A note on unitary similarity preserving linear mappings on $B(H)^\diamond$

Tatjana Petek

FERI, Department of Mathematics, University of Maribor, Smetanova 17, Maribor SI-2000, Slovenia

Received 21 May 2004; accepted 13 July 2004

Submitted by C.-K. Li

Abstract

Let H be an infinite-dimensional complex Hilbert space. We give the characterization of surjective mappings on $B(H)$ that preserve unitary similarity in both directions.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 47B49

Keywords: Hilbert space; Unitary similarity-preserving mapping

Mappings preserving similarity on several operator spaces were treated recently in a series of papers. This topic is a part of a broad field of linear preserver problems. Many results of this kind can be found in the survey papers [1,4,10].

In 1987 Hiai characterized all linear mappings ϕ on $M_n(\mathbb{C})$, the algebra of all complex $n \times n$ matrices, that preserve similarity. This means that if matrices A and B are similar ($B = S^{-1}AS$ for some invertible matrix S) then $\phi(A)$ and $\phi(B)$ are similar as well. Later Lim, Li and Tsing improved and extended his result [5,6,10,11].

Similarity preserving mappings on infinite-dimensional operator spaces were studied by Ji, Du, Hou and the present author [9,7,8,2,3,13]. Beside linear mappings also

Supported by a grant from the Ministry of Education, Science and Sport of Slovenia.

E-mail address: tatjana.petek@uni-mb.si

0024-3795/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
additive ones were studied and the similarity preserving property was also replaced by a weaker assumption of asymptotic similarity preserving.

Hiai, Li and Tsing studied not only similarity-preserving mappings but also unitary similarity-preserving ones on finite-dimensional spaces. Our aim is to extend their result to $B(H)$, the algebra of all bounded linear operators on an infinite-dimensional complex Hilbert space H.

We say that operators $A, B \in B(H)$ are similar if $A = S^{-1}BS$ for some $S \in B(H)$ and theya re unitary similar if $A = U^*BU$ for some unitary operator U on H. By $\mathcal{S}_u(A)$ we denote the unitary similarity orbit of A, i.e. the set of all operators that are unitary similar to A. We denote by $A \sim_u B$ the relation of unitary similarity.

Linear mapping $\phi : B(H) \to B(H)$ preserves unitary similarity in both directions if A is unitary similar to B if and only if $\phi(A)$ is unitary similar to $\phi(B)$. By $\mathcal{F}(H)$ we denote all finite rank operators on $B(H)$ and by $\mathcal{F}_0(H)$ the subspace of all finite rank operators X with $\text{tr} X = 0$, where tr denotes the trace. We use the notation $x \otimes y$ for a rank-one operator $u \mapsto \langle u, y \rangle x$. It is well known that $x \otimes y$ is a rank-one nilpotent if both x and y are non-zero and $\langle x, y \rangle = 0$. Let us note that $\mathcal{S}_u(x \otimes y) = \{re \otimes f; \langle e, f \rangle = 0, \|e\| = \|f\| = 1\}$ and $r = \|x\|\|y\|$. We say that a rank-one nilpotent N is written in the normalized form if $N = rx \otimes y$, $\|x\| = \|y\| = 1$, $\langle x, y \rangle = 0$ and $r > 0$. Note that rank-one nilpotents $e \otimes f$ and $x \otimes y$ are unitary similar if and only if $\|e\|\|f\| = \|x\|\|y\|$. Let us state our main result.

Main Theorem. Let $\phi : B(H) \to B(H)$ be a linear surjective mapping preserving unitary similarity in both directions. Then there exist a non-zero constant c and a unitary operator $U \in B(H)$ such that either

(a) $\phi(X) = cU^*XU$ ($X \in B(H)$) or

(b) $\phi(X) = cU^*X^tU$ ($X \in B(H)$),

where X^t denotes the transpose of X relative to a fixed but arbitrary orthonormal basis of H.

1. **Proof of the Main Theorem**

Let ϕ be as in the Main Theorem. We easily observe [13] that ϕ is injective and that $\phi(I)$ is a scalar operator. So, we can assume without loss of generality that $\phi(I) = I$. We will show that ϕ preserve $\mathcal{F}_0(H)$. In order to do this, we introduce a minimal u-similarity-invariant subspace. We call a subspace $\mathcal{V} \subseteq B(H)$ u-similarity-invariant if it contains $\mathcal{S}_u(A)$ for every $A \in \mathcal{V}$. Moreover, a subspace $\mathcal{V} \subseteq B(H)$ is minimal u-similarity-invariant subspace if

1. \mathcal{V} is a u-similarity-invariant subspace of $B(H)$,
2. If $\mathcal{W} \subseteq \mathcal{V}$ is a u-similarity-invariant subspace of $B(H)$ then $\mathcal{W} = [0]$ or $\mathcal{W} = \mathcal{V}$.
It is an elementary exercise to see that \(\phi \) maps a minimal u-similarity-invariant subspace to one having the same property.

Lemma 1. The non-trivial subspace \(\mathcal{V} \subseteq B(H), I \notin \mathcal{V}, \) is a minimal u-similarity-invariant subspace of \(B(H) \) if and only if \(\mathcal{V} = \mathcal{F}_0(H). \)

Proof. The “if” statement is obvious. In order to prove the “only if” it is enough to show that \(\mathcal{V} \) has a rank-one nilpotent operator. As \(I \notin \mathcal{V} \) there exists a non-scalar operator \(A \in \mathcal{V}. \) We can choose an \(x \in H \) such that \(x \) and \(Ax \) are linearly independent. Let \(X = \text{span}\{x, Ax\} \) and \(H = X \oplus X^\perp. \) According to this decomposition we represent \(A \) in an operator matrix form

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix},
\]

where \(A_{11} \) is not a scalar matrix. Let \(U_1 \) be a unitary operator on \(X \) satisfying \(A_{11} - U_1^*A_{11}U_1 \neq 0. \) Let \(U = U_1 \oplus I_{X^\perp}. \) Then

\[
B = A - U^*AU = \begin{bmatrix}
A_{11} - U_1^*A_{11}U_1 & * \\
* & 0
\end{bmatrix} \in \mathcal{V},
\]

it is of at most rank four and also an element of \(\mathcal{F}_0(H). \)

By splitting \(H = Y \oplus Y^\perp \) where \(Y = \text{Im } B, \) the operator \(B \) can be written in the form

\[
B = \begin{bmatrix}
B_{11} & B_{12} \\
0 & 0
\end{bmatrix}
\]

where the space \(Y \) is \(k \)-dimensional and \(1 \leq k \leq 4. \) If rank \(B = 1, \) we are done, so from now on, we assume \(1 < k \leq 4 \) and rank \(B > 1. \) We can assume without loss of generality that \(B_{11} = 0 \) or \(B_{12} = 0. \) Indeed, if \(B_{11} \neq 0 \) we observe that

\[
(-I_Y \oplus I_{Y^\perp})^*B(-I_Y \oplus I_{Y^\perp}) + B = \begin{bmatrix}
2B_{11} & 0 \\
0 & 0
\end{bmatrix} \in \mathcal{V}.
\]

Let us first consider the case \(B_{11} = 0. \) Let \(\{e_1, e_2, \ldots, e_k\} \) be an orthonormal basis of \(Y. \) According to decomposition \(H = \text{span}\{e_1\} \oplus \text{span}\{e_2, \ldots, e_k\} \oplus Y^\perp \) we have

\[
B = \begin{bmatrix}
0 & 0 & B_{13} \\
0 & 0 & B_{23} \\
0 & 0 & 0
\end{bmatrix}, \quad B_{13}, \ B_{23} \neq 0.
\]

Moreover, taking \(U = (1 \oplus (-I_{k-1}) \oplus I_{Y^\perp}) \) we observe that

\[
U^*BU + B = \begin{bmatrix}
0 & 0 & B_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

is a rank-one nilpotent in \(\mathcal{V}. \) If \(B_{11} \neq 0 \) we may consider \(B \) as a \(k \times k \) matrix and without loss of generality assume that it is not diagonal. By permutation similarity
we can achieve that B has at least one non-zero non-diagonal entry in the first row. Using a block matrix form

$$B = \begin{bmatrix} c_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}, \quad C_{12} \neq 0, \quad c_{11} \in \mathbb{C}, \quad C_{22} \in \mathbb{C}^{(k-1) \times (k-1)},$$

and taking $V = -1 \oplus I_{k-1}$, we arrive at

$$D = B - V^* BV = \begin{bmatrix} 0 & 2C_{12} \\ 2C_{21} & 0 \end{bmatrix} \in \mathcal{V},$$

which is of at most rank 2. If rank D is 1, we have found a nilpotent of rank one, otherwise assume rank $D = 2$. As $\text{tr} \, D = 0$, we have two possibilities: D is a nilpotent, or it has non-zero eigenvalues α and $-\alpha$ of multiplicity one. By a finite series of transformations $D \mapsto D + W^* DW$, where the diagonal unitary matrix W has one diagonal entry -1 and all the others equal to 1, we either find a nilpotent of rank one in \mathcal{V}, or find out that $\begin{bmatrix} D_{11} & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{V}$, $D_{11} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Finally, D_{11} is unitary similar to $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and

$$i(D_{11} \oplus 0) - (E \oplus 0) = \begin{bmatrix} i & -1 \\ -1 & -i \end{bmatrix} \oplus 0$$

is a rank-one nilpotent. □

Lemma 2. If an operator $A \in \mathcal{F}(H)$ satisfies $A \sim_u \alpha A$ for all $|\alpha| = 1$, then A is nilpotent.

Proof. The proof is left to the reader. □

Many linear preserver problems can be reduced to rank-one preservers. We will show that ϕ preserves rank-one nilpotents in both directions. This observation is based on the following characterization of rank-one nilpotents by unitary similarity.

Proposition 3. An operator $N \in \mathcal{F}_0(H)$ is a rank-one nilpotent if and only if

(i) $N \sim_u \alpha N$ for all $|\alpha| = 1$, and

(ii) for every $M \in \mathcal{S}_u(N)$, which is not a multiple of N

the following implication holds true:

If $N + M \sim_u \gamma N$ for some $\gamma \neq 0$

then for every β, there exists a non-zero δ

such that $N + \beta M \sim_u \delta N$.

Proof. Let $N = re \otimes f$ and $M = ru \otimes v$ be unitary similar rank-one nilpotents written in the normalized form. Unitary similarity of $N + M$ and γN implies that $N + M$ must be of rank one, so either e and u are linearly dependent, or, f and v are linearly dependent. Suppose $u = te$ for some t with $|t| = 1$. Compute

$$N + \beta M = re \otimes (f + \beta tv)$$

$$= \|f + \beta tv\| re \otimes \frac{f + \beta tv}{\|f + \beta tv\|} \sim_u \delta N$$

where $\delta = \|f + \beta tv\|$. The case when f and v are linearly dependent can be treated similarly.

In order to show that conditions (i) and (ii) are also sufficient for $N \in \mathcal{F}_0(H)$ to be a rank-one nilpotent we assume that N is not a rank-one nilpotent. Then, if N fulfills (i), (ii) should be false. So, we will find an operator M such that $N + M \sim_u \gamma N$ for some $\gamma \neq 0$ while there will be impossible to choose a δ such that $N - iM \sim_u \delta N$.

By (i) and the previous Lemma $N \in \mathcal{F}_0(H)$ is nilpotent. Suppose rank $N = r > 1$. There exists an $0 \neq y \in \text{Ker} N \cap \text{Im} N$. According to the decomposition $H = \text{span}\{y\} \oplus \{y\}^\perp$ represent

$$N = \begin{bmatrix} 0 & N_1 \\ 0 & N_2 \end{bmatrix}, \quad \text{rank} N_1 = 1, \quad \text{rank} N_2 \geq 1.$$

By taking $U = \mathbb{I} \oplus I$ for any $|u| = 1$ and computing $U^* N U = \begin{bmatrix} 0 & uN_1 \\ 0 & uN_2 \end{bmatrix}$ we see that $N \sim_u \begin{bmatrix} 0 & uN_1 \\ 0 & uN_2 \end{bmatrix}$ for every $|u| = 1$. Combining it with (1) we get that

$$N \sim_u \begin{bmatrix} 0 & uN_1 \\ 0 & vN_2 \end{bmatrix}, \quad \text{for all} \quad u, v \quad \text{with modulus one.}$$

So, $M = \begin{bmatrix} 0 & iN_1 \\ 0 & -iN_2 \end{bmatrix} \in \mathcal{S}_u(N)$, it is not a multiple of N,

$$N + M = \sqrt{2} \begin{bmatrix} 0 & \frac{1+i}{\sqrt{2}} N_1 \\ 0 & \frac{1-i}{\sqrt{2}} N_2 \end{bmatrix} \sim_u \sqrt{2} N,$$

however

$$N - iM = \begin{bmatrix} 0 & 2N_1 \\ 0 & 0 \end{bmatrix}$$

is of rank one and therefore, it cannot be similar to any multiple of N. \qed

Using this characterization of rank-one nilpotents it is easy to see that ϕ preserves rank-one nilpotents in both directions. Standard methods give us the existence of a non-zero constant c and an invertible operator $A \in B(H)$ such that either

$$\phi(x \otimes y) = cA x \otimes A^{-1} y$$

$(x, y \in H$, $\langle x, y \rangle = 0)$ (1)
or
\[
\phi(x \otimes y) = c A y \otimes x A^{-1} \quad (x, y \in H, \langle x, y \rangle = 0).
\] (2)

It is now our aim to show that \(A \) must be a unitary operator. We may assume that \(\phi \) has the property (1). Let us fix an orthogonal pair of unit vectors \(e \) and \(f \). As \(\phi(e \otimes f) \) is a rank-one nilpotent, we will assume (by changing \(\phi \), if necessary) that
\[
\phi(e \otimes f) = e \otimes f, \quad c > 0 \quad \text{and} \quad e \otimes f = c A e \otimes f A^{-1} = c A e \otimes (A^*)^{-1} f.
\]

There is no loss of generality in assuming \(A e = e \) and \(c (A^*)^{-1} f = f \). The latter is equivalent to \(A^* f = c f \). Consequently, \(\{ e \}^\perp \) is an \(A^* \)-invariant subspace and \(\{ f \}^\perp \) is invariant for \(A \). The relation
\[
e \otimes h \sim_u u \| h \| e \otimes f, \quad h \in \{ e \}^\perp,
\]
gives us that
\[
\phi(e \otimes h) = c e \otimes (A^*)^{-1} h \sim_u u \| h \| e \otimes f
\]
and consequently,
\[
\| c (A^*)^{-1} h \| = \| h \| \quad \text{for all} \quad h \in \{ e \}^\perp.
\] (3)

Similarly, we take any \(h' \in \{ f \}^\perp \), apply \(\phi(h' \otimes f) = A h' \otimes f \sim_u u \| h' \| e \otimes f \), and obtain
\[
\| A h' \| = \| h' \| \quad \text{for all} \quad h' \in \{ f \}^\perp.
\] (4)

So, the restrictions of \(c (A^*)^{-1} \) to \(\{ e \}^\perp \) and \(A \) to \(\{ f \}^\perp \) are linear isometries and therefore, unitary operators. Recalling \(A^* f = c f \) and \(A e = e \) operator \(A^* \) can be presented according to the decomposition \(H = \text{span}[e] \oplus \text{span}[f] \oplus \{ e, f \}^\perp \) as
\[
A^* = \begin{bmatrix}
1 & 0 & 0 \\
? & c & 0 \\
? & 0 & c U^*
\end{bmatrix},
\]
where \(U \) is a unitary operator acting on \(\{ e, f \}^\perp \). Then, by unitarity of \(A \) on \(\{ f \}^\perp \) we observe that for any \(g \in \{ e, f \}^\perp \)
\[
\langle Ag, e \rangle = \langle Ag, Ae \rangle = \langle g, e \rangle = 0
\]
and \(c = 1 \), so,
\[
A = \begin{bmatrix}
1 & ? & 0 \\
0 & 1 & 0 \\
0 & 0 & U
\end{bmatrix}.
\]

Hereby we have proved that \(\text{span}[e, f] \) is a reducing subspace of \(A \). We now assume without loss of generality that \(U \) is identity. Finally, let us take any unit vector \(g \in \{ e, f \}^\perp \) and compute \(\phi(f \otimes g) = Af \otimes (A^*)^{-1} g = Af \otimes U g = Af \otimes g \sim_u e \otimes f \). The property \(\| Af \| = \| f \| \) finally yields unitarity of \(A \).

From now on, we can assume that \(\phi(N) = N \) for any finite rank nilpotent \(N \) and, consequently, \(\phi(F) = F \) for any \(F \in \mathcal{F}_0(H) \). The following proposition brings us the control over projections.

Proposition 4. Let \(P \in B(H) \) be a non-trivial (\(\neq 0, I \)) projection (\(P = P^*, P^2 = P \)). If for \(B \in B(H) \) the following holds true:
\[
P + F \sim_u P \iff B + F \sim_u B \quad \text{for every} \quad F \in \mathcal{F}_0(H),
\] (5)
then there exist a non-zero \(\alpha \) and \(\mu \in \mathbb{C} \) such that \(B = \alpha P + \mu I \).
Proof. Let us choose a unit vector $e \in \text{Im} P$ and write P and B in operator matrix form according to the decomposition $H = \text{span} \{e\} \oplus \{e\}^\perp$

$$P = \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix}, \quad Q = Q^*, \quad Q^2 = Q, \quad B = \begin{bmatrix} b_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}. $$

Let $U_{\beta} = \text{diag}(\beta, 1)$, $|\beta| = 1$, $\beta \neq 1$, be a unitary operator. Simple computation shows

$$U_{\beta} B U_{\beta}^* = B + \begin{bmatrix} 0 & (\beta - 1)B_{12} \\ (\beta - 1)B_{21} & 0 \end{bmatrix} = B + F, \quad F \in \mathcal{F}_0(H).$$

By (5) we have $P + F \sim_u P$, so, the operator $P + F$ must be a self-adjoint idempotent. This implies $F = 0$ and

$$B = \begin{bmatrix} b_{11} & 0 \\ 0 & B_{22} \end{bmatrix}. $$

So, $Be = b_e e$, $b_e \in \mathbb{C}$, for every $e \in \text{Im} P$, and the restriction of B to $\text{Im} P$ is thus a scalar operator. The verification that the restriction of B to $\text{Ker} P$ is also scalar is analogous and will be omitted. \hfill \Box

We close the proof of the Main Theorem similarly to the one in [13] by observing first that $\phi(P) = P + \mu P I$ for some $\mu P \in \mathbb{C}$. By the result of Pearcy and Topping [12] every operator in $B(H)$ is a linear combination of a finite number of projections. Therefore, $\phi(A) = A + f(A) I$ for some linear functional f on $B(H)$. It remains to show that $f(A) = 0$ for all $A \in B(H)$. As every operator on $B(H)$ is a finite sum of square zero operators it is enough to observe that $f(N) = 0$ for every N with $N^2 = 0$. Clearly, as $N \sim_u \alpha N$ for all $|\alpha| = 1$, $\phi(N)$ and $\phi(\alpha N)$ have only one point in the spectrum ($f(N)$ and $\alpha f(N)$, respectively) and the spectrum of both coincides for every $|\alpha| = 1$. Therefore, $f(N) = 0$ and consequently, $\phi(A) = A$ for all $A \in B(H)$.

References