JOURNAL OF ALGEBRA 1, 5-10 (1964)

# Matrices C with $C^n \rightarrow 0^*$

## Olga Taussky

Department of Mathematics, California Institute of Technology, Pasadena, California

Communicated by Marshall Hall

Received September 30, 1963

#### 1. Introduction

Matrices with  $C^n \to 0$  are of interest in many iteration processes. They have also been studied in connection with topological algebra. Here a "canonical form" is derived for them by using a characterization obtained by P. Stein. Such matrices are closely connected with stable matrices A, i.e., matrices for which the real parts of the characteristic roots are negative. A theorem by Lyapunov characterizing stable matrices is closely linked with Stein's theorem. This link is studied here and used to derive the "canonical form". We also study classes of matrices K such that if  $C^n \to 0$  then  $(KC)^n \to 0$ .

A. S. Householder and R. S. Varga had previously noticed some connection between Lyapunov's and Stein's theorems and kindly communicated this to me.

### 2. The Connection between Lyapunov's and P. Stein's Theorems

We begin by stating these theorems as Theorems 1 and 4. All matrices considered are  $n \times n$  matrices with complex elements. The class of positive definite hermitian matrices will be denoted by  $\Pi$ . The class of negative definite hermitian matrices by N.

Theorem 1 (Lyapunov's theorem; see [1, 2]). A matrix A is stable if and only if a  $G \in \Pi$  can be found such that

$$AG + GA^* = -I. (1)$$

<sup>\*</sup> This work was carried out (in part) under a grant of the National Science Foundation.

6 Taussky

Proofs for this theorem can be found in [3, 4, 8]. A slightly weaker form of the theorem is as follows:

Theorem 2. A matrix A is stable if for some  $G_1 \in N$  a  $G \in \Pi$  can be found such that

$$AG + GA^* = G_1. (2)$$

*Proof.* We may put  $G_1 = -RR^*$  where R is a nonsingular matrix. This implies  $R^{-1}AR \cdot R^{-1}GR^{*-1} + R^{-1}GR^{*-1} \cdot R^*A^*R^{*-1} = -I$ . We observe that

- ( $\alpha$ )  $R^{-1}AR$  has the same characteristic roots as A;
- (β)  $R^{-1}GR^{*-1}∈Π$ ;
- $(\gamma) R^*A^*R^{*-1}$  is the \*-map of  $R^{-1}AR$ .

It follows from Theorem 1 that  $R^{-1}AR$  and hence also A is stable.

THEOREM 3. If A is stable then (2) can be solved with  $G \in \Pi$  for every  $G_1 \in N$ .

*Proof.* Again put  $G_1 = -RR^*$  with R nonsingular. Since  $R^{-1}AR$  is stable the equation

$$R^{-1}AR \cdot G + G \cdot R \cdot A \cdot R \cdot A \cdot R \cdot -1 = -I$$

can be solved with  $G \in \Pi$  by Theorem 1. Put

$$G_{\circ} = RGR^*$$
.

We then have

$$R^{-1}AR \cdot R^{-1}G_2R^{*-1} + R^{-1}G_2R^{*-1} \cdot R^*A^*R^{*-1} = -I$$

which is equivalent to

$$AG_2 + G_2A^* = -RR^* = G_1$$
.

THEOREM 4 (P. Stein [5]). The matrix C satisfies  $\lim_{n \to \infty} C^n = 0$  if and only if a matrix  $H \in \Pi$  exists such that  $H - CHC^* \in \Pi$ .

We shall now discuss the connection between Theorem 2 and Theorem 4.

LEMMA. Let C satisfy  $C^n \to 0$ . Put

$$A = (C + I)^{-1} (C - I).$$
 (3)

Let  $H \in \Pi$  be such that

$$AH + HA^* \in N. \tag{4}$$

Then for any such H we have

$$H - CHC^* \in \Pi \tag{5}$$

Conversely, let A be stable. Put

$$C = (I - A)^{-1} (I + A). (6)$$

Let  $H \in \Pi$  be such that

$$H - CHC^* \in \Pi$$
.

Then for any such H we have

$$AH + HA^* \in N$$
.

*Proof.* Since  $C^n \to 0$ , C + I is nonsingular and the transformation (3) is meaningful. Substituting from (3) in (4) we get

$$(C+I)^{-1}(C-I)H + H(C^*-I)(C^*+I)^{-1} \in N$$
  
 $(C-I)H(C^*+I) + (C+I)H(C^*-I) \in N$ 

i.e.

$$2CHC^* - 2H \in N$$

giving (5).

Conversely, if A is stable, (6) is meaningful. Substituting from (6) in (5) we get

$$H - (I - A)^{-1} (I + A) H(I + A^*) (I - A^*)^{-1} \in \Pi$$

which implies

$$(I - A) H(I - A^*) - (I + A) H(I + A^*) \in \Pi$$

i.c.,

$$-2AH-2HA*\in\Pi$$

which gives (4).

THEOREM 5. Let C satisfy  $C^n \rightarrow 0$ . Then

$$H - CHC^* = P_1$$

can be solved with  $H \in \Pi$  for every  $P_1 \in \Pi$ .

Proof. From the proof of the lemma it follows that

$$AH + HA^* = Q \tag{7}$$

8 Taussky

goes over into

$$2(H - CHC^*) = -(C + I)Q(C^* + I)$$

under the transformation  $A = (C - I)(C + I)^{-1}$ . From Theorem 3 it follows that for a suitable H any  $Q \in N$  can be represented by  $AH + HA^*$ . Hence we first construct

$$Q = -2(C + I)^{-1} P_1(C^* + I)^{-1}$$

so that

$$-(C+I)Q(C^*+I) = 2P_1$$

and then solve (7) for H with this Q.

### 3. A Canonical Form for Matrices C with $C^n \rightarrow 0$

THEOREM 6. Let  $C^n \to 0$ . Let  $H \in \Pi$  satisfy

$$H - CHC^* = 1. (8)$$

Then H has all its characteristic roots  $\geqslant 1$ .

*Proof.* By Theorem 5 a matrix  $H \in \Pi$  for which (8) is satisfied does exist. Let U be a unitary matrix such that

$$U^{-1}HU = \begin{bmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{bmatrix}.$$

Apply the similarity defined by U to (8). The equation

$$\begin{bmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{bmatrix} - E \begin{bmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{bmatrix} E^* = I \tag{9}$$

follows where

$$E = U^{-1}CU$$
.

Hence

$$\begin{bmatrix} h_1 - 1 & & \\ & \ddots & \\ & & h_n - 1 \end{bmatrix} = E \begin{bmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{bmatrix} E^*. \tag{10}$$

Since H is positive definite it follows that

$$h_i \geqslant 1, \quad i = 1, \dots, n.$$

THEOREM 7. Let  $C^n \to 0$ . Let H be the matrix  $(\in \Pi)$  of Theorem 6. Then C is unitarily similar to a matrix E such that

$$E = F \begin{bmatrix} 1/\sqrt{h_1} & \ddots & \\ & \ddots & \\ & & 1/\sqrt{h_n} \end{bmatrix}$$

where

$$FF^* = \begin{bmatrix} h_1 - 1 & & \\ & \ddots & \\ & & h_- - 1 \end{bmatrix}.$$

*Proof.* This follows immediately from the proof of Theorem 6.

### 4. Matrix Factors which Preserve Convergence

THEOREM 8. Let  $C^n \to 0$ . Let H, E be the matrices of Theorems 6 and 7. Let  $D = \text{diag } (d_1, \dots, d_n)$  where  $|d_i| < \sqrt{h_i/(h_i - 1)}$ . Then DE also has the property that  $(DE)^n \to 0$ .

*Proof.* In Eq. (9) replace E by

$$E\begin{bmatrix}r_1 & & \\ & \ddots & \\ & & r_n\end{bmatrix}$$

where the  $r_i$  are to be determined. Then (9) goes over into

$$\begin{bmatrix} h_1 & & & \\ & \ddots & & \\ & & h_n \end{bmatrix} - E \begin{bmatrix} r_1 & & & \\ & \ddots & & \\ & & \ddots & & \\ & & & h_n/|r_n|^2 \end{bmatrix} \begin{bmatrix} \bar{r}_1 & & & \\ & \ddots & & \\ & & \bar{r}_n \end{bmatrix} E^* = I. \quad (11)$$

Next introduce quantities  $k_1$ ,  $\cdots$ ,  $k_n$  such that  $0 < k_i < 1$  and choose  $r_1$ ,  $\cdots$ ,  $r_n$  so that

$$l_i = h_i - k_i = h_i / r_i \bar{r}_i$$
,  $i = 1, \dots, n$ .

10 taussky

Then (11) goes over into

$$\begin{bmatrix} l_1 & & & \\ & \ddots & & \\ & & l_n \end{bmatrix} - E \begin{bmatrix} r_1 & & & \\ & \ddots & \\ & & r_n \end{bmatrix} \begin{bmatrix} l_1 & & & \\ & \ddots & \\ & & l_n \end{bmatrix} \begin{bmatrix} \bar{r}_1 & & & \\ & \ddots & \\ & & \bar{r}_n \end{bmatrix} E^*$$

$$= \begin{bmatrix} 1 - k_1 & & \\ & \ddots & \\ & & 1 - k_n \end{bmatrix}.$$
(12)

The right hand side of (12) represents a matrix  $\in \Pi$ . By Stein's theorem (Theorem 4) if follows that

$$E\begin{bmatrix}r_1 & & \\ & \ddots & \\ & & r_n\end{bmatrix}$$

is a matrix whose nth powers converge to zero. Since  $k_i < 1$  it follows that

$$r_i \bar{r}_i < h_i / (h_i - 1).$$

#### Remarks

- 1. In [6] a "canonical form" was obtained for stable matrices via Lyapunov's theorem.
- 2. In [4, 6] a generalization of Lyapunov's theorem to a more general class of matrices was obtained. An analogous result can be found for P. Stein's theorem.
- 3. The general properties of the linear operator defined by the matrix C on the matrix H in [5] are worth studying. For the operator defined by Lyapunov's theorem see [3, 4, 7, 8].

#### REFERENCES

- 1. Bellman, R. "Matrix Analysis." McGraw-Hill, New York, 1960.
- 2. Gantmacher, F. R. "Theory of Matrices," Vol. II. Chelsea, New York, 1959.
- 3. GIVENS, W. Elementary divisors and some properties of the Lyapunov mapping  $X \rightarrow AX + XA^*$ . Argonne National Laboratory Report ANL-6456, 1961.
- OSTROWSKI, A. AND SCHNEIDER, H. Some theorems on the inertia of general matrices. J. Math. Anal. and Appl. 4 (1962), 72-84.
- STEIN, P. Some general theorems on iterants. J. Res. Natl. Bur. Std. 48 (1952), 82-83.
- TAUSSKY, O. A remark on a theorem of Lyapunov. J. Math. Anal. and Appl. 2 (1961), 105-107.
- TAUSSKY, O. A generalization of a theorem of Lyapunov. J. Soc. Ind. Appl. Math. 9 (1961), 640-643.
- 8. Taussky, O. and Wielandt, H. On the matrix function AX + X'A'. Arch. Rat. Mech. and Anal. 9 (1962), 93-96.