
Theoretical Computer Science 411 (2010) 3414–3422

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On extremal cases of Hopcroft’s algorithm
G. Castiglione, A. Restivo, M. Sciortino ∗
University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, Italy

a r t i c l e i n f o

Keywords:
Deterministic finite state automata
Hopcroft’s minimization algorithm
Standard trees
Word trees

a b s t r a c t

In this paper we consider the problem of minimization of deterministic finite automata
(DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of
freedom, so there can exist different executions that can lead to different sequences of
refinements of the set of the states up to the final partition. We find an infinite family of
binary automata for which such a process is unique, whatever strategy is chosen. Some
recent papers (cf. Berstel and Carton (2004) [3], Castiglione et al. (2008) [6] and Berstel et al.
(2009) [1]) have been devoted to find families of automata for which Hopcroft’s algorithm
has its worst execution time. They are unary automata associated with circular words.
However, automata minimization can be achieved also in linear time when the alphabet
has only one letter (cf. Paige et al. (1985) [14]), but such a method does not seem to extend
to larger alphabet. So, in this paper we face the tightness of Hopcroft’s algorithmwhen the
alphabet contains more than one letter. In particular we define an infinite family of binary
automata representing the worst case of Hopcroft’s algorithm, for each execution. They
are automata associated with particular trees and we deepen the connection between the
refinement process of Hopcroft’s algorithm and the combinatorial properties of such trees.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A deterministic finite automaton (DFA) is a recognizer of a regular language and provides a compact representation of the
language itself. Among the equivalent deterministic finite automata (i.e. recognizing the same regular language), there exists
a unique one (up to isomorphism)withminimal number of states, called theminimal automaton of the language. Describing
a regular language by its minimal automaton is important in many applications, such as, for instance, text searching, lexical
analysis or coding systems, where space considerations are prominent.
Finding theminimal automaton equivalent to a givenDFA is a classical and largely studied problem in Theory of Automata

and Formal Languages, also called the automataminimization problem. Severalmethods have been developed tominimize a
deterministic finite automaton. Some of them operate by successive refinements of a partition of the states. For instance, we
recall the well known algorithm proposed by Moore in 1956 (cf. [13]) with time complexity O(kn2), where n is the number
of states of the DFA and k is the cardinality of the alphabet. More efficient is the algorithm provided by Hopcroft in 1971
(cf. [9]) where the refinements are computed in O(kn log n). Furthermore, such an algorithm is the fastest known solution
to the automata minimization problem.
A taxonomy of finite automata minimization algorithms is given in [15]. Very recently, many papers on experimental

comparison of minimization algorithms have been published.
The general complexity of the automataminimization problem is still an openquestion, but there are families of automata

for which Hopcroft’s algorithm runs effectively inΘ(n log n) (cf. [3,6,7]). Such families are unary automata associated with
circular words. However, automata minimization can be achieved also in linear time when the alphabet has only one letter

∗ Corresponding author. Tel.: +39 09123891051.
E-mail addresses: giusi@math.unipa.it (G. Castiglione), restivo@math.unipa.it (A. Restivo), mari@math.unipa.it (M. Sciortino).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.05.025

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82170031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:giusi@math.unipa.it
mailto:restivo@math.unipa.it
mailto:mari@math.unipa.it
http://dx.doi.org/10.1016/j.tcs.2010.05.025

G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422 3415

Fig. 1. Hopcroft’s algorithm.

(cf. [14]), but the solution does not seem to extend to a larger alphabet. In this paper we will focus on finding families
of automata defined on a more than one letter alphabet representing the worst case of Hopcroft’s algorithm. Actually, we
provide an infinite family of binary automata defined by binary labeled trees and relate the execution of Hopcroft’s algorithm
on such automata with some combinatorial properties of the associated binary tree. Recall that, in general, Hopcroft’s
algorithm has several degrees of freedom since it leaves several choices to the programmer. Hence, there can exist different
executions that could produce different sequences of refinements of the set of states leading to the final partition. Even so,
for binary automata defined here the refinement process leading from the initial partition of the set of states to the final
one is uniquely determined, whatever strategy is used. However, different executions, while producing the same partitions
of the states, may have different running time. The main result of this paper is that there exists an infinite subfamily of
such automata representing the worst case of Hopcroft’s algorithm, for each execution. A preliminary version of this paper
appeared in [8].
The paper is organized as follows. Section 2 contains the description of Hopcroft’s algorithm by focusing on its degrees of

freedom. Section 3 introduces the notion of standard binary tree and standard tree-like automaton. The uniqueness of the
refinement process of Hopcroft’s algorithm on standard tree-like automata is studied in Section 4. In Section 5we define the
notion of word tree and deepen the problem of tightness of Hopcroft’s algorithm, by providing an infinite family of binary
automata representing the worst case of the algorithm for each execution. Section 6 is devoted to some conclusions.

2. Hopcroft’s algorithm

In 1971 Hopcroft proposed an algorithm for minimizing a deterministic finite state automaton with n states, over an
alphabet Σ , in O(kn log n) time (cf. [9]). This algorithm has been widely studied and described by many authors (see for
example [10,12,15]) because of the difficult to give its theoretical justification, to prove correctness and to compute running
time.
In Fig. 1 we give a brief description of the algorithm.
Given an automatonA = (Q ,Σ, δ, q0, F), it computes the coarsest congruence that saturates F . Let us observe that the

partition {F ,Q \ F}, trivially, saturates F. Given a partition Π = {Q1,Q2, . . . ,Qm} of Q , we say that the pair (Qi, a), with
a ∈ Σ , splits the class Qj if δ−1a (Qi) ∩ Qj 6= ∅ and Qj * δ−1a (Qi). In this case, the class Qj is split into Q

′

j = δ
−1
a (Qi) ∩ Qj and

Q ′′j = Qj \ δ
−1
a (Qi). Furthermore, the partitionΠ is a congruence if and only if for any 1 ≤ i, j ≤ m and any a ∈ Σ , the pair

(Qi, a) does not split Qj.
Hopcroft’s algorithm operates by a sequence Π1,Π2, . . . ,Πl of successive refinements of a partition of the states and

it is based on the so-called ‘‘smaller half’’ strategy. Actually, it starts from the partition Π1 = {F ,Q \ F} and refines it by
means of splitting operations until it obtains a congruence, i.e. until no split is possible. To do that it maintains the current
partitionΠi and a setW ⊆ Πi ×Σ , called waiting set, that contains the pairs for which it has to be checked whether some
classes of the current partition are split. The main loop of the algorithm takes and deletes one pair (C, a) fromW and, for
each class B ofΠi, checks if it is split by (C, a). If it is the case, the class B inΠi is replaced by the two sets B′ and B′′ obtained
from the split. For each b ∈ Σ , if (B, b) ∈ W , it is replaced by (B′, b) and (B′′, b), otherwise the pair (min(B′, B′′), b) is added
toW (where min(B′, B′′) stands for the smaller of the two sets). Let us observe that a class is split by (B′, b) if and only if it
is split by (B′′, b), hence, the pair (min(B′, B′′), b) is chosen for convenience.
We point out that the algorithm has a degree of freedom because the pair (C, a) to be processed at each step is freely

chosen. Another free choice intervenes when a set B is split into B′ and B′′ with the same size and it is not present inW . In
this case, the algorithm can, indifferently, add toW either B′ or B′′.
Such considerations imply that there can be several executions and several sequences of successive refinements that

starting from the initial partitionΠ1 = {F ,Q \ F} lead to the coarsest congruence of the input automatonA.

3416 G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422

Fig. 2. Binary infinite labeled tree.

As regards the running time of the algorithm we can observe that the splitting of classes of the partition, with respect
to the pair (C, a), takes a time proportional to the cardinality of the set C . Hence, the running time of the algorithm is
proportional to the sum of the cardinality of all sets processed. Hopcroft proved that the running time is bounded by
O(k|Q | log |Q |). In [3] the authors proved that this bound is tight, in the sense that they provided a family of unary automata
for which there exist a sequence of refinements such that the time complexity of the algorithm isΘ(k|Q | log |Q |). However,
for the same automata there exist other sequences of refinements producing executions that run in linear time. In [6] we
presented a family of unary automata forwhich there is a unique sequence of refinements and a unique execution.Moreover,
we defined a subclass of such automata for which the running time is Θ(k|Q | log |Q |). Such a subclass of unary automata
was extended in [1]. Actually, unary automata represent a very special case for the automata minimization problem. In fact,
theminimization can be achieved also in linear timewhen the alphabet has only one letter (cf. [14]). So, we are interested in
facing both the problem of the uniqueness of the refinements and the tightness of the algorithmwhen the alphabet contains
more than one letter.
The next sections are devoted to defining an infinite family of binary automata for which the running time of Hopcroft’s

algorithm isΘ(k|Q | log |Q |), for each execution.

3. Standard trees and tree-like automata

In this section we present a class of binary automata defined by using the notion of binary labeled tree.
Let Σ = {0, 1} and A = {a, b} be two binary alphabets. A binary labeled tree over A is a map τ : Σ∗ → A whose

domain dom(τ) is a prefix-closed subset of Σ∗. The elements of dom(τ) are called nodes, if dom(τ) has a finite (resp.
infinite) number of elements we say that τ is finite (resp. infinite). The height of a finite tree τ , denoted by h(τ), is defined
as max{|u| + 1, u ∈ dom(τ)}. Actually, in the literature, factors of height h are sometimes considered of height h − 1 (cf.
[5]). In this paper, the height of a tree is the number of nodes along a maximal branch and not the length of the path. Our
convention is motivated by the fact that we are interested in the nodes and their labels. We say that a tree τ̄ is a prefix of
a tree τ if dom(τ̄) ⊆ dom(τ) and τ̄ is the restriction of τ to dom(τ̄). A complete infinite tree is a tree whose domain is Σ∗.
Besides, a complete finite tree of height n is a tree whose domain is Σn−1. The empty tree is the tree whose domain is the
empty set.
If x, y ∈ dom(τ) are nodes of τ such that x = yi for some i ∈ Σ , we say that y is the father of x and in particular, if i = 0

(resp. i = 1) x is the left son (resp. right son) of y. A node without sons is called a leaf and the node ε is called the root of the
tree. Given a tree τ , the outer frontier of τ is the set Fr(τ) = {xi|x ∈ dom(τ), i ∈ Σ, xi /∈ dom(τ)}.

Example 1. In Fig. 2 an example of an infinite tree γ is depicted. We have, for instance, 0111, 1011 ∈ dom(γ) and 0110,
1001, 1000 ∈ Fr(γ). In Fig. 3 the finite tree τ is depicted.

The nodes belonging to the outer frontier are represented by a box.
Let τ and τ ′ be two binary labeled trees. We say that τ is a subtree of τ ′ if there exist a node v ∈ dom(τ ′) such that:

(i) v · dom(τ) = {vu|u ∈ dom(τ)} ⊆ dom(τ ′)
(ii) τ(u) = τ ′(vu) for all u ∈ dom(τ).

In this case we say that τ is a subtree of τ ′ that occurs at node v.
In [11] operations among trees have been introduced. Here, we are interested in the concatenation among trees. Roughly

speaking, we can say that in order to concatenate two trees τ1 and τ2 we attach the root of τ2 to one of the element of the
outer frontier of τ1. Obviously, since the outer frontier of τ1 can have more than one element, by concatenating τ1 and τ2 we
obtain a set of trees. We define the simultaneous concatenation of τ1 and τ2 the tree τ1 ◦ τ2 such that:

Fig. 3. A finite tree τ .

G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422 3417

Fig. 4. The tree τ ◦ τ .

(i) dom(τ1 ◦ τ2) = dom(τ1) ∪ Fr(τ1)dom(τ2);

(ii) ∀x ∈ dom(τ1 ◦ τ2), τ1 ◦ τ2(x) =
{
τ1(x) if x ∈ dom(τ1)
τ2(y) if x = zy, z ∈ Fr(τ1), y ∈ dom(τ2).

Let τ be a tree, with τω wedenote the infinite simultaneous concatenation τ ◦τ ◦τ ◦. . .. Notice that, by infinitely applying
the simultaneous concatenation, we obtain a complete infinite tree. In Fig. 4 τ ◦ τ is depicted.
We define a factor of a tree a finite complete subtree of the tree, and in the following we are interested in particular

factors we define by using some notations given in [5].
Let τ be a tree, σ and σ̄ two factors of τ such that σ̄ is the complete prefix of σ of height h(σ) − 1, then σ is called an

extension of σ̄ in τ . A factor σ of a tree τ is extendable in τ if there exists at least one extension of σ in τ .
A factor σ of τ is 2-special if there exist exactly two different extensions of σ in τ .
We say that γ is a circular factor of τ if it is a factor of τω with h(γ) ≤ h(τ). A circular factor γ of τ is a special circular

factor if there exist at least two different extensions of γ in τω (that we can call circular extensions or simply extensions). A
special factor is called 2-special circular factor if it has exactly two different extensions.

Example 2. In Fig. 5 three factors of the tree τ (see Fig. 3) are depicted. The single node labeled by b is a 2-special circular
factor, indeed it has two different extensions depicted in Fig. 5(a) and (b). The single node labeled by a has a unique extension
depicted in Fig. 5(c).

The concept of circular factor can be easily understood by noting that in the case of unary tree it coincides with the
well-known notion of circular factor of a word.
With reference to a characterization of the notion of circular standard word given in [4], we say that a finite tree τ is a

standard tree if for each 0 ≤ h ≤ h(τ)− 2 it has only a 2-special circular factor of height h.

Remark 1. In fact, one can easily prove that a tree τ is standard if and only if, for each k = 1, . . . , h(τ) − 1, τ has exactly
k+ 1 circular factors of height k.

Example 3. An example of standard tree, called finite uniform tree, is a complete tree defined by labeling all the nodes at
the same level with the same letter taken in the same order it occurs in a given standard word. In Fig. 6 we give the uniform
tree from the word abaab.

Example 4. In Fig. 7(a) a tree that is not standard is depicted. Indeed the trees in Fig. 7(b) and (c) have three different
extensions and the tree in Fig. 7(d) is a 2-special circular factor.

LetA = (Q ,Σ, δ, q0, F) be a deterministic finite automaton (DFA) over the finite alphabetΣ , where Q is a finite state set,
δ is a transition function, q0 ∈ Q is the initial state and F ⊆ Q the set of final states. Let G = (V , E) be the transition directed
graph associated with A. We say that A is a tree-like automaton if G = (V , E) has a subgraph Gt = (V , Et), containing all
nodes V , which is a tree (called skeleton) with root q0, and such that all edges of E\Et are edges from a node to an ancestor.
Given a finite binary labeled tree τ we can uniquely associate a tree-like automaton Aτ having τ as skeleton and such

that for each missing edge we add a transition to the root of the tree. Moreover, the root is the initial state and the states
corresponding to nodes labeled by a (resp. b) are non-final (resp. final) states.

(a) (b) (c)

Fig. 5. Three factors of the tree τ depicted in Fig. 3.

3418 G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422

Fig. 6. The finite uniform tree defined from the word abaab.

Example 5. In Fig. 8 a finite labeled tree and the corresponding tree-like automaton are depicted. In the automaton, the
initial state labeled by 1 corresponds to the root of the tree.

4. Hopcroft’s algorithm on standard tree-like automata

In this sectionwedeepen the connection between the refinement process of Hopcroft’s algorithmwhen applied on a tree-
like automaton associated with a standard tree and the combinatorial properties of the tree itself. By using such properties
we prove that in such a case the refinement process is uniquely determined.
We define standard tree-like automaton a tree-like automaton Aτ associated with a standard tree τ . The main theorem

of this section gives a characterization of the partitions representing the refinement process of Hopcroft’s algorithm on
standard tree-like automata.
LetAτ = (Q ,Σ, δ, q0, F) be a tree-like automaton. For any circular factor σ of τ , we define the subset Qσ of states ofAτ

that are occurrences of σ in τ . Trivially, we have that Qε = Q , Qb = F and Qa = Q \ F .
The following proposition and corollary establish a close relation between the split operation during the execution of

Hopcroft’s algorithm on a standard tree-like automaton and the notion of circular special factor of a standard tree.

Proposition 1. Let Aτ be a standard tree-like automaton. Let Qσ and Qγ be classes of a partition of Q . If (Qγ , x) splits Qσ , for
some x ∈ Σ , then h(γ) ≥ h(σ) and σ is a prefix of a circular 2-special factor of τ .

Proof. Let us suppose (Qγ , 0) splits Qσ (analogously for (Qγ , 1)). We have that δ−10 (Qγ) ∩ Qσ 6= ∅ and δ
−1
0 (Qγ) ∩ Q

c
σ 6= ∅.

If h(γ) < h(σ) then γ is a prefix of the left subtree of σ i.e. Qσ ⊇ δ−10 (Qγ), i.e. (Qγ , 0) does not cause a split of Qσ . Hence,
we proved that h(γ) ≥ h(σ). In the case that h(γ) = h(σ), if (Qγ , 0) splits Qσ in Q ′σ and Q

′′
σ we have that Q

′
σ is the set of

occurrences of σ such that γ is the extension of height h(σ) of the left complete subtree of σ . On the contrary, Q ′′σ is the set
of occurrences of σ such that the extension of height h(σ) of the left complete subtree of σ is different from γ then we can
deduce that σ has at least two different extensions. Since τ is standard, σ is a circular 2-special factor of τ . We denote by
σ ′ and σ ′′ the two extensions therefore Q ′σ = Qσ ′ and Q

′′
σ = Qσ ′′ . In the case h(γ) > h(σ), if (Qγ , 0) splits Qσ in Q

′
σ and Q

′′
σ

then the occurrences of σ that are in Q ′σ have γ as complete left subtree, and the occurrences of σ that are in Q
′′
σ have, as

complete left subtree, γ ′ 6= γ . Obviously, γ and γ ′ differ at a level greater than h(σ)− 1. Hence, σ is a prefix of a tree with
two different extensions, i.e. since τ is standard, σ is a prefix of a 2-special factor of τ . �

From the proof of the previous proposition it is possible to state the following corollary.

Corollary 2. LetAτ be a standard tree-like automaton. Let Qσ and Qγ be classes of a partition of Q . If (Qγ , x) splits Qσ , for some
x ∈ Σ , with h(γ) = h(σ), then σ is a 2-special circular factor of τ . The resulting classes are Qσ ′ and Qσ ′′ , where σ ′ and σ ′′ are
the only two possible extensions of σ in τ . Viceversa, if σ is a 2-special circular factor of τ and Qσ is a class of a partition of Q then
Qσ is split in Qσ ′ and Qσ ′′ where σ ′ and σ ′′ are the unique two extensions of σ in τ .

Remark 2. If the circular factor σ is not special, i.e. it has only one extension σ ′ then Qσ = Qσ ′ .

(a) (b) (c) (d)

Fig. 7. A not standard tree τ .

G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422 3419

Fig. 8. A tree τ and tree-like automatonAτ .

At each iteration of the main loop of the algorithm, the pair extracted from the waiting set can either cause some splits
or not. Hence, at each step, the current partition can be either equal to or different from that one of the previous iteration.
We call refinement process the sequence Π1,Π2, . . . ,Πm of the different partitions produced during an execution of the
algorithm, where Π1 = {F ,Q \ F} and Πm is the Nerode equivalence. The following theorem states that, in the case of
standard tree-like automata, the sequence of partitions created during the refinement process of Hopcroft’s algorithm is
unique whatever strategy is used for choosing and deleting any pair from the waiting set. The statement of the theorem
characterizes the partition after each split operation of Hopcroft’s algorithm on a standard tree-like automaton.

Theorem 3. LetAτ be a standard tree-like automaton. The refinement processΠ1, . . . ,Πm is uniquely determined. Furthermore,
m = h(τ)− 1 and for each 1 ≤ k ≤ h(τ)− 1,

Πk = {Qσ | σ is a circular factor of τ with h(σ) = k}.

Proof. LetAτ be a standard tree-like automaton andΠk the k-th partition of the refinement process.Weprove the statement
by induction on k.
If k = 1,Π1 = {F = Qb,Q \ F = Qa}.
We suppose Πk−1 = {Qσ | σ is a circular factor of τ with h(σ) = k − 1}, with k − 1 < h(τ) − 1. Since τ is standard and
k−1 < h(τ)−1 then there exists a 2-special circular factor γ of height k−1. Qγ ∈ Πk−1 thenΠk−1 is not the final partition,
i.e. there exists a pair in the waiting set that splits Qγ in Qγ ′ and Qγ ′′ , where γ ′ and γ ′′ are the only two extensions of γ .
By Proposition 1, Qγ is the unique element of Πk−1 that is split. It follows that each σ 6= γ has a unique extension σ ′ (i.e.
Qσ = Qσ ′), then

Πk = {Qγ ′ ,Qγ ′′} ∪ {Qσ ′ | σ is a circular factor of τ with h(σ) = k− 1, σ 6= γ }
= {Qσ | σ is a circular factor of τ with h(σ) = k}.

The final partition is obtained when k = h(τ)− 1, because no circular factor of height h(τ)− 1 can be 2-special. �

Remark 3. The theorem states also that the partitionΠk of the set of states has exactly k+ 1 classes.

One can pose the problem to characterize the family of all automata for which the refinement process is uniquely
determined. It is still an open question whether there exist some tree-like automata that are not standard for which the
refinement process is unique. For instance, one can verify that for the tree-like automaton associated with the non-standard
tree depicted in Fig. 7 the refinement process produced by Hopcroft’s algorithm is not unique.

5. Word trees

The aim of this section is to compute the running time of Hopcroft’s algorithm on the automata associated with the word
trees here defined. The main results of the section make use of a close relation between the notion of circular factors of
words and trees.
Recall that a circular factor of a word w, over the alphabet A = {a, b}, is a factor of ww of length not greater than the

length ofw denoted by |w|. Moreover, a circular factor u ofw is said to be special if both ua and ub are circular factors ofw.
LetΣ = {0, 1} and A = {a, b}. Given two words v = v1v2 . . . vn−1 ∈ Σ∗ and w = w1w2 . . . wn ∈ A∗, by τv,w we denote

the labeled tree such that dom(τv,w) is the set of prefixes of v and the map is defined as follows:{
τv,w(ε) = w1
τv,w(v1v2 . . . vi) = wi+1 ∀1 ≤ i ≤ n− 1.

3420 G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422

We call word tree the finite labeled tree τv,w . When v is obtained by taking the prefix of length n − 1 of w and by
substituting a’s with 0’s and b’s with 1’s, we use the simpler notation τw . In Fig. 8 a word tree τw with w = abaababa is
depicted.
Our investigation is focused on word trees associated with standard words.
We recall the well known notion of standard word. Let d1, d2, . . . , dn, . . . be a sequence of natural integers, with d1 ≥ 0

and di > 0, for i = 2, . . . , n, Consider the following sequence of words {sn}n≥0 over the alphabet A: s0 = b, s1 = a,
sn+1 = sdnn sn−1 for n ≥ 1. Each finiteword sn in the sequence is called a standardword. It is uniquely determined by the (finite)
directive sequence (d0, d1, . . . , dn−1). In the special case where the directive sequence is of the form (1, 1, . . . , 1, . . .) we
obtain the sequence of Fibonacci words.

Proposition 4. Let τw be a word tree. There exists a one-to-one correspondence ψ between the set of circular factors of w and
the set of circular factors of τw . Furthermore, if u is a circular factor ofw then |Qu| = |Qψ(u)|.

Proof. Let ϕ be the application from A to Σ such that ϕ(a) = 0 and ϕ(b) = 1. Let σ be a circular factor of τw of height
h. It uniquely individuates a circular factor u1u2 . . . un of w as follows. If x is the label of the root of σ , u1 = σ(ϕ(x)) and
ui = σ(ϕ(ui−1)), with 1 < i ≤ h. Roughly speaking, we follow the root to leaf path such that for each node we take the left
son if the node is labeled by a and the right son otherwise.
Conversely, if u is a circular factor of w of length h then ψ(u) = τu is a subtree of τw and then it uniquely determines a

circular factor of τw of height h.
We have that each occurrence of u in w corresponds to a state of the automaton that is an occurrence of τu in τw and

viceversa. Hence the thesis. �

Hence, we have the following corollaries.

Corollary 5. w is a standard word if and only if the word tree τw is a standard tree.

Proof. It follows by the fact that u is a circular special factor ofw if and only if ψ(u) is a 2-special circular factor of τw . �

Corollary 6. Two wordsw andw′ are conjugates if and only if the trees τw and τw′ have the same circular factors.

The standard word trees represent an instance of standard trees that is opposite to the finite uniform tree described in
Section 3. The difference consists in the fact that the two extensions of each 2-special circular factor differ only by a leaf,
while in the case of a uniform tree all the leaves are involved.

Lemma 7. Let τw be a standard word tree andAτw the associated automaton. Let σ and γ be two circular factors of τw having
the same height. If (Qγ , 0) (resp. (Qγ , 1)) splits Qσ then (Qγ , 1) (resp. (Qγ , 0)) does not split Qσ .

Proof. If (Qγ , 0) splits Qσ then σ is a 2-special circular factor and by Proposition 4 σ individuates a special circular factor
u of w that, trivially has two possible extensions u0 and u1. Each of them determines the two extensions σ ′ and σ ′′ of σ
that differ only in the leaf reached by the path labeled u0 and u1, respectively. Furthermore, we have that these differences
occur in the left subtrees of σ ′ and σ ′′. By definition of word tree τw , we have that the right subtrees of σ ′ and σ ′′ are equal.
It means that Qγ can not split Qσ with respect to the letter 1. �

We know that for each automaton several executions of the algorithm can exist. We denote by c(A) the running time of
Hopcroft’s algorithm to minimizeA in the worst execution. Note that, in order to evaluate the running time of an execution
of the algorithm we compute the sum of the sizes of the classes extracted from the waiting set.

Proposition 8. Let τw be a standard word tree. Then

c(Aτw) = 2
∑

σ∈sp(τw)

min(|Qσ ′ |, |Qσ ′′ |),

where with sp(τw) we denote the set of 2-special circular factor of τw .

Proof. Firstly, we recall that the running time is proportional to the cardinality of the classes processed of the waiting set.
So, in order to make the computation of c(A) we have to establish which classes each time go into the waiting set and in
particular, which classes are extracted and processed. We know, by Corollary 2, that a class Qσ is split when it is the set of
occurrences of a 2-special circular factor of τw . Then, at each step we have at most a unique split of Qσ in Qσ ′ and Qσ ′′ . If
(Qσ , x) is in the waiting set there is a substitution of (Qσ , x)with (Qσ ′ , x) and (Qσ ′′ , x) and an addition of (min(Qσ ′ ,Qσ ′′), y),
with x 6= y. Otherwise, if (Qσ , x) does not belong to the waiting set there is the addition of (min(Qσ ′ ,Qσ ′′), 0) and
(min(Qσ ′ ,Qσ ′′), 1). Then, the worst execution is obtained when after each split the minimal class is added to the waiting
set each time with both the two letters of the alphabet. We prove that such an execution can be achieved. By Lemma 7 if
the waiting set contains both (C, 0) and (C, 1), for some class C , the worst execution is obtained by extracting the splitting
pair after the other one. Indeed, by following such a strategy, starting from the first step, it is easy to see that, each time a
splitter pair is extracted, the waiting set is empty. Hence, after the split we add to the waiting set the (min(Qσ ′ ,Qσ ′′), 0) and
(min(Qσ ′ ,Qσ ′′), 1). �

G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422 3421

In [7,1] the authors consider the unary cyclic automatonAw associated with a wordw and give an exact computation of
the running time of the algorithm on these automata, whenw is a standardword. In particular, in [7], the authors prove that
there is a unique execution of the algorithm for these automata and that c(Aw) =

∑
u∈sp(w)min(|Qu0|, |Qu1|), where sp(w)

is the set of special factors ofw. For sake of brevity we refer to [3] for the definition of the notion of unary cyclic automaton.
Intuitively, such an automaton is a tree-like automaton associated with a word tree τv,w such that v is a word in a unary
alphabet.
The following result relates theworst running time c(Aτw)ofHopcroft’s algorithmon the automatonAτw and the running

time c(Aw)whenw is a standardword. Recall that, since in the unary case the execution is unique, c(Aw) is the exact running
time of the algorithm onAw .

Proposition 9. Let τw be a standard word tree andw the corresponding standard word.

c(Aτw) = 2c(Aw).

Proof. Remark that, by Proposition 4 and Corollary 5, there is a one-to-one correspondence between the set of the 2-special
circular factors of τw and the set of the special factors of w. It follows that if u is a circular special factor of w and σ the
corresponding 2-special circular factor of τw , then |Qu| = |Qσ |. �

The previous proposition states that Hopcroft’s algorithm on a binary standard tree-like automaton inherits all the worst
cases obtained when it is applied on unary cyclic automata associated with standard words. The unary automata represent-
ing the worst cases of Hopcroft’s algorithm are the unary cyclic automataAfn where fn is the Fibonacci word of order n. Let
Fn = |fn| = |Q |, in [7] the exact computation of c(Afn) is given as follows.

Theorem 10. LetAfn be a unary cyclic automaton associated with the standard word fn, with n ≥ 0, then

K
φ
Fn log Fn ≤ c(Afn) ≤ KFn log Fn,

where K = 3
5 logφ and φ is the golden ratio

1+
√
5

2 .

Note that for these unary automata both the refinement process and the execution is unique, the inequality has the
simple arithmetic justification that Fn = [

φn
√
5
], where [x] is the nearest integer function.

The extension to the binary case is formalized in the following theorem.

Theorem 11. Hopcroft’s algorithm on tree-like automataA = (Q ,Σ, δ, q0, F) associated with standard word trees runs in time
Θ(|Σ ||Q | log |Q |).

Hence, the theorem states that there exist automata on a binary alphabet for which the upper bound for the time com-
plexity of Hopcroft’s algorithm is achieved. From Proposition 9 and Theorem 10, an infinite family of such automata is
obtained by considering binary automata associated with the word trees τfn , where fn is the Fibonacci word of order n, for
each n ≥ 0. Although for these standard automata the refinement process is unique, there may be different executions that
produces the same sequence of partitions of the states. Such executions may have different running time. In the following
theorem we prove that each execution has a time complexity Θ(|Q | log |Q |). With t(Fn) we denote the running time of an
execution of Hopcroft’s algorithm onAτfn

.

Remark 4. One can prove that during the refinement process of Hopcroft’s algorithm, each class of any partition has as
cardinality a Fibonacci number and, when it is split, the cardinalities of the resulting classes are the two preceding Fibonacci
numbers, respectively.

Theorem 12. LetAτfn
be a standard automaton associated with the standard tree τfn , with n ≥ 0. Each execution of Hopcroft’s

algorithm on this automaton has a running time that satisfies the following inequalities:

K
φ
Fn log Fn + Fn − 1 ≤ t(Fn) ≤ 2KFn log Fn,

where K = 3
5 logφ .

Proof. The second inequality follows from Theorem 10 and Proposition 9. In order to prove the first one we compute the
running time of the best execution of the algorithm on the automaton.
Let Π1,Π2, . . . ,ΠFn−1 be the unique sequence of refinements of the set of the states. There exists a unique set of classes
P = {Qσ1 ,Qσ2 , . . . ,QσFn−1} such that for each 1 ≤ i ≤ Fn − 1 one has that Qσi is never added to the waiting set and
Qσi ⊂ Qσi+1 . By considering Remark 4, one can note that such classes have, as cardinality, Fn, Fn−1, . . . , F1, respectively.
As soon as a class Qσi ∈ P is split, the minimal class between Qσ ′i and Qσ ′′i is added to the waiting set paired both with 0

and 1. Each of these resulting classes has as cardinality Fn−2, Fn−3, . . . , F0, respectively.
All the classes not belonging to P and included in some partition of the set of states will be added to the waiting set after

some split. The best execution of the algorithm is obtained by extracting at each step the unique splitter class. By following

3422 G. Castiglione et al. / Theoretical Computer Science 411 (2010) 3414–3422

such a strategy, if (Qσ , x) is in the waiting set and it is not a splitter then it will be never extracted but, when Qσ is split,
(Qσ , x)will be substituted by (Qσ ′ , x) and (Qσ ′′ , x), that are not splitter too, and the pair (min(Qσ ′ ,Qσ ′′), y), with y 6= x, will
be added to the waiting set. On the contrary, the pair added after the split of a class in P contributes one more time to the
size of the waiting set. At each step of the refinement process during this execution, if σ is a 2-special circular factor either
(Qσ , x) is in the waiting set for some x or Qσ belongs to P . In any case the pair (min(Qσ ′ ,Qσ ′′), y) is added with y 6= x and,
in particular, if Qσ ∈ P , (min(Qσ ′ ,Qσ ′′), x) is added too. Then the running time is

∑
σ∈Sp(τfn)

min(|Qσ ′ |, |Qσ ′′ |)+
∑n−2
i=0 Fi =

c(Afn)+ Fn − 1 ≥
K
φ
Fn log Fn + Fn − 1. The last inequality follows by Theorem 10. �

6. Conclusions

In this paperwe face the problemofminimization of deterministic finite automatawith reference toHopcroft’s algorithm.
We consider the refinement processes of the algorithm andwe exhibit an infinite family of binary automata for which there
is a unique process. It would be interesting to give a characterization of the automata for which the sequence of successive
refinements is uniquely determined.
Moreover we deepen the tightness of the algorithm when the alphabet contains more than one letter. In particular we

define an infinite family of binary automata representing the worst case of Hopcroft’s algorithm, whatever execution is
considered. Such a family is defined by using the notion of word tree.
Remark that both the notions of word tree and standard tree here defined can arouse an independent interest because

they are closely related to a class of infinite trees, called Sturmian Trees (cf. [2]). Actually theword trees allowone to construct
an infinite family of Sturmian trees having some interesting combinatorial properties as, for instance, the balance.

References

[1] J. Berstel, L. Boasson, O. Carton, Continuant polynomials andworst-case behavior of Hopcroft’s minimization algorithm, Theoretical Computer Science
410 (2009) 2811–2822.

[2] J. Berstel, L. Boasson, O. Carton, I. Fagnot, Sturmian trees, Theory of Computing Systems 46 (3) (2010) 443–478.
[3] J. Berstel, O. Carton, On the complexity of Hopcroft’s state minimization algorithm, in: M. Domaratzki, A. Okhotin, K. Salomaa, S. Yu (Eds.), CIAA,
in: Lecture Notes in Computer Science, vol. 3317, Springer, 2004, pp. 35–44.

[4] J.P. Borel, C. Reutenauer, On Christoffel classes, RAIRO-Theoretical Informatics and Applications 450 (2006) 15–28.
[5] A. Carpi, A. de Luca, S. Varricchio, Special factors and uniqueness conditions in rational trees, Theory of Computing Systems 34 (4) (2001) 375–395.
[6] G. Castiglione, A. Restivo, M. Sciortino, Hopcroft’s algorithm and cyclic automata, in: Carlos Martin-Vide, Friedrich Otto, Henning Fernau (Eds.), LATA,
in: Lecture Notes in Computer Science, vol. 5196, Springer, 2008, pp. 172–183.

[7] G. Castiglione, A. Restivo, M. Sciortino, Circular Sturmian words and Hopcroft’s algorithm, Theoretical Computer Science 410 (2009) 4372–4381.
[8] G. Castiglione, A. Restivo, M. Sciortino, On extremal cases of Hopcroft’s algorithm, in: Sebastian Maneth (Ed.), CIAA, in: Lecture Notes in Computer
Science, vol. 5642, Springer, 2009, pp. 14–23.

[9] J.E. Hopcroft, An n log n algorithm for mimimizing the states in a finite automaton, in: Z. Kohavi, A. Paz (Eds.), Theory of Machines and Computations
(Proc. Internat. Sympos. Technion, Haifa, 1971), Academic Press, New York, 1971, pp. 189–196.

[10] T. Knuutila, Re-describing an algorithm by Hopcroft, Theoretical Computer Science 250 (2001) 333–363.
[11] S. Mantaci, A. Restivo, Codes and equations on trees, Theoretical Computer Science 255 (1–2) (2001) 483–509.
[12] O. Matz, A. Miller, A. Potthoff, W. Thomas, E. Valkema, Report on the program AMoRE. Technical Report 9507, Inst. f. Informatik u.Prakt. Math., CAU

Kiel, 1995.
[13] E.F. Moore, Automata Studies, in: Gedaken Experiments on Sequential Machines, 1956, pp. 129–153.
[14] R. Paige, R.E. Tarjan, R. Bonic, A linear time solution to the single function coarsest partition problem, Theoretical Computer Science 40 (1985) 67–84.
[15] B. Watson, A taxonomy of finite automata minimization algorithms, Technical Report 93/44, Eindhoven Univ. of Tech., Faculty of Math. and Comp. Sc.,

1994.

	On extremal cases of Hopcroft's algorithm
	Introduction
	Hopcroft's algorithm
	Standard trees and tree-like automata
	Hopcroft's algorithm on standard tree-like automata
	Word trees
	Conclusions
	References

