral, $B=B_{0}$ is cyclic.
Let $K$ be a largest normal subgroup of $G$ contained in the set $A_{0} B_{0}$. By Lemma 2.1 K is metabelian. We use the standard bar-notation for $\bar{G}=G / K$ and its subgroups. Since $\bar{G}$ has no normal subgroups belonging to $\bar{A}_{0} \bar{B}_{0}$, it follows that there exists a normal subgroup $\bar{T}$ in $\bar{G}$ of order 2 not contained in $\bar{A}_{0} \bar{B}_{0}$. Then $\bar{T}$ is generated by an element $t=a \bar{c} b$ such that $a \in \bar{A}_{0}, b \in \bar{B}$ and $\bar{c}=K c$. It follows that $c_{1}=a \bar{c} \in \bar{A} \backslash \bar{A}_{0}$. Since $t=c_{1} b \in Z(\bar{G})$, the group $F=\langle t, \bar{B}\rangle$ is abelian. Therefore $\bar{G}=\bar{A}_{0} F$ is a product of two abelian groups and so metabelian by Itô's theorem. Therefore the derived length of $G$ does not exceed 4 in this case.

Case 2. $A$ and $B$ are dihedral subgroups of $G$.
In this case $A_{0}$ and $B_{0}$ are the cyclic subgroups of $A$ and $B$ with index 2 , respectively.
If $H=A^{2} B^{2}=B^{2} A^{2}$ is a subgroup of $G$, then the index of $H$ in $G$ is at most 16 , and $H \leqslant \Phi(G)$, the Frattini subgroup of $G$. If $H=\Phi(G)$, then $G^{\prime} \leqslant H$ and the derived length of $G$ is at most 3 . Clearly, $H \leqslant G^{\prime}$ and by similar reasons we may assume that $\left|G: G^{\prime}\right| \leqslant 8$. If $\left|G: G^{\prime}\right|=4$, then by a theorem of 0 . Taussky (see [6], Chapter III, Satz 11.9, p. 339) $G$ is a 2 -group of maximal class, so that $G$ is metabelian. Hence $\left|G: G^{\prime}\right|=8$. Since $G / G^{\prime}$ is generated by elements of order 2, the factor-group $G / G^{\prime}$ is elementary abelian, so that $G^{\prime}=\Phi(G)$.

Let $K$ be the largest normal subgroup of $G$ belonging to the set $A_{0} B_{0}$. Suppose that $K=1$.
It follows that there is a normal subgroup $T$ of order 2 in $G$ such that $T$ is generated by the element $t \in G$, which is of the form $t=a c b$, $a d b$, or $a c d b$ with $a \in A_{0}, b \in B_{0}$. Since $a c \in A \backslash A_{0}$, $d b \in B \backslash B_{0}$, we may replace $a c$ by $c$ and $d b$ by $d$, so that $t=c b$, $a d$, or $c d$.

If $t=c b$, then the element $c$ centralizes $B_{0}$ and $t^{2}=1=c^{2} b^{2}=b^{2}$ implies that $b \in Z(B)$ and $c \in C_{G}(B)$. We have $X=B\langle t\rangle=B \times\langle c\rangle$. Since for any $g \in G$ we have $g=b_{1} a_{1}$ for some $a_{1} \in A, b_{1} \in B$, the conjugate of $c$ by $g$ is $c^{g}=c^{a_{1}} \in A$. Hence $E=\left\langle c^{G}\right\rangle \subseteq A$. However $E^{\prime} \leqslant A_{0}$ is a normal subgroup of $G$. Therefore $E^{\prime} \leqslant K=1$. But $[c, A]=A_{0}^{2}$. This implies that $A_{0}^{4}=1$, i.e. the order of $A$ is at most 8 .

If $|A|=4$, then $G=A_{0} X$ implies that $X$ is normal in $G$. Since $K=1$, the subgroup $B_{0}$ has no non-trivial normal subgroups of $G$. Therefore $B_{0} \cap B_{0}^{y}=1$ for some $y \in G$. Hence $\left|B_{0}\right|^{2}<|X|=4\left|B_{0}\right|$ by the structure of $X$. This implies that $\left|B_{0}\right| \leqslant 2$ and $|G| \leqslant 16$. In this case $G^{(2)}=1$.

Now we may assume $|A|=8$ and $G=A_{0} X$ with $X \cap A_{0}=1$. If $E=A$, then $A^{\prime} \neq 1$ is normal in $G$, a contradiction. Thus $|E|=4$ and the conjugacy class of $c$ consists of $c$ and $c a_{0}$, where $a_{0}$ is an element of order 2 in $A_{0}$. In this case $a_{0} \in Z(G)$, which is a contradiction. Hence $G^{(2)}=1$. Moreover, this implies that $G^{(4)}=1$ in the general case $K \neq 1$.

By symmetry, the case $t=a d$ also leads to the conclusion $G^{(4)}=1$.
Assume now that $t=c d$, and let $T=\langle t\rangle \leqslant G^{\prime}$. Since $t=c d \in Z(G)$, we have that $a^{d}=a^{-1}$ for each $a \in A_{0}$ and $b^{c}=b^{-1}$ for each $b \in B_{0}$. Then in the factor-group $\bar{G}=G / T$ the subgroups $\bar{A}_{0}^{2}=A_{0}^{2} T / T$ and $\bar{B}_{0}^{2}=B_{0}^{2} T / T$ permute and generate a normal subgroup $\bar{M}$ in $\bar{G}$. The full preimage $M$ of $\bar{M}$ in $G$ is a product of two abelian subgroups and has derived length at most 2 . Recall that $t \in Z(G) \cap G^{\prime}$, so that $M \leqslant G^{\prime}$. Then $G / M$ has order 8 . This implies by the above considerations that $G^{\prime}=M$.

Since the derived length of $G$ in the case $K=1$ is at most 3, the derived length of a 2 -group $G=A B$ is at most 5 in the general case when $K \neq 1$. Thus in all cases the lemma is proved.

Consider now a finite group $G=A B$ that is the product of two dihedral subgroups $A$ and $B$. It is well-known that for every prime $p$ there exists a Sylow $p$-subgroup of $G$ which is the product of a Sylow $p$-subgroup of $A$ and a Sylow $p$-subgroup of $B$ (see for instance [6], Chapter VI, Satz 4.7, p. 676). In our case the Sylow $p$-subgroups of $G$ for an odd prime $p$ are products of two cyclic subgroups. This implies that the Sylow $p$-subgroups of $G$ are metacyclic by a result of B. Huppert (see [6], Chapter III, Satz 11.5, p. 338). Since G is soluble by [10], even the Hall $2^{\prime}$-subgroups of $G$ are metacyclic (see [6], Chapter VI, Satz 4.8, p. 676). By Lemma 2.3 the Sylow 2 -subgroup of $G$ have
derived length at most 5 . By Theorem 3 in [7] the derived length of $G$ is at most $2 \cdot 2 \cdot 5+2+5=27$. The following theorem gives an even better bound.

Lemma 2.4. Let $G=A B$ be a finite group, which is a product of a subgroups $A$ and $B$, where $A$ is dihedral and $B$ is either cyclic or a dihedral group. Then $G^{(7)}=1$.

Proof. Assume that the lemma is false and let $G=A B$ be a minimal counterexample to the conclusion of the lemma. Since $G / N$ is likewise a product of two dihedral groups for every normal subgroup $N$ of $G$, we see that $G$ has a unique minimal normal subgroup of $G$. In particular, $F(G)$ is a $p$-group for some prime $p \in \pi(G)$.

Suppose first that $p=2$ and let $X=O(A)$ and $Y=O(B)$ be the maximal normal subgroups of odd order in $A$ and $B$. Since the group $G$ is soluble there exists a Hall $2^{\prime}$-subgroup $H=X Y=Y X$ of $G$ (see [6], Chapter VI, Satz 4.8, p. 676). By Lemma 2.2 we have $\left[X^{G}, Y^{G}\right]=1$, or $O(G) \neq 1$. As $p=2$, and $O(G)=1$ it follows that $X=1$, or $Y=1$. Therefore the Hall $2^{\prime}$-subgroup $H$ of $G$ is cyclic. Without loss of generality we may assume that $Y=1$, so that $B$ is a metacyclic 2-group and $H=O(A)$. Let $\sigma=\pi(G) \backslash\{2\}$ and denote by $L$ the subgroup $O_{\sigma^{\prime}, \sigma}(G)$. Clearly, $L / F(G)=F(G / F(G))$ is the Fitting subgroup of $G / F(G)$. By [6], Chapter III, Satz 4.2 b) it follows that $C_{G / F(G)}(L / F(G)) \leqslant L / F(G)$. Since the Hall $\sigma$-subgroup $H$ of $G$ is cyclic, this implies that $H \simeq L / F(G)$ and $G / L \leqslant A u t(H)$ is an abelian group. Therefore the derived length of $G / F(G)$ does not exceed 2. Since $F(G)$ is a subgroup of the Sylow 2-subgroup of $G$, which is a product of two dihedral subgroups, we obtain by Lemma 2.3 that the derived length of $F(G)$ does not exceed 5 . Hence the derived length of $G$ is at most 7, as claimed.

Now let $p>2$. Then the $p$-group $F(G)$ is contained in a Sylow $p$-subgroup of $G$. Since $G$ is a product of two dihedral groups, a Sylow $p$-subgroup of $G$ is metacyclic. Thus $F(G)$ is a cyclic or a metacyclic group. In particular, $F(G) / \Phi(F(G))$ is of order $p$ or $p^{2}$. The group $G / F(G)$ is a subgroup of the automorphism group of $F(G)$, having no normal $p$-subgroups. It follows from [6], Chapter III, Sätze 3.17 and 3.18 , pp. 274-275, that $G / F(G)$ is isomorphic to a soluble subgroup of the group $G L_{2}(p)$. By a theorem of Dickson the derived length of $G / F(G)$ does not exceed 4 (see [6], Chapter II, Satz 8.27, pp. 213-214). Therefore the derived length of $G$ in this case is at most 6 . The lemma is proved.

Remark 2.5. It was shown in [4] that there exists a finite 2 -group $G=A B$ with derived length 3 , which is a product of two dihedral subgroups.

## 3. The counterexample

From now on we consider a counterexample $G=A B$ for Theorem 1.1. Thus $G=A B$ with periodic locally dihedral subgroups $A$ and $B$. Then $A=A_{0}\langle c\rangle, B=B_{0}\langle d\rangle$ for two involutions $c \in A \backslash A_{0}$ and $d \in B \backslash B_{0}$, with cac $=a^{-1}$ for each $a \in A_{0}$ and $d b d=b^{-1}$ for each $b \in B_{0} ; A_{0}$ and $B_{0}$ are locally cyclic normal subgroups of $A$ resp. B. It follows from Lemma 2.1 and Itô's theorem that both subgroups $A$ and $B$ are non-abelian.

Lemma 3.1. We may assume that $G$ has no nontrivial soluble normal subgroups.
Proof. Assume that $N \neq 1$ is a soluble normal subgroup of $G$. Then $R=N A=A(N A \cap B)$ by Dedekind's modular law. Also $R$ is a soluble group and so locally finite. Clearly, if $L$ is a finite normal subgroup of $A$ and $S$ is a finite normal subgroup in $R \cap B$, it follows from [1], Lemma 2.2, that $K=N_{R}(\langle L, S\rangle)=(K \cap A)(K \cap B)$, moreover $H=\langle L, S\rangle$ is finite. Therefore the finite group $K / C_{K}(H)$ is the product of two subgroups of dihedral groups. From Lemma 2.4 we conclude that $\left(K / C_{K}(H)\right)^{(7)}=1$. Since $H \cap C_{K}(H)=Z(H)$ this implies that $H^{(8)}=1$. Let $R_{0}=\left\langle A_{0}, R \cap B_{0}\right\rangle$. Since $\left|R: R_{0}\right| \leqslant 4$, it follows that $R^{(9)}=1$. In particular, $N$ is of derived length at most 9 . Therefore the product $T$ of all soluble normal subgroups of $G$ is a soluble group of derived length at most 9 .

Now $G / T=(A T / T)(B T / T)$ is likewise the product of two periodic locally dihedral subgroups and $G / T$ has no proper soluble normal subgroups. This proves the lemma.

Lemma 3.2. $A_{0} \cap B=1=A \cap B_{0}$.

Proof. Assume that $A \cap B_{0}=D \neq 1$. Clearly $D$ is normal in $B$ and since $A_{G}=\bigcap_{g \in G} A^{g}=\bigcap_{b \in B} A^{b}$ contains $D$, the group $A_{G}$ is a non-trivial soluble normal subgroup of $G$. This contradicts Lemma 3.1. Similarly, also $A_{0} \cap B=1$. The lemma is proved.

## 4. The special case $A \cap B=\langle c\rangle$

We exclude first the special case when $A \cap B=\langle c\rangle$, where $A=A_{0}\langle c\rangle$ as defined above. This implies that $A B_{0}=A_{0} B=G$. For the brevity of notation we call this group a $\Sigma$-group.

As in [1] we denote by $C_{H}^{*}(x)=\left\{y \in H \mid x^{y}=x^{ \pm 1}\right\}$ the extended centralizer of the element $x$ in the group $H$. Set also $H^{\#}=H \backslash\{1\}$.

Lemma 4.1. Let $G=A B$ be a $\Sigma$-group. Then $C_{G}^{*}(a) \leqslant A$ for every $a \in A_{0}^{\#}$ and $C_{G}^{*}(b) \leqslant B$ for every $b \in B_{0}^{\#}$.
Proof. Let $a \in A_{0}^{\#}$ and $C_{G}^{*}(a)=A B_{1}=K$ for $1<B_{1} \leqslant B_{0}$. Then $M=K_{G}=\bigcap_{g \in G} K^{g}=\bigcap_{b \in B} K^{b}$ contains $B_{1}$. By Dedekind's law $M=A_{1} B_{1}$ for some $A_{1} \leqslant A$. If $A_{1}$ is abelian, then $M$ is metabelian by Itô's theorem. This contradicts Lemma 3.1. Hence $A_{1}$ is non-abelian. But in this case $A^{2} \leqslant M$, so that $G / M$ is a product of an abelian group $A M / M$ of order dividing 4 and an abelian group $B_{0} M / M$. Therefore $G / M$ is soluble. Obviously $a \in C_{G}\left(M^{\prime}\right)$, so that $C_{G}\left(M^{\prime}\right) \neq 1$. If $a \in C_{G}\left(M^{\prime}\right) \cap M^{\prime}$, then $Z\left(M^{\prime}\right)=C_{G}\left(M^{\prime}\right) \cap M^{\prime}$ is a non-trivial soluble normal subgroup of $G$. If $C_{G}\left(M^{\prime}\right) \cap M^{\prime}=1$, then $C_{G}\left(M^{\prime}\right)$ is isomorphic to a subgroup of $G / M^{\prime}$, which is soluble by the above. In both cases we have a contradiction by Lemma 3.1. The case, when $C_{G}(b) \neq B$ for some $b \in B_{0}^{\#}$ is treated similarly. The lemma is proved.

Lemma 4.2. Let $G=A B$ be a $\Sigma$-group. Then $O_{2}\left(A_{0}\right)=1=O_{2}\left(B_{0}\right)$.

Proof. Suppose that $O_{2}\left(B_{0}\right) \neq 1$. Then there exists an involution $v \in O_{2}(B) \cap Z(B)$. It follows from $G=A_{0} B_{0} \cup A_{0} c B_{0}$ that for $a \in A_{0}$ the element vac can be expressed in one of the forms: $v a c=a_{1} y$, or $v a c=a_{1} c y$ with $a_{1} \in A_{0}, y \in B_{0}$. If $v a c=a_{1} y$, then $v=a_{1} y a c$ is an involution. This implies that $y$ is inverted by $a c a_{1}=c a^{-1} a_{1} \in A$. By Lemma 4.1 it follows that $a_{1}=a$. Hence $a^{-1} v a \in B$. If $v a c=$ $a_{1} c y$, then vacy $y^{-1}=a_{1} c$ is an involution and the element $y^{-1} v$ is inverted by the involution $a c$. By Lemma 4.1 this is possible only when $a=1$ or $y=v$. In this case $v a c=a_{1} c v$, which implies $v a=a_{1} v$. Therefore $a_{1}, a_{1}^{v} \in A_{0}$, thus $\left(a_{1} a_{1}^{v}\right)^{v}=a_{1}^{v} a_{1}=a_{1} a_{1}^{v}$, so that $v \in C_{B}^{*}\left(a_{1} a_{1}^{v}\right)$. Then, by Lemma 4.1, $a_{1} a_{1}^{v}=1$ and $a_{1}^{v}=a_{1}^{-1}$. Again by Lemma 4.1 this implies $a_{1}=1$, which is not true. Hence the only possibility is that $\nu^{a} \in B_{0}$ for each $a \in A_{0}$, a contradiction. Therefore $O_{2}\left(B_{0}\right)=1$. By symmetry, $O_{2}\left(A_{0}\right)=1$. The lemma is proved.

Lemma 4.3. Every $\Sigma$-group is soluble.

Proof. Assume there exists a nonsoluble $\Sigma$-group $G$. Then by Lemma 4.2 we have $O_{2}\left(A_{0}\right)=$ $O_{2}\left(B_{0}\right)=1$. It follows that $C_{G}(c)=C_{A}(c) C_{B}(c)=\langle c\rangle$. We prove that $A_{0} B_{0}$ is a subgroup.

Assume that for some $a \in A_{0}, b \in B_{0}$ we have $b a=a_{1} b_{1} c$ with $a_{1} \in A_{0}, b_{1} \in B_{0}$. Then the element $a_{1}^{-1} b a=b_{1} c$ is an involution. Hence $b a a_{1}^{-1}=b a_{2}$ is an involution. Thus $b a_{2}=b c c a_{2}$ is a product of two involutions. Since the involutions $b c$ and $c a_{2}$ are conjugate to $c$, this is a contradiction. Therefore $B_{0} A_{0}=A_{0} B_{0}$ is a subgroup of $G$ of index 2 . By Itô's theorem $G$ is soluble. This contradiction proves the lemma.

## 5. The general case

Let $G=A B$ be a counterexample for Theorem 1.1, $A=A_{0}\langle c\rangle$ with $c a c=a^{-1}$ for each $a \in A_{0}$, $B=B_{0}\langle d\rangle$ with $d b d=b^{-1}$ for each $b \in B_{0}, c, d$ are involutions and $A_{0}$ and $B_{0}$ are locally cyclic.

Lemma 5.1. We have $A \cap B=1$, so that no element in $A^{\#}$ is conjugate to an element in $B^{\#}$.

Proof. By Lemma 4.3 we may assume that $A \cap B=1$. If $x \in A$ is conjugate with $y \in B$ by an element $g \in G$, then $g=a b$, where $a \in A, b \in B$. Therefore $x^{g}=y$ implies that $x^{a}=y^{b^{-1}} \in A \cap B=1$.

Lemma 5.2. For every $a \in A_{0}^{\#}$ we have that $C_{G}^{*}(a) \cap B_{0}=1$ and $C_{G}^{*}(b) \cap A_{0}=1$ for every $b \in B_{0}^{\#}$.
Proof. Assume that $C_{G}^{*}(a) \cap B_{0} \neq 1$. Since $A \leqslant C_{G}^{*}(a)$ it follows that $K=C_{G}^{*}(a)=A B_{1}$ for some $B_{1} \leqslant B$ and $L=B_{0} \cap B_{1} \neq 1$. This implies that the normal subgroup $M=K_{G}=\bigcap_{g \in G} K^{g}=\bigcap_{b \in B} K^{b}$ contains $L$.

If $M \cap B_{1}$ contains an element in $B \backslash B_{0}$, then $B^{2} \leqslant M$ and $G / M=(A M / M)(B M / M)$ is a product of a locally dihedral or abelian group $A M / M$ and a group $B M / M$ of order at most 4 . Therefore $G / M$ and also $G / M^{\prime}$ is soluble. Hence $C_{G}\left(M^{\prime}\right) / Z\left(M^{\prime}\right)=C_{G}\left(M^{\prime}\right) / M^{\prime} \cap C_{G}\left(M^{\prime}\right) \simeq C_{G}\left(M^{\prime}\right) M^{\prime} / M^{\prime}$ is also soluble. Thus $C_{G}\left(M^{\prime}\right)$ is soluble. Since $a \in C_{G}\left(M^{\prime}\right)$, the group $C_{G}\left(M^{\prime}\right)$ is a non-trivial soluble normal subgroup of $G$. This contradicts Lemma 3.1.

Therefore, $M \cap B_{1} \leqslant B_{0}$. By Lemma 3.1 this is a contradiction. If $M=(A \cap M) L$ and $A \cap M \leqslant A_{0}$, then $M$ is metabelian by Itô's theorem, again a contradiction. If $A \cap M$ contains an element in $A \backslash A_{0}$, then $A^{2} \leqslant M$ and $G / M$ is soluble. This implies that either $C_{G}\left(M^{\prime}\right)$ is soluble, or $M^{\prime} \cap C_{G}\left(M^{\prime}\right)=Z\left(M^{\prime}\right)$ is non-trivial. Both cases cannot occur.

Then there is no element of $M$ in $A \backslash A_{0}$ and in $B \backslash B_{0}$. Since $M$ is not factorized, there exists an element $g \in M$ of one of the forms $g=a_{1} c b, g=a_{1} d b$ or $g=a_{1} c d b$ with $a_{1} \in A_{0}, b \in B_{0}$. Since $A$ and $B$ are locally dihedral, we can replace $c$ by $a_{1} c$ and $d$ by $d b$. Thus we may suppose that $g=c b$, $g=a_{1} d$, or $g=c d$.

If $g=a_{1} d$, then $a_{1} M=d M$ and in the factor-group $\bar{G}=G / M$, the subgroups $\bar{A}=A M / M$ and $\bar{B}=B M / M$ have a non-trivial intersection $\langle d M\rangle \leqslant \bar{A}_{0} \cap \bar{B}$. It follows that the normal closure of $d M$ in $\bar{G}$ coincides with the normal closure of $d M$ in $\bar{B}$, hence it contains $\bar{B}^{2}$. In this case $G / M$ is soluble. By the symmetry between $A$ and $B$, the same conclusion follows, when $g=c b$.

Suppose that $g=c d$. Then $c M=d M$ and $\bar{G}=G / M$ is the product of two locally dihedral subgroups $\bar{A}=A M / M$ and $\bar{B}=B M / M$ such that $\bar{A} \cap \bar{B}=\langle c M\rangle=\langle d M\rangle$. Hence $G / M$ is a $\Sigma$-group, which is soluble by Lemma 4.3. This contradiction proves the lemma.

For any group $X$ denote by $O(X)$ the largest normal subgroup of $X$ having no involutions.

Lemma 5.3. Either $A_{0}=O(A)$, or $B_{0}=O(B)$.

Proof. Assume that the lemma is false. Then there exist involutions $\tau \in Z(A)$ and $\mu \in Z(B)$. Clearly, the subgroup $D=\langle\tau, \mu\rangle$ is dihedral. By [1], Lemma 2.2 (iii) we have $H=N_{G}(D)=A_{1} B_{1}$, where $A_{1} \leqslant A, B_{1} \leqslant B$. By Lemma 3.1 it follows that $H \neq G$. Since $A_{1}$ normalizes $D$, this implies that $U=A_{1} D=A_{1} B_{2}$ for some $B_{2} \leqslant B_{1}$ is a soluble group, which is a product of two periodic soluble subgroups. By [3], Theorem 3.2.6, the group $U$ is periodic. In particular, $D$ is a finite dihedral group. Now we may use Lemma 2.12 in [1] and Lemma 5.2 to deduce that $D$ is even a dihedral group of order 8.

Since $\mu$ and $\tau$ are not conjugate, there exists an involution $\nu \in Z(D)$ different from $\tau$ and $\mu$. Clearly, $v \in C_{G}(\tau) \cap C_{G}(\mu)$. Since $C_{G}(\tau) \geqslant A$ and $C_{G}(\mu) \geqslant B$ and $A \cap B=1$, this implies that $C_{G}(\tau)>A$ or $C_{G}(\mu)>B$. Without loss of generality suppose that $F=C_{G}(\mu)>B$. By Lemma 5.2 we have $F \cap$ $A_{0}=1$ and $|F: B|=2$. Since $A$ is locally dihedral and $A=A_{0}(F \cap A)$ with $|F \cap A|=2$, we may assume without loss of generality that $F=B\langle c\rangle$ and $c=v$.

Since $B$ is normal in $F$, also the subgroup $Z(B)$ is normal in $F$. We claim that for every $a \in O(A)^{\#}$ the element $\mu^{a} \in F$. Clearly, $\mu a c \in A_{0} F=A_{0} B \cup A_{0} c B$. Hence either $\mu a c=a_{1} c b$ or $\mu a c=a_{1} b$ with $a_{1} \in A_{0}, b \in B$.

If $\mu a c=a_{1} c b$, then $\mu a c b^{-1}=a_{1} c$ is an involution. Hence $a c$ inverts $b^{-1} \mu$. If $b^{-1} \mu \in B_{0}$, then $C_{G}^{*}\left(b^{-1} \mu\right)$ contains $a c$. Then $C_{G}^{*}\left(b^{-1} \mu\right)=F_{1} \geqslant B$ and by Lemma 5.2 it follows that $\left|F_{1}: B\right|=2$. Therefore $B^{\prime}=B_{0}^{2}$ is normal in $F_{2}=\left\langle F, F_{1}\right\rangle=A_{2} B$, where $A_{2} \leqslant A$. Clearly, $F_{2}$ is soluble. If $c \neq a c$, then $A_{2}$
contains $a \in A_{0}^{\#}$ and $A F_{2}=G$ with $a, c \in A \cap F_{2}$. The normal closure in $G$ of the subgroup $A_{0} \cap F_{2}$ is a subgroup of $F_{2}$. By Lemma 3.1 this is a contradiction. Hence $a c=c$, or $b=\mu$. Since $a \neq 1$ by the choice of $a$, this means that $\mu=b$.

Thus $\mu a c=a_{1} c \mu=a_{1} \mu c$, which forces $\mu a=a_{1} \mu$. Hence $a \in A_{0} \cap A_{0}^{\mu}$ and $C_{G}^{*}\left(a_{0}\right)$ for some $a_{0} \in$ $A_{0} \cap A_{0}^{\mu}$ contains $\mu \in B_{0}$. By Lemma 5.2 this is a contradiction.

Now $b \in B \backslash B_{0}$ is an involution. Then $b=a_{1} c \mu a c$ implies that $\mu a c a_{1} c \mu=\mu a a_{1}^{-1} \mu=a^{-1} a_{1}$. By Lemma 5.2 this means that $a_{1}=a$. Hence $\mu^{a}=c b c \in F$, as claimed.

Assume that $\mu a c=a_{1} b$. Then $\mu=a_{1} b a c$ is an involution. Therefore $a c a_{1}=a^{-1} a_{1} c$ inverts $b$. If $b \in B_{0}$, then $a=a_{1}$ and again $\mu^{a}=b c \in F$. Suppose that $b \in B \backslash B_{0}$. Then $b$ is an involution and $a_{1}^{-1} \mu a c$ is an involution. This implies that $a c a_{1}^{-1}=a a_{1} c$ inverts $\mu$. By Lemma 5.2 this means that $a_{1}=a^{-1}$ and $\mu a c=a^{-1} b$. If $d=b \mu$ then $\mu a c \mu=a^{-1} d$ is an involution. Since $d=b \mu$ is an involution, $d$ inverts $a$.

In this case $L=C_{G}^{*}(a)=A(L \cap B)$, where $L \cap B=\langle d\rangle$ with $d \in B \backslash B_{0}$. Observe that the involution $\mu(a c) \mu$ is conjugate to $a c$. Since $a$ is of odd order, this means that $a c$ is conjugate with $c$. On the other hand, $a^{-1} d$ is an involution, which is conjugate to $d$. Therefore $c$ and $d$ are conjugate, which is impossible.

Hence for every $a \in O\left(A_{0}\right)$ it follows that $\mu^{a} \in F$. This implies that the subgroup $R=\left\langle\mu^{O(A)}\right\rangle$ is an $O(A)$-invariant subgroup of $F$. From the structure of $F=B\langle c\rangle=\left(B_{0}\langle d\rangle\right)\langle c\rangle$ we conclude that $R$ is elementary abelian of order at most 8 . Since no element in $O(A)^{\#}$ centralizes $\mu$, it follows that $O(A)$ is finite. Since $A_{0}$ is locally cyclic with finite subgroup $O(A)$, this means that $O_{2}(A)$ and $A$ are Chernikov groups.

Since $A$ is infinite, this implies that $O_{2}(A)$ is quasicyclic. Therefore there exists $a_{0} \in O_{2}(A)$ such that $a_{0}^{2}=\tau$ and $a_{0} \in N_{G}(\langle\tau, c\rangle)$. Recall that $c \in Z(\langle\tau, \mu\rangle)$ and $D=\langle\tau, \mu\rangle$ is dihedral of order 8 . The subgroup $S=\left\langle a_{0}, \mu\right\rangle$ normalizes $D$ and is a proper subgroup of $G$. Since $D$ is normal in $S=\left\langle a_{0}, \mu\right\rangle$, also $\langle c\rangle=Z(D)$ is normal in S. But $a_{0}^{c}=a_{0}^{-1}$, a contradiction. The lemma is proved.

## 6. Proof of Theorem 1.1

Let $G=A B$ be a counterexample for Theorem 1.1, $A=A_{0}\langle c\rangle$ with $c a c=a^{-1}$ for each $a \in A_{0}$, $B=B_{0}\langle d\rangle$ with $d b d=b^{-1}$ for each $b \in B_{0}$, where $c, d$ are involutions, $A_{0}$ and $B_{0}$ are locally cyclic.

Lemma 6.1. If $C_{A}^{*}(b)=1$ for every $b \in B_{0}^{\#}$, then there exist involutions $c_{1} \in A \backslash A_{0}$ and $d_{1} \in B \backslash B_{0}$ such that $c_{1} d_{1}=d_{1} c_{1}$. Moreover, if $d$ and $c$ do not commute, then either $d c=a c b$ or $d c=a d b$ for $a \in A_{0}, b \in B_{0}$.

Proof. Assume that $d c \neq c d$. If $d c=a b$ with $a \in A_{0}, b \in B_{0}$, then $c d c=c a b$ is an involution. Hence $b$ is inverted by $c a$, which is a contradiction. If $d c=a c d b$ with $a \in A_{0}, b \in B_{0}$, then $d c d=a c d b d=a c b^{-1}$ and $b$ is inverted by $a c$, which is not the case. Hence either $d c=a c b$ or $d c=a d b$ with $a \in A_{0}, b \in B_{0}$. In the first case $d c d=a c b d$ is an involution and $b d$ is an involution. The product of two involution is an involution only, when they commute. Hence we may replace ac by $c_{1}$ and $b d$ by $d_{1}$, obtaining the required conclusion $c_{1} d_{1}=d_{1} c_{1}$. The case $d c=a d b$ is treated similarly. The lemma is proved.

Lemma 6.2. Either $C_{A}^{*}(b) \neq 1$ for some $b \in B_{0}^{\#}$ or $C_{B}^{*}(a) \neq 1$ for some $a \in A_{0}^{\#}$.
Proof. Suppose that $C_{A}^{*}(b)=C_{B}^{*}(a)=1$ for every $a \in A_{0}^{\#}$ and $b \in B_{0}^{\#}$. By Lemma 6.1 we may assume that there exist involutions $c \in A \backslash A_{0}, d \in B \backslash B_{0}$ such that $c d=d c$.

We prove first that for every $a \in A_{0}^{\#}$ we have dac= $a^{-1} d b$ for some $b \in B_{0}$. Also, for every $b \in B_{0}^{\#}$ we have $d b c=a c b^{-1}$.

If $d$ and $a c$ commute, then $d a c=a c d$ implies that $d a=a d$, which is not the case. By Lemma 6.1 it follows that $d a c=a_{1} c b$ or $d a c=a_{1} d b$ for some $a_{1} \in A_{0}, b \in B_{0}$. Assume that $d c a^{-1}=d a c=a_{1} c b$. This implies that $d c=a_{1} c b a$ is an involution. Hence $a a_{1} c$ inverts $b$. Since $b \neq 1$, this is a contradiction. Therefore $d a c=a_{1} d b$. Since $d b$ is an involution, $a_{1}^{-1} d a c$ is an involution and $d$ commutes with $a a_{1} c$. This is only possible when $a a_{1}=1$, so that dac $=a^{-1} d b$, as required. Moreover, dacd $=a^{-1} b^{-1}$ and the element $a^{-1} b^{-1}$ is an involution in $A_{0} B_{0}$, as claimed.

The equality $d b c=a c b^{-1}$ holds by the symmetry between $A$ and $B$.
Let $a^{-1} b^{-1}$ be an involution, where $a \in A_{0}, b \in B_{0}$. By what was proved above such an involution exists. Consider the element $d c a^{-1} b^{-1}=d(a c) b^{-1}=(d a c) b^{-1}$. It follows from the above considerations that $d a c=a^{-1} d b_{1}$ for some $b_{1} \in B_{0}$. Since dacd $=a^{-1} b_{1}^{-1}$ is also an involution, we obtain that $a b=b^{-1} a^{-1}$ and $a b_{1}$ are involutions. Since $b^{-1} a^{-1} a b_{1}=b^{-1} b_{1}$ is a product of the involutions $a b$ and $a b_{1}=b_{1}^{-1} a^{-1}$, we conclude that $b^{-1} b_{1}$ is inverted by $b^{-1} a^{-1}$ and thus by $a^{-1}$. Hence $C_{A_{0}}^{*}\left(b^{-1} b_{1}\right) \neq 1$. By Lemma 5.2 this means that $b_{1}=b$. Therefore $d a c=a^{-1} d b$ and

$$
d c a^{-1} b^{-1}=\left(d c a^{-1}\right) b^{-1}=(d a c) b^{-1}=a^{-1} d b b^{-1}=a^{-1} d
$$

On the other hand, $d b c=a c b^{-1}$, which implies

$$
d c a^{-1} b^{-1}=d a c b^{-1}=d\left(a c b^{-1}\right)=d(d b c)=b c .
$$

Hence $a^{-1} d=b c$ and $a^{-1} c=b d \in A \cap B$. By Lemma 4.3 this is a contradiction. The lemma is proved.

Lemma 6.3. If $C_{B}^{*}(a) \neq 1$ for some $a \in A_{0}^{\#}$, then $B_{0}$ contains no involutions.
Proof. Suppose that $C_{B}^{*}(a) \neq 1$ for some $a \in A_{0}^{\#}$. By Lemma 5.2 we have $C_{G}(a)^{*} \cap B_{0}=1$. Since $F=$ $C_{G}^{*}(a)$ contains $A$, it follows that $F=A(F \cap B)$ and $F \cap B$ is of order 2 . But every element $y \in B \backslash B_{0}$ is an involution. By Lemma 5.3 either $A_{0}$ or $B_{0}$ contain no involutions. If $A_{0}=O\left(A_{0}\right)$, then we may choose an element $c \in A \backslash A_{0}$ commuting with $y \in F \cap B$, so that we may take $y \in F \cap B$ as $d$. If $B_{0}=O\left(B_{0}\right)$, then all involutions in $B$ are conjugate and we may take $y$ as $d$.

Assume that $B_{0}$ contains an involution $\nu$. Recall that $B$ is locally dihedral. Since $F \cap B=\langle d\rangle$ and $G=A B=F B$, it follows from Lemma 2.2(i) in [1] that $E=C_{G}(d)=C_{F}(d) C_{B}(d)=C_{A}(d)\langle d, \nu\rangle$. Assume that $C_{A_{0}}(d)>1$. Then $E \cap F=(E \cap A)\langle x\rangle$ is normal in $E$, but $E \cap A_{0}$ has index 2 in $E \cap F$, so that $1 \neq C_{A_{0}}(d)=E \cap A_{0}=O\left(E \cap A_{0}\right)$ is normal in $E$. Therefore $C^{*}\left(a_{1}\right) \cap B_{0}$ contains $v$ for some $a_{1} \in$ $\left(E \cap A_{0}\right) \backslash 1$, contradicting Lemma 5.2. Therefore $C_{A_{0}}(d)=1$.

This means that $d$ inverts every element in $A_{0}$, so that $c d$ centralizes $A_{0}$. Now $G=A B=A F=$ $\left\langle A_{0}, c d\right\rangle\langle d\rangle B$ with locally dihedral subgroups $F$ and $B$ having an intersection $\langle d\rangle$, i.e. $G$ is a $\Sigma$-group. By Lemma 4.3 this is a contradiction. Hence $B_{0}$ contains no involutions. The lemma is proved.

From now on we assume that $F=C_{G}^{*}\left(a^{\prime}\right) \neq A$ for some $a^{\prime} \in A_{0}^{\#}$. By what was proved above $F=$ $A\langle d\rangle$ and $B_{0}=O(B)$.

Lemma 6.4. $O(A)=A_{0}$.
Proof. Assume that $\mu$ is an involution in $A_{0}$. Obviously, $\mu \in Z(A)$. Since $|F: A|=2$ and $A$ is normal in $F$, we may assume that $\mu \in Z(F)$. Since $G=F B_{0}$, we have that $G=A B_{0} \cup A d B_{0}$. Therefore for every $b \in B_{0}^{\#}$ either $d b \mu=a d b_{1}$ or $d b \mu=a b_{1}$ with $a \in A, b_{1} \in B_{0}$. We prove that $b^{-1} \mu b \in F$ for every $b \in B$.

Indeed, if $d b \mu=a b_{1}$, then $\mu=d b a b_{1}$. By Lemma 3.2 we have $a \neq 1$. It follows that $b_{1} d b=b_{1} b^{-1} d$ inverts $a$. If $a \in A_{0}$, then $b_{1}=b$ and $d b \mu=a b$. This implies that $b \mu b^{-1}=d a \in F$.

Assume that $a=b^{-1} d \mu b_{1}^{-1}$ is an involution. Then $b_{1}^{-1} d b \mu$ is also an involution. It follows that $b_{1}^{-1} b^{-1} d \mu=\mu b^{-1} b^{-1} d$ and so $b_{1}=b^{-1}$. Hence $d b \mu=a b^{-1}$ and so $a b^{-1} \mu=d b$ is an involution. Therefore $a b^{-1} \mu a b^{-1} \mu=1$. Thus $\mu a$ inverts $b$, a contradiction. Hence $a$ is not an involution and $b \mu b^{-1} \in F$.

Assume now that $b d \mu=a d b_{1}$. Then $a^{-1} b d \mu=d b_{1}$ is an involution and bd inverts $a^{-1} \mu$. If $a^{-1} \mu \in A_{0}^{\#}$, then $b=1$, a contradiction. Suppose that $\mu=a$. Then $b \mu d=b d \mu=\mu d b_{1}=\mu b_{1}^{-1} d$ implies $b \mu=\mu b_{1}$. Hence $b \in B_{0} \cap B_{0}^{\mu}$. By Lemma 5.2 this is a contradiction. Therefore $a^{-1} \mu \in A \backslash A_{0}$ is
an involution. Note that in the case $a$ is also an involution. On the other hand, $b d \mu=b \mu d=a b_{1}^{-1} d$ and $b \mu=a b_{1}^{-1}$. Hence $b \mu b_{1}$ is an involution and $\mu$ inverts $b_{1}^{-1} b$. This implies that $b=b_{1}$ and $b \mu b^{-1} \in A \leqslant F$.

Hence $\left\langle\mu^{B_{0}}\right\rangle$ is a $B_{0}$-invariant subgroup of $F$. This contradiction proves the lemma.
Lemma 6.5. $C_{G}(b) \leqslant B$ for every $b \in B_{0}^{\#}$.
Proof. Since $O(A)=A_{0}$ and $O(B)=B_{0}$, we have that $A=A_{0}\langle c\rangle$ and $B=B_{0}\langle d\rangle$. Since $C_{G}^{*}(a)=F=$ $A\langle d\rangle$ by Lemma 6.3 and $O(A)=A_{0}$, it follows that all Sylow 2-subgroups in $F$ of order 4 are conjugate and we may choose $c \in A \backslash A_{0}$ and $d \in B \backslash B_{0}$ so that $c d=d c$. If $L=C_{A}(b)^{*} \neq 1$, then $A=A_{0} L$ with $L$ of order 2. Since $C_{G}^{*}(b) \cap F$ contains $d$ and $F=A_{0}\langle c, d\rangle$, and every element in $A \backslash A_{0}$ inverts the elements in $A_{0}$, we may assume that $S=\langle c, d\rangle=F \cap C_{G}^{*}(b)$. It is obvious that $C_{A_{0}}(c)=C_{B_{0}}(d)=1$. If $C_{A_{0}}(d)=1$, then $c d$ centralizes $A_{0}$. Since $G=A B=A_{0}\langle c d\rangle\left(B_{0} S\right)$ and $c d \in\left(A_{0}\langle c d\rangle\right) \cap\left(B_{0} S\right)$ it follows that $(c d)^{G} \leqslant \bigcap_{g \in G}\left(B_{0} S\right)^{g}=\bigcap_{x \in A_{0}\langle c d\rangle}\left(B_{0} S\right)^{x}$. Hence $G$ has a non-trivial normal soluble subgroup, a contradiction. A similar assertion holds for $C_{B_{0}}(c)$.

Therefore, we may assume that $C_{A_{0}}(d) \neq 1 \neq C_{B_{0}}(c)$. Also $C_{A_{0}}(c d) \neq 1 \neq C_{B_{0}}(c d)$. It follows from [1], Lemma 2.2(ii) that $C_{G}(c d)=C_{A}(c d) C_{B}(c d)$. Since $C_{G}(c d) /\langle c d\rangle=X Y$ with locally dihedral subgroups $X$ and $Y$ such that $X \cap Y=S /\langle c d\rangle$, it follows that $C_{G}(c d) /\langle c d\rangle$ is a $\Sigma$-group. By Lemma 4.3 the group $R=C_{G}(c d)=(A \cap R)(B \cap R)$ is a soluble group.

Recall that the groups $A_{0} \cap R$ and $B_{0} \cap R$ are periodic and locally cyclic. Since $A_{0} \cap R$ and $B_{0} \cap R$ are permutable, it follows that $R_{0}=\left(A_{0} \cap R\right)\left(B_{0} \cap R\right)$ is a group with minimum condition for $p$-subgroups for every prime $p$ (see [11], Theorems 3.5 and 3.2). There exists a non-trivial normal subgroup $L$ of $R_{0}$ contained in $A_{0} \cap R$, say (see [11] or [3], Theorem 7.1.2). Clearly, we may assume that $L$ is finite, so that also $\left|R_{0}: C_{R_{0}}(L)\right|$ is finite. In particular, there exists a non-trivial element $x \in L$ such that $C_{A_{0}}(x) \neq 1 \neq C_{B_{0}}(x)$. This contradicts Lemma 5.2. The lemma is proved.

Lemma 6.6. For every $b \in B_{0}^{\#}$ there exists $a \in A_{0}^{\#}$ such that $c b c=d a b^{-1}$.
Proof. We have

$$
G=A_{0} B_{0} \cup A_{0} c B_{0} \cup A_{0} d B_{0} \cup A_{0} c d B_{0}
$$

Hence we consider the following four cases.
(1) If $d b c=a b_{1}$, then $d b=a b_{1} c$. Hence $c a$ inverts $b$, which is impossible.
(2) If $d b c=a d b_{1}$, then $b^{-1} c d=a b_{1}^{-1} d$. It follows that $b^{-1} c d=a b_{1}^{-1} d$ and $c d=b a b_{1}^{-1} d$. Hence $b_{1}^{-1} d b=$ $d b_{1} b$ inverts $a$. Since $a \neq 1$, it follows that $b_{1}=b^{-1}$ and thus $d b c=a d b^{-1}=a b d$. This implies that $b^{-1}(d c) b=a c$, so that $d c$ is conjugate with $c$. On the other hand, $G=\left(A_{0}\langle c, d\rangle\right) B_{0}=\left(A_{0}\langle d c\rangle\right) B$ and $A_{0}\langle d c\rangle \cap B=1$. Hence $d c$ and $d$ are not conjugate.
(3) If $d b c=a c d b_{1}$, then $c d b c=c a c d b_{1}=a^{-1} d b_{1}$ is an involution. Hence $d b_{1}$ inverts $a$, which is possible only when $b_{1}=1$ or $a=1$. In the first case $c d b=a^{-1} d$ and $c b^{-1}=a^{-1}$. This means that $b \in F$, a contradiction. If $d b c=c d b_{1}$, then $c b=b_{1} c$ and $b \in B_{0} \cap B_{0}^{c}$, which is possible only when $b=b_{1}=1$.
(4) If $d b c=a c b_{1}$, then $d b c b_{1}^{-1}=a c$ is an involution. Hence $c d b_{1} b c=c b_{1}^{-1} d b c=b_{1}^{-1} d b=d b_{1} b$. Since $c d=d c$, we have that $c\left(b_{1} b\right) c=b_{1} b$. This implies that $b_{1}=b^{-1}$ and $d b c=a c b^{-1}$. It follows that $b^{-1}(d c) b=d b c b=a c$. Hence $c$ is conjugate with $d c$.

It follows that $d c b c=c d b c=c a c b^{-1}$ and $c b c=d a^{-1} b^{-1}$. Since $d c b c=c b^{-1} c d$, we have also $c b^{-1} c=$ $a^{-1} b^{-1} d$. Replacing $a$ by $a^{-1}$, we obtain $c b c=d a b^{-1}$, as required. The lemma is proved.

Now we can finish the proof of Theorem 1.1.
Let $b \in B_{0}$ be an element of order at least 5. By Lemma 6.6 for every $b \in B_{0}$ we have $c b c=d a b^{-1}$ with some $a \in A_{0}$. Hence $c b^{-1} c=d a_{1} b$ with $a_{1} \in A_{0}$. Since $a b^{-1}$ is conjugate with $d b$, this is an
involution. Similarly $a_{1} b$ is an involution. Hence $b a_{1}$ is an involution and $a a_{1}=a b^{-1} b a_{1}$ is a product of two involutions. Therefore $a a_{1}$ is inverted by $a b^{-1}$ and so by $b^{-1}$. Thus either $a a_{1}=1$ or we have that $b^{-1} \in C_{G}^{*}\left(a a_{1}\right) \cap B_{0}=1$ by Lemma 5.2 and $b=1$, a contradiction. Hence $a a_{1}=1$ and $c b^{-1} c=d a^{-1} b$.

Obviously, $(c b c)^{2}=d a_{2} b^{-2}$ for some $a_{2} \in A_{0}$. On the other hand,

$$
(c b c)^{2}=\left(c d b^{-1} c\right)(c d b c)=a^{-1} b a b^{-1}=(c b c)(c b c)=d a b^{-1} d a b^{-1} .
$$

It follows that $a^{-1} b=d a b^{-1} d=d a d b$. This implies $d a d=a^{-1}$. Hence $(c b c)^{2}=a^{-1} b a b^{-1}=d a_{2} b^{-2}$. Therefore $d a^{-1} b a=a_{2} b^{-1}$ and $a^{-1} b^{-1} a d=a_{2} b^{-1}$. Thus $a^{-1}\left(a_{2}^{-1} b^{-1}\right) a=b^{-1} d$ is an involution. In this case $a_{2}^{-1} b^{-1}$ is also an involution. Recall that $a b^{-1}$ is an involution. As above, this implies that $a_{2}=a^{-1}$.

However, $a_{2} b^{-2}=a^{-1} b^{-2}$ is an involution. Since $b^{3} \neq 1$, the element $b^{-1} a a^{-1} b^{-2}=b^{3}$ is inverted by $b a^{-1}$ and thus by $a^{-1}$. Then $a^{-1} \in C_{G}^{*}\left(b^{3}\right) \cap A_{0}=1$ by Lemma 5.2 , a contradiction. Hence $B_{0} \cap B_{0}^{a^{-1}}$ contains $b^{3}$. By Lemma 6.5 this is a contradiction. The theorem is proved.

## References

[1] B. Amberg, L. Kazarin, On the product of two Chernikov subgroups, Israel J. Math. 175 (2010) 363-389.
[2] B. Amberg, L. Kazarin, Periodic groups saturated by dihedral groups, in: Proceedings Ischia Group Theory Conference, 2010.
[3] B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Clarendon Press, Oxford Univ. Press, Oxford, 1992.
[4] B. Amberg, Ya. Sysak, Local nearrings with dihedral multiplicative group, J. Algebra 273 (2004) 700-717.
[5] B. Amberg, Ya. Sysak, Products of two groups containing cyclic subgroups of index at most 2, Arch. Math. 90 (2008) 101111.
[6] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[7] L.S. Kazarin, Soluble products of groups, in: Infinite Groups 94, Walter de Gruyter, Berlin, New York, 1995, pp. 111-123.
[8] L.S. Kazarin, A. Martinez-Pastor, M.D. Perez-Ramos, On the product of two $\pi$-decomposable soluble groups, Publ. Math. 53 (2009) 439-456.
[9] O. Kegel, B.A.F. Wehrfritz, Locally Finite Groups, North-Holland, 1973.
[10] V.S. Monakhov, The product of two groups, one of which contains a cyclic subgroup of index $\leqslant 2$, Math. Notes 16 (1974) 757-762.
[11] D.I. Zaicev, Products of abelian groups, Algebra Logika 19 (1980) 150-172.


[^0]:    * Corresponding author.

    E-mail addresses: amberg@mathematik.uni-mainz.de (B. Amberg), af@sun.ac.za (A. Fransman), kazarin@uniyar.ac.ru (L. Kazarin).

    1 The third author wishes to express his gratitude to the Department of Mathematics of the University of Mainz for its warm hospitality during the time when this research was done. He also would like to thank the Deutsche Forschungsgemeinschaft and the RFBR (project 10-01-00324) for financial support.

