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Abstract

A topological groupG is h-completeif every continuous homomorphic image ofG is (Răıkov-)
complete; we say thatG is hereditarilyh-completeif every closed subgroup ofG is h-complete. In
this paper, we establish open-map properties of hereditarilyh-complete groups with respect to lar
classes of groups, and prove a theorem on the (total) minimality of subdirectly represented group
Numerous applications are presented, among them: (1) Every hereditarilyh-complete group with
quasi-invariant basis is the projective limit of its metrizable quotients; (2) If every countable di
hereditarilyh-complete group is finite, then every locally compact hereditarilyh-complete group tha
has small invariant neighborhoods is compact. In the sequel, several open problems are form
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Introduction

By the well-known Kuratowski–Mrówka theorem, a (Hausdorff) topological sp
X is compact if and only if for any (Hausdorff) topological spaceY the projection
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pY :X × Y → Y is closed. Inspired by this theorem, one says that a topological group

m of
more

and
Ph.D.

in
l. [1]
olen

e Ty-

the
erty
lt

ties

ng
em for
s in-
by
l con-
actness
s of
lated.

ol-

t

s of
e

-

,
the
d-

y:
G is categorically compact(or briefly,c-compact) if for any topological groupH the im-
age of every closed subgroup ofG × H under the projectionπH :G × H → H is closed
in H . (All topological groups in this paper are assumed to be Hausdorff.) The proble
whether everyc-compact topological group is compact has been an open question for
than ten years.

The most extensive study ofc-compact topological groups was done by Dikranjan
Uspenskij in [6], which has also been a source of inspiration for part of the author’s
Dissertation [11].

Categorical compactness (in the general setting of structured sets) was introduced
1974 by Manes [13] and studied by Dikranjan and Giuli [3], and by Clementino et a
who consider in particular categorically compact groups. In [2] Clementino and Th
proved (independently of Dikranjan and Uspenskij [6], but in greater generality) th
chonoff theorem forc-compact groups.

The notion of hereditaryh-completeness we introduce in Section 1 is motivated by
observation that all known results relatingc-compactness to any compactness-like prop
remain valid ifc-compactness is replaced by hereditaryh-completeness. Our main resu
is Theorem 2.3, stating that hereditarilyh-complete groups satisfy open-map proper
with respect to large classes of groups (groups of countable tightness andk-groups); its
immediate corollary generalizes [6, 3.2]. Asan application, we examine groups admitti
a quasi-invariant basis (see Section 3 for definition), and prove a structure theor
hereditarilyh-complete groups with this property (Theorem 3.1). In the course of thi
vestigation, an important result on (total) minimality of groups subdirectly represented
(totally) minimal groups is established (Theorem 3.3), which turns out to have severa
sequences. We conclude with a reduction theorem (Theorem 4.5), relating the comp
of locally compactc-compact groups with small invariant neighborhoods to finitenes
countable discretec-compact groups. In the sequel, several open problems are formu

1. Preliminaries

A topological group isminimal if it does not admit a coarser (Hausdorff) group top
ogy; a groupG is totally minimalif every continuous surjective homomorphismϕ :G → H

is open, or equivalently, if every quotient ofG is minimal. It is an important result tha
every closed separable subgroup of ac-compact group is totally minimal[6, 3.6]. This is
obtained as a consequence of [6, 3.4], which requires only the closed normal subgroup
the separable subgroup to beh-complete, and thus the condition ofc-compactness can b
slightly weakened, as we explain below.

A topological groupG is said to beh-completeif for any continuous homomor
phismϕ :G → H into a topological group,ϕ(G) is closed inH ([4]). Equivalently,G
is h-complete if every continuous homomorphic image ofG is Răıkov-complete (i.e.
complete in the uniformity given by the join of the left and the right uniformity of
group). Everyc-compact group ish-complete; moreover, sincec-compactness is a close
hereditary property, every closed subgroup of ac-compact group ish-complete. Motivated
by this, the author introduces the concept of hereditaryh-completeness in the obvious wa
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G is hereditarilyh-completeif every closed subgroup ofG is h-complete. The following
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immediate consequence of [6, 3.4] will play an important role in establishing the resu
this paper.

Observation 1.1. Every closed separable subgroup of a hereditarilyh-complete group is
totally minimal.

In fact, only the “minimal” part of Observation 1.1 is used, and the condition c
be further weakened, as it was pointed out above. The reason for choosing her
h-completeness as the condition, beyond its relatively simple definition, is its feature tha
every continuous homomorphic image of a hereditarilyh-complete group is hereditaril
h-complete. On the other hand, this property is not that far fromc-compactness, becau
by [6, 2.16],every hereditarilyh-complete SIN group isc-compact. (G is SIN if its left
and right uniformities coincide.) A second illustration for the phenomenon describ
the Introduction is [6, 5.1], stating thatevery locally compactc-compact group is com
pact. It is proved using Iwasawa’s [9] theorem:A connected locally compact group whi
has no closed subgroups(topologically) isomorphic toR is compact. Dikranjan and Us-
penskij’s argument can be adjusted to hereditaryh-completeness: sinceR is Abelian and
non-compact, it is noth-complete (see [6, 3.7]), so no hereditarilyh-complete group can
contain it as a closed subgroup. Thus, one concludes:

Observation 1.2. Every connected locallycompact hereditarilyh-complete group is com
pact.

An obvious example is [6, 3.10], where instead ofc-compactness, the condition of “a
closed subgroups ofG areh-complete” is imposed. As a corollary, one can observe
every hereditarilyh-complete soluble group is compact, which is a slight generalization o
[6, 3.12]. We conclude this series of observations with one related to a result of the a
A group is calledmaximally almost periodic(or briefly, MAP) if it admits a continuous
monomorphismm :G → K into a compact groupK. According to [12, Corollary 7],every
c-compact MAP group is compact, but from [12, Theorem 6] one can also derive thatevery
hereditarilyh-complete MAP group is compact.

The examples above show that so far no one seems to have exploited the “extr
c-compactness appears to have, compared to hereditaryh-completeness. This raises t
following three problems:

Problem I. Is every hereditarilyh-complete groupc-compact?

Problem II. Is there a class, wider than that of the SIN groups, in which the notion
hereditaryh-completeness andc-compactness coincide?

A universal algebraic approach might shed some more light on Problem I: for a claW
of topological groups, putP(W) for the class of their (arbitrary) products,H(W) for the
class of their continuous homomorphic images, andS̄(W) for the class of the closed su
groups of groups fromW . A groupG is h-complete ifH(G) consists of (Răıkov-)complete
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groups. Thus,G is hereditarilyh-complete if each group in̄S(G) is h-complete, in other
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words, if every group inHS̄(G) is complete. Since the product of any family ofh-complete
groups ish-complete (see [6, 2.13]), if each group inS̄(G) is h-complete, then so is ever
group inPS̄(G), and therefore every group inHPS̄(G) is complete. On the other hand, t
product of any family ofc-compact groups isc-compact (see [6, 2.8] and [2, 4.4]), a
c-compactness is a closed-hereditary property. Thus, ifG is c-compact, then every grou
in S̄P(G) is c-compact, and in particularh-complete; therefore, the groups inHS̄P(G) are
complete. In most cases, one hasHPS̄(G) � HS̄P(G), which leads to a third problem:

Problem III. Is hereditaryh-completeness preserved under the formation of arbitrary p
ucts?

Denote by I, II and III, respectively, the statements that the answers to Problem
and III are affirmative. Implications I⇒ II, III, and I ⇒ III are trivial, but we are unable
to say anything further. It might be tempting to try to prove III⇒ I (or even a stronge
statement, that if every group inHS̄P(G) is complete, thenG is c-compact), but we hav
a certain doubt about its truth. In any case, it would be very interesting to character
structure of the groupsG such that every group inHS̄P(G) is complete.

Solving the following problem is likely to be a key step towards understan
c-compactness and hereditaryh-completeness:

Problem IV. Is there a hereditarilyh-complete group that is not compact?

If such a groupE exists, then eitherE is c-compact, in which case it is a negati
solution to the problem ofc-compactness, orE is not c-compact, and thus it provides
negative solution to Problem I. On the other hand, if no suchE is found, then every hered
itarily h-complete group is compact, and in particular everyc-compact group is compac
In the latter case, hereditaryh-completeness,c-compactness and compactness coincid

2. Open map properties

A subsetF of a topological spaceX is ω-closedif �C ⊆ F for every countable subse
C ⊆ F . A topological spaceX hascountable tightnessif every ω-closed subset is close
in X.

Proposition 2.1. Let (G,T ) be a hereditarilyh-complete topological group, and letT ′ be
a coarser group topology onG. Then:

(a) everyω-closed subset inT is ω-closed inT ′;
(b) T ′ andT have the same compact subspaces.

Proof. Let ι : (G,T ) → (G,T ′) be the identity map. For a countable subsetD, letS = 〈D〉
be the closed separable subgroup generated byD. By Observation 1.1, the groupS is totally
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minimal, soι|S is a homeomorphism. In particular,ι(�D) = ι(D) andι|� is a homeomor-
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phism, because bothS andι(S) are closed in the respective topologies.
(a) If D is a countable subset ofι(F ), then �D = ι(ι−1(D)). Thus, ifF is ω-closed (in

T ), thenι−1(D) ⊆ F , and therefore�D = ι(ι−1(D)) ⊆ ι(F ).
(b) Let K be aT ′-compact subspace, and letD be an countably infinite subset

ι−1(K). SinceK is countably compact, it contains a limit pointy0 of ι(D). By the forego-
ing discussion,ι|�D is a homeomorphism, and thusι−1(y0) is a limit point ofD. Therefore,
ι−1(K) is countably compact. Clearly,ι−1(K) is also closed; hence, tocomplete the proof
we recall that a countably compact completeuniform space is compact [19, Example 2
p. 218]. �

Before proving a more general result, we turn to what promises to be the most s
case: discrete groups. Recall that a discrete group isc-compact if and only if it is heredi
tarily h-complete [6, 5.3,2.16].

Corollary 2.2. Let G be a discretec-compact group. Then for every group topologyT
onG:

(a) T is anticompact(i.e., every compact subset is finite);
(b) countably infinite subspaces are discrete inT ;
(c) every subset isω-closed inT .

A map f :X → Y between Hausdorff spaces isk-continuousif its restrictionf |K to
every compact subspaceK of X is continuous. Following Noble [15], a topological gro
G is called ak-group if every k-continuous homomorphismϕ :G → L into a topological
group is continuous. Every locally compact or sequential group is ak-group (they are eve
k-spaces, see [8, p. 152]). Noble showed in his papers that the class ofk-groups is closed
under the formation of quotients (in fact, continuous homomorphic images), arbitra
rect products, and open subgroups (see [15, 1.2, 1.8] and [14, 5.7]; the latter’s state
actually more general than what we quote here). This shows that the class ofk-groups is
a quite large one, and the only property it is missing to qualify for a variety is closed
under the formation of (arbitrary) subgroups.

Theorem 2.3. LetG be a hereditarilyh-complete group, and letf :G → H be a continu-
ous homomorphism onto a topological groupH . If either

(a) H has countable tightness, or
(b) H is a k-group,

thenf is open.

Proof. Since hereditaryh-completeness is preserved by quotients, by replacingG with
G/kerf andf with the induced homomorphism, we may assume thatf is bijective. Set
g = f −1.
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(a) To show the continuity ofg, let F be a closed subset ofG. ThenF is ω-closed, and
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by Proposition 2.1(a),g−1(F ) = f (F ) is ω-closed inH . SinceH has countable tightnes
this implies thatg−1(F ) is closed inH , and thereforeg is continuous.

(b) Let K ⊆ H be a compact subspace ofH . By Proposition 2.1(b), the subs
g(K) = f −1(K) is compact, so ifF is a closed subset ofg(K), then it is compact too
Thus,g−1(F ) = f (F ) is compact, and in particular,g−1(F ) is closed; therefore,g is
k-continuous. Hence,g is continuous, becauseH is ak-group. �

The next corollary significantly generalizes [6, 3.2].

Corollary 2.4. LetG be a hereditarilyh-complete topological group. Then every contin
ous homomorphismf :G → H onto a metrizable groupH is open.

Remark. Corollary 2.4 might give the false impression of an Open Map theorem th
free of Baire category arguments. However, this is not the case, because Proposi
relies on Observation 1.1, which in turn is a consequence of the classical Banach’s O
Map theorem for complete second countable topological groups.

3. Groups admitting a quasi-invariant basis

Following Kac [10], a groupG has aquasi-invariant basisif for every neighborhood
U of the identity there exists a countable familyV of neighborhoods of the identity suc
that for anyg ∈ G there existsV ∈ V such thatgVg−1 ⊂ U . In his paper, Kac proved th
following two fundamental results on groups admitting a quasi-invariant basis.

Fact A. ([10]) A topological group can be embedded as a subgroup into a direct prod
metrizable groups if and only if it has a quasi-invariant basis.

Fact B. ([10]) A topological groupG with a quasi-invariant basis admits a coarser met
able group topology if and only if it has countable pseudocharacter.

The result below is a structure theorem, which generalizes [12, Theorem 5] to the gre
est possible extent, because every subgroupof a product of metrizable groups admits
quasi-invariant basis (Fact A).

Theorem 3.1. LetG be a hereditarilyh-complete group admitting aquasi-invariant basis
ThenG is the projective limit of its metrizable quotients.

Proof. Since G has a quasi-invariant basis, by Fact A, it embeds into a pro
M = ∏

α∈I Mα of metrizable groups. Forπα :G → Mα the restrictions of the canonic
projections, we may assume thatπα is surjective, and thus by Corollary 2.4, theπα are
open; in particular, eachMα is a (metrizable) quotient ofG. Therefore,G embeds into a
product of its metrizable quotients, and sinceby adding additional metrizable quotients to
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the product we cannot ruin the embedding property, we may assume thatM is the product
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of all the metrizable quotients ofG.
If G/N1 andG/N2 are metrizable, then by Corollary 2.4, the continuous monom

phismG/N1 ∩ N2 → G/N1 × G/N2 is an embedding, soG/N1 ∩ N2 is metrizable too
Thus, metrizable quotients ofG form a projective system. The image ofG is certainly
contained in the projective limit of its metrizable quotients, and it is dense there. SinG

is h-complete, the statement follows.�
Dikranjan and Uspenskij [6, 3.3] showed thateveryh-complete group with a countab

network is totally minimal and metrizable. The statement concerning metrizability c
easily be developed further:

Proposition 3.2. Every hereditarilyh-complete group with a quasi-invariant basis that h
countable pseudocharacter is metrizable.

Proof. Let (G,T ) be a group with the stated properties. By Fact B,G admits a coarse
metrizable group topologyT ′. Applying Corollary 2.4 to the identity map

ι : (G,T ) → (G,T ′),

one getsT = T ′, and thusT is metrizable.

The difficulty with extending the first part of [6, 3.3] (concerning minimality) is t
given a hereditarilyh-complete metrizable groupG, the best we can say (beyond Propo
tion 2.1) is that each separable subgroup ofG is metrizable in every coarser topology.

Problem V. Is every metrizable hereditarilyh-complete group totally minimal?

Since we do not know the answer to Problem V, we present a result relating it
possibility of weakening the conditions of [6, 3.3] in some sense. However, in order to
that, an auxiliary result is required, which turns out to be interesting on it own. Its pro
modeled on the proof of [6, 3.4].

Theorem 3.3. Let G be a topological group and letN be a filter-base ofh-complete
normal subgroups ofG. Suppose thatG naturally embeds into the product

P =
∏

N∈N
G/N .

If each quotientG/N is (totally) minimal, thenG is (totally) minimal too.

Remark. The situation whereG is naturally embedded into a product of its quotient
called asubdirect representation.

Proof. Let f :G → H be a continuous surjective homomorphism, and letU be an open
neighborhood of the identity element inG. SinceG embeds intoP , there exists a finite
collection{N1, . . . ,Nk} ⊂ N such thatq−1(V ) ⊆ U for an open neighborhoodV of the
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identity in the productG/N1 × · · · × G/Nk (whereq is the diagonal of the respective

.
c-
-

s
r

ion of

cts
er,
ey
3.4, a

of
projections). SinceN is a filter base, there existsN ∈ N such thatN ⊆ N1 ∩ · · · ∩ Nk ,
and therefore without loss of generality we may assume thatU = p−1(V ) for an open
neighborhoodV of the identity inG/N , wherep :G → G/N is the canonical projection

Since N is h-complete,f (N) is closed inH , so f induces a continuous surje
tive homomorphismf̄N :G/N → H/f (N). We have the following commutative dia
gram:

G
f

p

H

π

G/N
f̄N

H/f (N)

If f̄N is open, then so is the compositēfN ◦ p, and thusf̄ (p(U)) = π(f (U)) is open
in H/f (N). Therefore,f (U)f (N) = f (UN) = f (U) is open inH (one hasUN = U ,
becauseU = p−1(V )). Hence,f is open if and only if f̄N is open for everyN ∈
N .

One concludes that if eachG/N is totally minimal, then each̄fN , being a continuou
surjective homomorphism, is open, and thereforeG is totally minimal. The argument fo
minimal groups is similar, because eachf̄N is bijective whenf is so. �

Before returning to groups with quasi-invariant basis, we show how a weaker vers
[5, 7.3.9(b)] follows from Theorem 3.3.

Corollary 3.4. Let {Gi}i∈I be a family ofh-complete groups and putG = ∏
i∈I Gi .

(a) If eachGi is minimal, thenG is minimal too;
(b) If eachGi is totally minimal, thenG is totally minimal too.

Part (a) of the corollary is a new result, because [5, 7.3.9(b)] deals only with produ
of totally minimal groups (and not minimal ones); on the other hand, part (b) is weak
because in [5, 7.3.9(b)] it suffices for the factorsGi to have complete quotients, and th
are not required to have complete homomorphic images. In order to prove Corollary
weak version of [7, (3)] is needed:

Fact C. The product of two (totally) minimal topological groupsG1 andG2 is (totally)
minimal if one of them ish-complete.

Proof. For each finite subsetF ⊆ I , put NF = ∏
i∈I\F Gi × ∏

i∈F {e}. By [6, 2.13], the
product of any family ofh-complete groups ish-complete, so eachNF is h-complete. The
quotientG/NF is topologically isomorphic to the finite product

∏
i∈F Gi , which is (totally)

minimal by Fact C, and theNF certainly form a filter-base. Therefore, the conditions
Theorem 3.3 are fulfilled, andG is (totally) minimal. �

A group G is perfectly totally minimalif G × H is totally minimal for every totally
minimal groupH ([17]).
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Theorem 3.5. The following statements are equivalent:
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(i) every metrizable hereditarilyh-complete group is minimal;
(ii) every hereditarilyh-complete group with a quasi-invariant basis is perfectly tota

minimal.

Proof. (i) ⇒ (ii): Since hereditarilyh-completeness and metrizability are preserved
quotients, (i) implies that every metrizable hereditarilyh-complete group is totally mini
mal. By Theorem 3.1, every hereditarilyh-complete groupG with a quasi-invariant basi
embeds into the product of its metrizable quotients, that are totally minimal by (i). S
G is hereditarilyh-complete, the kernel of each metrizable quotient ish-complete, and
therefore, by Theorem 3.3,G is totally minimal. Hence, by Fact C,G is perfectly totally
minimal, because it ish-complete. �

4. Locally compact SIN groups

We recall that a groupG hassmall invariant neighborhoods(or briefly, G is SIN), if
any neighborhoodU of e ∈ G contains an invariant neighborhoodV of e, i.e., a neighbor
hoodV such thatg−1Vg = V for all g ∈ G. Equivalently,G is SIN if its left and right
uniformities coincide. The interest in the class of SIN group in the context of this p
arises from an aforesaid theorem of Dikranjan and Uspenskij’s [6, 2.16], stating t
this class,c-compactness and hereditaryh-completeness coincide.It turns out that locally
compact SIN groups are closely related to discrete ones, and as an illustration we start w
two observations.

Observation 4.1. If every closed subgroup of a locally compact SIN groupG is totally
minimal, thenG is c-compact.

This statement was made concerning discrete groups in [6, 5.4].

Proof. Let S be a closed subgroup ofG, and letf :S → H be a continuous surjectiv
homomorphism. SinceS is totally minimal,f is open, andH is a quotient ofS. The group
S, being a closed subgroup ofG, is locally compact, and thus so isH ; in particular,H
is complete. Therefore,S is h-complete, and henceG is hereditarilyh-complete, which
coincides withc-compactness, becauseG is SIN. �
Observation 4.2. A σ -compact locally compact SIN groupG is c-compact if and only if
every closed subgroup ofG is totally minimal.

This mimics [6, 5.5], and it is an immediate consequence of the previous obser
and [6, 3.5]. The condition of countability in [6, 5.5] was traded forσ -compactness, whic
is the “right” concept for the context of LC groups.
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Since locally compact connectedc-compact groups are known to be compact [6, 5.1],
l

tive

also

roups
ns a

anen-

hat
nt

nt
y

ts,
-base),

l,
and compactness has the three-space property (i.e., ifG/N andN are compact for a norma
subgroupN , thenG is compact too), we turn first to totally disconnected groups.

Proposition 4.3. Every locally compact totally disconnected SIN group is the projec
limit of its discrete quotients with compact kernel.

Remark. In [11, 6.2, p. 68], a different and more detailed proof of the proposition is
available.

Proof. In every locally compact totally disconnected group, the compact-open subg
form a base at the identity. SinceG is also SIN, each compact-open subgroup contai
compact-opennormalsubgroup, so if we letN be the set of such subgroups, thenN is
a base ate. Thus,G admits a continuous monomorphismν into D = ∏

N∈N G/N . The
statement regarding the limit follows from a result established by Weil in [18, p. 25].�

We are now ready to formulate a result of the same kind as Theorem 3.5.

Theorem 4.4. The following statements are equivalent:

(i) every discretec-compact group is minimal;
(ii) every locally compactc-compact group admitting small invariant neighborhoods is

perfectly totally minimal.

In order to prove the theorem, we need a corollary of Eberhardt, Dierolf and Schw
gel:

Fact D. ([7, (7)]) If a topological groupG contains a compact normal subgroupN such
thatG/N is totally minimal, thenG is totally minimal.

Proof. (i) ⇒ (ii): Let G be a group described in (ii). By Fact C, it suffices to show t
G is totally minimal, because it ish-complete. SetN to be the connected compone
of the identity inG; as a closed subgroup ofG, N is c-compact. Thus,N is compact,
because it is locally compact, connected andc-compact (Observation 1.2). The quotie
G/N inherits all the aforesaid properties ofG; furthermore, it is totally disconnected. B
Fact D, it suffices to show thatG/N is totally minimal, so we may assume thatG is totally
disconnected from the outset.

It follows from Proposition 4.3 thatG embeds into the product of its discrete quotien
where the kernels of the quotients are the compact-open subgroups (certainly a filter
and in particular they areh-complete. By (i), every discretec-compact group is minima
and since quotients of discretec-compact groups are again discretec-compact, (i) implies
that they are actually totally minimal. Thus, each discrete quotient ofG is totally minimal,
and therefore, by Theorem 3.3,G is totally minimal. �
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Given a topological groupG, the kernel of its Bohr-compactificationκG :G → bG is
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called thevon Neumann radicalof G, and is denoted byn(G). We say thatG is minimally
almost periodic(or briefly, m.a.p.) if n(G) = G, or equivalently, if it has no non-trivia
finite-dimensional unitary representations. SinceG is MAP if n(G) is trivial, one can say
that m.a.p. is the “opposite” of MAP. We conclude the paper with a result similar in n
to [12, Theorem 9].

Theorem 4.5. The following statements are equivalent:

(i) every countable discretec-compact minimally almost periodic group is trivial;
(ii) every countable discretec-compact group is maximally almost periodic(and thus

finite);
(iii ) every locally compactc-compact group admitting small invariant neighborhoods is

compact.

Proof. (i) ⇒ (ii): The von Neumann radical of everyc-compact group is m.a.p. [12, Coro
lary 8]. Thus, by (i), ifG is a countable discretec-compact group, thenn(G) is trivial; in
other words,G is MAP. The finiteness ofG follows from [12, Corollary 7], but for the sak
of completeness we show it explicitly here:G is MAP, so it admits a continuous monomo
phismm :G → K into a compact groupK. The mapm is an embedding, becauseG is a
discrete countablec-compact group, and as such it is totally minimal (Observation 4.2
image,m(G), is closed inK, and thus compact, becauseG is h-complete. Therefore,G is
topologically isomorphic to the compact groupm(G).

(ii) ⇒ (iii): Let G be a group as stated in (iii). The connected componentN of the
identity in G is compact (Observation 1.2), so it suffices to show thatG/N , which inher-
its all the aforesaid properties ofG, is compact. Thus, we may assume thatG is totally
disconnected from the outset.

If S is a closed separable subgroup ofG, thenS is c-compact, and its discrete quotien
are countable. Since, by (ii), every discrete quotient ofS is finite, andS is the projective
limits of its discrete quotients (Proposition 4.3),S is apro-finitegroup; in particular,S is
compact. So every closed separable subgroup ofG is compact; thus,G is precompact, an
therefore, being complete, it is compact. �

It is not known whether (i) or (ii) is true. The only related result known is a nega
one, due to Shelah [16]: under CH there exists an infinite discreteh-complete group. It is
unknown whether such an example is available under ZFC. Even if such an exampl
available under ZFC, it would not be, of course, a counterexample for (ii), because it
neither countable norc-compact.

Characterizing countable discrete MAP groups is a pure algebraic problem that do
involve group topologies at all. On the other hand, a countable discrete group isc-compact
if and only if its subgroups are totally minimal.By Theorem 4.5, putting the two ingredien
together can give a solution to the problem ofc-compactness in the locally compact SIN
case.
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An alternative approach could be to extensively study countable discrete m.a.p. groups,
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which is again a purely algebraic task. Once a characterization of such groups is ob
it should no longer be difficult to check whether statement (i) in the theorem holds.
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