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SUMMARY

Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]
plays a fundamental role in clathrin-mediated endo-
cytosis. However, precisely how PI(4,5)P2 metabo-
lism is spatially and temporally regulated during
membrane internalization and the functional conse-
quences of endocytosis-coupled PI(4,5)P2 dephos-
phorylation remain to be explored. Using cell-free
assays with liposomes of varying diameters, we
show that the major synaptic phosphoinositide
phosphatase, synaptojanin 1 (Synj1), acts with
membrane curvature generators/sensors, such as
the BAR protein endophilin, to preferentially remove
PI(4,5)P2 from curved membranes as opposed to
relatively flat ones. Moreover, in vivo recruitment of
Synj1’s inositol 5-phosphatase domain to endophi-
lin-induced membrane tubules results in fragmenta-
tion and condensation of these structures largely in
a dynamin-dependent fashion. Our study raises the
possibility that geometry-based mechanisms may
contribute to spatially restricting PI(4,5)P2 elimina-
tion during membrane internalization and suggests
that the PI(4,5)P2-to-PI4P conversion achieved by
Synj1 at sites of high curvature may cooperate with
dynamin to achieve membrane fission.

INTRODUCTION

Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is a phosphoi-

nositide that is concentrated in the cytosolic leaflet of the

plasmamembrane, where it plays a primary role in the regulation

of a large number of biological functions, including signal trans-

duction, cytoskeletal dynamics, ion permeability and traffic to

and from the cell surface (Di Paolo and De Camilli, 2006).

Consistent with its multiple roles in cell physiology, PI(4,5)P2 is

subject to tight regulation through a variety of lipid enzymes,

such as phospholipases, phosphatidylinositol phosphate ki-

nases and inositol 4- and 5-phosphatases. Thus, a fundamental

question is how the metabolism of PI(4,5)P2 is coordinated and

spatially restricted to ensure the appropriate distribution of
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PI(4,5)P2 levels at the membrane, in order to simultaneously

mediate these complex processes within the same cell (Di Paolo

and De Camilli, 2006; McLaughlin and Murray, 2005). A partial

answer may be provided by reports that PI(4,5)P2 appears to

be nonuniformly distributed at the plasma membrane in the

form of microdomains (Chichili and Rodgers, 2009; Milosevic

et al., 2005; Pike, 2009), though reports to the contrary also exist

(van Rheenen et al., 2005). These putative microdomains may

restrict access by PI(4,5)P2 metabolizing enzymes that are

themselves regulated by a variety of mechanisms, including

phosphorylation, dephosphorylation, and interactions with

binding partners mediating their subcellular targeting (Di Paolo

and De Camilli, 2006).

The essential nature of PI(4,5)P2 homeostasis has been

demonstrated by studies on clathrin-mediated endocytosis.

Indeed, PI(4,5)P2 functions in endocytosis, at least in part, to

recruit and concentrate at the plasma membrane core compo-

nents of the endocytic machinery, such as the clathrin adaptors

AP-2, AP-180, and epsin (Di Paolo and De Camilli, 2006; Traub,

2005). Additional factors that regulate fundamental aspects of

the endocytic process, including the fission factor dynamin,

bind to PI(4,5)P2 and this interaction appears to be critical for

their function (Jost et al., 1998; Ramachandran and Schmid,

2008). Importantly, characterization of the main PI(4,5)P2

5-phosphatase in the brain, synaptojanin 1 (Synj1), has indicated

that PI(4,5)P2 dephosphorylation is essential for the proper recy-

cling of synaptic vesicles at neuronal synapses in mice. For

instance, a decreased ability to hydrolyze PI(4,5)P2 was shown

to cause pleiotropic phenotypes, such as the accumulation of

clathrin-coated vesicles and other aberrant endocytic intermedi-

ates as well as slower rates of synaptic vesicle endocytosis and

recycling in Synj1–/– neuronal synapses (Cremona et al., 1999;

Hayashi et al., 2008; Kim et al., 2002; Mani et al., 2007). Similar

observations were made in synapses from the worm (Harris

et al., 2000) and the fly (Verstreken et al., 2003). In budding yeast,

lack of synaptojanin-like proteins results in alterations of the

actin cytoskeleton and of the endocytic process (Singer-Kruger

et al., 1998; Srinivasan et al., 1997; Stefan et al., 2002, 2005; Sun

et al., 2007). Together, these studies on synaptojanin family

members in variousmodel organisms have established a primary

and evolutionarily conserved role for these phosphoinositide

phosphatases in endocytosis.

Synj1 occurs as two main isoforms, a brain-enriched 145 kDa

protein (Synj1-145) and a ubiquitously expressed 170 kDa
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protein (Synj1-170), which both share an NH2-terminal Sac1

region, a central inositol 5-phosphatase domain and a

COOH-terminal proline-rich domain (PRD) (McPherson et al.,

1996). Although the Sac1 domain can dephosphorylate a

variety of phosphoinositides in vitro (Guo et al., 1999), its

physiological substrate(s) remain(s) unknown. Conversely, the

5-phosphatase domain has been extensively characterized

and shown to use PI(4,5)P2 as its primary substrate to mediate

PI(4,5)P2-to-PI4P conversion (Cremona et al., 1999; McPherson

et al., 1996). This latter property is believed to be central to the

physiological actions of Synj1 (Cremona et al., 1999; Mani

et al., 2007). While a role of Synj1-170 in endocytosis has not

been clearly demonstrated, overwhelming evidence has been

reported indicating a primary role of Synj1-145 (hereafter

referred to as Synj1) in clathrin-mediated endocytosis in the

adult brain.

At synapses, Synj1 is predominantly recruited to sites of endo-

cytosis by the Src homology 3 (SH3) domain-containing protein,

endophilin (Gad et al., 2000; Ringstad et al., 1997), although

various other endocytic SH3 proteins have been reported to

interact with Synj1, such as amphiphysin and intersectin (Ditt-

man and Ryan, 2009). The physiological relevance of this

partnership is supported by results from proline-rich synaptoja-

nin peptide injections in the giant synapse of the lamprey (Gad

et al., 2000), genetic studies in the fly and the worm (Schuske

et al., 2003; Verstreken et al., 2003), and the fact that an endophi-

lin-binding deficient mutant of Synj1 largely fails to rescue

synaptic trafficking defects in cultured Synj1–/– neurons (Mani

et al., 2007). An important feature of endophilin family members

is that they contain a Bin1/ Amphiphysin/ Rvs (BAR) domain,

which exhibits at least four key properties (Frost et al., 2009;

Peter et al., 2004): (1) binding to acidic phospholipids; (2) domain

homo/heterodimerization; (3) evagination of liposomes into

narrow tubules in a process that is potentiated by its NH2-

terminal amphipathic helix; and (4) sensing of membrane curva-

ture via its crescent-shaped structure, with a preference for

highly curved, synaptic- (or endocytic-)like vesicles. While

endophilin’s relatively late recruitment to clathrin-coated pits

(i.e., at a time immediately preceding the fission process) argues

against a primary role of the tubulating activity of its BAR domain

in the budding process, it may be involved in stabilizing

membrane curvature at sites of endocytosis, potentially in

concert with other BAR proteins and/or the fission factor, dyna-

min (Perera et al., 2006).

In this study, we investigate the potential membrane curva-

ture-based mechanism by which PI(4,5)P2 metabolism may be

regulated during the endocytic process as well as the signifi-

cance of this PI(4,5)P2 hydrolysis on areas of high curvature,

such as endocytic bud necks. Our results from cell-free exper-

iments indicate that the balance between PI(4,5)P2 synthesis

and elimination is regulated by membrane curvature, with

more efficient hydrolysis achieved by the Synj1-endophilin part-

nership on highly curved liposomes compared with relatively flat

liposomes. Furthermore, we show that acute induction of

PI(4,5)P2-to-PI4P conversion on highly curved, endophilin-

coated membrane tubules promotes membrane fragmentation

largely in a dynamin-dependent fashion, suggesting that this

lipid change may cooperate with dynamin to facilitate the

membrane fission process.
Developm
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PI(4,5)P2Metabolism IsAffected by theSize of Substrate
Liposomes
Since the main PI(4,5)P2 phosphatase in the brain is Synj1

(Cremona et al., 1999; Voronov et al., 2008) and its main physio-

logical partner is the BAR-domain protein endophilin (Gad et al.,

2000; Ringstad et al., 1997; Schuske et al., 2003; Verstreken

et al., 2003), we hypothesized that this partnership may function

to facilitate PI(4,5)P2 hydrolysis on highly curved membranes,

thereby resulting in the robust elimination of PI(4,5)P2 from invag-

inating membranes during the endocytic process. Indeed, the

BAR domain of endophilin, similar to that of amphiphysin, has

been shown to preferentially bind to highly curved membranes

(i.e., 50 nm liposomes) over flatter membranes (i.e., 800 nm lipo-

somes) (Gallop et al., 2006; Peter et al., 2004).

We tested the effect of membrane curvature on PI(4,5)P2

metabolism using rat brain cytosol incubated with liposomes

(derived from brain lipids) of varying sizes (i.e., 800, 400, 100,

and 50 nm) (Figure 1A) and in the case of 800 and 50 nm lipo-

somes, of similar lipid composition (see Figures S1A–S1C avail-

able online). The liposome panel, identified by the membrane

pore size used for extrusion, was subjected to a modified phos-

pholipid radiolabeling assay that measures activity levels of

PIP2, PIP, and PA metabolizing enzymes (Figure 1B) (Cremona

et al., 1999; Di Paolo et al., 2004). Phospholipids from the lipo-

somes were separated by thin layer chromatography (TLC) and

levels of incorporated radiolabel were quantified by phosphori-

maging (Figures 1B and 1C). In previous studies using this

method, it was shown that the predominant radiolabeled PIP2

species generated was PI(4,5)P2 while the PIP fraction consisted

of both PI3P and PI4P (Cremona et al., 1999). Results show that

50 nm liposomes had 68.2% ± 1.0% of PIP2 radiolabeling and

66.1% ± 1.5% of PIP2/PIP ratio compared with 800 nm lipo-

somes (n = 34, p < 0.001). Furthermore, the levels of radiolabeled

PIP2 decreased with decreasing liposome diameter while PIP

levels remained the same and PA levels showed a modest

increase (Figures 1C and 1D; Figure S2A). Further decreasing

the liposome diameter to�30 nm did not give PIP2 values signif-

icantly different than those from 50 nm membranes (data not

shown). The level of radiolabeling of PIP2 in this assay suggests

that there are PIP2 metabolizing enzymes present in the brain

that are sensitive to the level of curvature and/or lipid packing,

resulting in the differential labeling of PIP2 on the different size

liposomes.

The Effect of Liposome Size on PI(4,5)P2 Metabolism
Is Mediated by Synj1 and Endophilin
To determine whether Synj1 mediates the decrease in PI(4,5)P2

radiolabeling observed with small liposomes (Figure 1), we

utilized brain cytosol from Synj1–/– mice (Figure 2A) in the phos-

pholipid radiolabeling assay. Consistent with previous work

(Cremona et al., 1999; Di Paolo et al., 2004; Voronov et al.,

2008), Synj1–/– cytosol had a dramatically decreased ability to

hydrolyze water-soluble fluorescently labeled PI(4,5)P2 relative

to control cytosol (Figure 2B). While the wild-type cytosol shows

liposome size-dependent labeling of PIP2 as described above,

Synj1–/– cytosol did not, suggesting that Synj1 mediates

increased PI(4,5)P2 catabolism on small, highly curved
ental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc. 207
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Figure 1. PIP2 Metabolism Is Affected by the

Size of Substrate Liposomes

(A) Relationship between the liposome diameter

and relative curvature. The diameters illustrated

are those of the membrane pores through which

extrusion of liposomes were performed and thus

reflect the theoretical diameters of liposomes

used. For actual measured diameters, see Supple-

mental Experimental Procedures.

(B) Autoradiography of a TLC showing levels of

incorporated radiolabeling on phospholipids

when liposomes were incubated with brain cytosol

in the presence of [g-32P]-ATP.

(C) Quantification of phospholipid radiolabeling by

phosphorimaging. The counts of PIP2, PIP, and

PA were normalized to that of 800 nm.

(D) The ratio of PIP2/PIP for the different sized lipo-

somes. n = 6 for 800 and 50 nm, n = 4 for 400 and

100 nm. Data are represented as mean ± SEM.

See also Figure S1.
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liposomes (Figure 2C). Next, we performed biochemical deple-

tion of Synj1 and endophilin from wild-type cytosol to study

the effects of removing these proteins on the membrane curva-

ture-dependent labeling of PIP2. The SH3 domain of endophilin

expressed as a GST-fusion protein was used to biochemically

deplete Synj1 and dynamin, another major interacting protein

of endophilin, from normal cytosol (Figure 2D). This Synj1- and

dynamin-depleted cytosol, like theSynj1–/– cytosol, lost its ability

to preferentially hydrolyze PIP2 from small liposomes (Figure 2E).

Since endophilin is the major physiological protein interactor of

Synj1 and is responsible for recruiting Synj1 to membranes

(Gad et al., 2000; Ringstad et al., 1997; Schuske et al., 2003;

Verstreken et al., 2003), endophilins were biochemically

depleted from normal cytosol using the proline-rich domain

(PRD) of Synj1 and dynamin fused to GST. Western blots of

the depleted cytosol showed that while endophilin was quantita-

tively depleted from the cytosol (Figure 2D), other BAR proteins,

such as amphiphysin 1 (data not shown) were not. Use of the

PRD-depleted cytosol also showed the disappearance of the

membrane curvature effect (Figure 2E). While the membrane

curvature sensitivity of the PIP2/PIP ratio disappeared in the

absence of Synj1 and endophilin, the higher PA/PIP ratio on

the small diameter liposomes was unaffected despite the

absence of these proteins (Figures S1D–S1F). Taken together,

these data suggest that the increased catabolism of PI(4,5)P2

observed on small, highly curved liposomes is primarily medi-

ated by the proteins Synj1 and endophilins.

Synj1 Preferentially Hydrolyzes PI(4,5)P2 on Small
Liposomes
Next, investigation of the recruitment of Synj1 protein from brain

cytosol to 800 and 50 nm liposomes in sedimentation assays

revealed that the binding of this inositol phosphatase increased

52% ± 10% on 50 nm liposomes over 800 nm liposomes after

incubation at 4�C (Figures 3A and 3B) and a similar increase

was observed at 37�C (data not shown). In the same reactions,

dynamin and endophilin showed no binding preference for
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different sized liposomes. One effect of this differential recruit-

ment of Synj1 is that the Synj1/endophilin protein ratio was

44% ± 8% higher on 50 nm liposomes when compared with

800 nm liposomes while the dynamin/ endophilin ratio remained

the same (Figure 3C). In similar experiments using endophilin-

depleted cytosols, the recruitment of Synj1 to liposomes was

dramatically decreased (data not shown).

To determine whether the ability of Synj1 to hydrolyze

PI(4,5)P2 was also affected by liposome size, a time course

measuring free phosphate was used to track the levels of

released phosphate upon liposome incubation with Synj1 in

the presence or absence of endophilin (Figure 3D). Results

show that the amount of phosphate released by Synj1 was

increased by �30% on the 50 nm liposomes relative to 800 nm

liposomes after 60 min incubation (Figure 3D; Table S1).

However, the estimated initial rate of phosphate release by

Synj1 alone was not influenced by liposome size. Importantly,

while the activity of Synj1 was unaffected by endophilin on the

800 nm liposomes, there was a significant increase on the

50 nm liposomes in the presence of endophilin with the esti-

mated initial rate increasing �90% over that of Synj1 alone on

800 nm liposomes or 50%over that of Synj1 alone on 50 nm lipo-

somes (Figures 3D; Figure S2A and Table S1). In addition, there

was a �65% increase in phosphate release from 50 nm lipo-

somes by Synj1 in the presence of endophilin relative to Synj1

alone from 800 nm liposomes or �25% increase relative to

Synj1 alone from 50 nm (Figure 3D; Table S1). In order to resolve

whether the increase in Synj1 activity in the presence of endophi-

lin was caused by the direct interaction of these two endocytic

proteins, the same time-course analyses were performed with

a Synj1 defective in its binding to endophilin through point muta-

tions in its PRD domain (endophilin-binding deficient mutant of

Synj1, or Synj1-EBD) (Gad et al., 2000; Mani et al., 2007; Ring-

stad et al., 2001). Endophilin failed to increase the rate of

PI(4,5)P2 hydrolysis by the Synj1-EBD mutant (Figure S2B).

Results from time-course studies using 30 nm liposomes yielded

similar results as those using 50 nm liposomes (data not shown).
ier Inc.
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Figure 2. The Curvature Effect in PIP2 Metabolism Is Mediated by the Proteins Synj1 and Endophilin

(A) Western blot of brain cytosol from Synj1+/+ (WT) and Synj1–/– (KO) newborn mice.

(B) Analysis of the hydrolysis of soluble PI(4,5)P2 when incubated with brain cytosol from Synj1+/+ and Synj1–/– newborn mice.

(C) The ratio of PIP2/PIP when 800 and 50 nm liposomes are incubated with brain cytosol from Synj1+/+ (WT) and Synj1–/– (KO) newborn mice in the phospholipid

radiolabeling assay.

(D) Western blot on the rat brain cytosols depleted of either Synj1 (using recombinant SH3 domain of endophilin fused to GST, which also results in the removal

of dynamin) or endophilin (using recombinant PRD domains of both Synj1 and dynamin 1 fused to GST).

(E) The ratio of PIP2/PIP when 800 and 50 nm liposomes are incubated with the biochemically depleted cytosols. Data are represented as mean ± SEM.

***p < 0.001; n = 6 in C) and n = 6–10 in E). See also Figure S1.
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These data with purified components show that Synj1 hydro-

lyzes PI(4,5)P2 more efficiently on small substrate liposomes

and that Synj1’s activity is potentiated by direct interaction

with endophilin specifically on small liposomes. These results

also expand on previous studies showing that the SH3 domain

of endophilin enhances the activity of Synj1 on water soluble PI

(4,5)P2 (Lee et al., 2004).

To test if the intrinsic ability of Synj1 to hydrolyze PI(4,5)P2 from

small liposomes simply stems from its higher levels of recruit-

ment to these membranes or whether this enzyme can actually

distinguish membrane curvature and/or lipid packing defects,

the levels of Synj1 recruitment to liposomes of different sizes

were artificially equalized. This was achieved through the incor-

poration of a synthetic lipid dioleoyl-glycero-succinate (DGS)

containing a nitroloactic acid-nickel salt (NiNTA) label into the

different sized liposomes that allowed the controlled recruitment

of histidine-tagged (His-tagged) proteins, in this case, His-

tagged Synj1 (His-Synj1) to these liposomes. In order tomeasure

activity of the His-Synj1, fluorescently labeled PI(4,5)P2 (BOD-

IPY-PI(4,5)P2) was also included on these liposomes. With the

NiNTA label, His-Synj1 was recruited equally to 800 and 50 nm

liposomes and this recruitment could be significantly blocked
Developm
with the divalent cation chelating agent EDTA (Figures S2C

and S2D). Assessment of PI(4,5)P2 hydrolysis activity (Figure 3E;

Figure S2E) showed that despite the equal recruitment of Synj1

to both 800 and 50 nm liposomes, PI(4,5)P2 hydrolysis was

greater on the smaller liposomes. When the recruitment of

His-Synj1 was blocked by EDTA, the differences seen in

PI(4,5)P2 hydrolysis disappeared. Thus, higher levels of

PI(4,5)P2 hydrolysis from small liposomes may result not only

from the higher levels of Synj1 recruitment to these membranes

but also from Synj1’s intrinsic preference for highly curved

membranes or the lipid packing defects that arise from the

membrane deformation at these high curvatures.

Characterization of Endophilin Lipid and Membrane
Binding Properties
While a curvature-based mechanism may account for robust

hydrolysis of PI(4,5)P2 during membrane internalization and a

corresponding efficient elimination of this lipid from intracellular

organelles along the endocytic pathway, it may also have an

impact on membrane dynamics during endocytosis (Liu et al.,

2009). Indeed, the spatially restricted and rapid change in

PI(4,5)P2/PI4P composition may affect the biophysical and/or
ental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc. 209
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Figure 3. Synj1 Preferentially Hydrolyzes

PI(4,5)P2 on High Curvature Membranes

(A) Western blot analysis and (B) quantification by

infrared detection of Synj1, endophilin and dyna-

min recruitment to membranes when brain cytosol

is incubated with 800 and 50 nm liposomes.

(C) Normalization of Synj1 and dynamin to endo-

philin levels.

(D) Time course of PI(4,5)P2 hydrolysis by Synj1

using measurements of free phosphate when 800

or 50 nm liposomes are incubated with recombi-

nant Synj1 (12 nM) in the presence or absence of

recombinant endophilin (120 nM).

(E) Measurement of BODIPY- PI(4,5)P2 hydrolysis

in conditions where His-Synj1 recruitment is equal-

ized using NiNTA liposomes. Data are represented

as mean ± SEM. ***p < 0.001; **p < 0.01; n = 12 in

(B) and (C), n = 4 in (D), and n = 15 in (E). See also

Figure S2 and Table S1.
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signaling properties of invaginating membranes. Based on

recent evidence indicating that Synj1 is recruited to endocytic

pits concomitantly with endophilin and dynamin immediately

prior to the fission process (Perera et al., 2006), that a PI(4,5)P2

probe is shed from endocytic membranes before they undergo

scission (Sun et al., 2007), and that the rate of endocytosis is

decreased in Synj1–/– synapses (Mani et al., 2007), a role for

PI(4,5)P2 hydrolysis in facilitating the fission process is plausible.

We reasoned that the most direct way to test this idea is to

assess the consequences of rapid PI(4,5)P2 changes on endo-

philin-induced tubules and as a precursor to these experiments,

to characterize the lipid-binding and membrane-tubulating

properties of endophilin, in vitro and in intact cells, respectively.

The interaction of endophilin 1 with membrane bilayers con-

taining anionic phospholipids is driven by electrostatic interac-

tions such that high salt concentrations can decrease the

binding to membranes (Gallop et al., 2006). Recruitment of the

various domains of endophilin 1 to a panel of phospholipids

was tested (Figure 4A; Figure S3). While the BAR domain alone

showed no distinct preference for the various phospholipids,

full-length endophilin 1 was preferentially recruited to the more

highly phosphorylated lipids, a property that was recapitulated

by the N-BAR domain (i.e., the BAR domain preceded by the

NH2-terminal amphipathic helix) (Masuda et al., 2006; Peter

et al., 2004; Weissenhorn, 2005). Grouping the phosphoinositi-

des according to the level of phosphorylation [i.e., PI3P, PI4P,

and PI5P are classified as monophosphorylated PIs (monoPi)]

shows that endophilin binding to the lipids increased as the

number of phosphates on the inositol ring increases (Figure 4A;

Figure S3). While F-BAR proteins have been reported to depend

on the presence of PS, a phospholipid abundant at the plasma

membrane, for binding to bilayer membranes (Itoh et al.,

2005), experiments with endophilin showed significant binding

to PI(4,5)P2 liposomes that was enhanced by but did not require

the presence of PS (Figure 4B). Thus, the binding of endophilin

to liposomes increases as the anionic charge of the phosphoino-

sitide increases and is modulated by PS.
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Overexpression of endophilin in COS-7 cells induces consid-

erable tubulation of cellular membranes (Figure S3C). Since

we found that endophilin binds more strongly to highly phos-

phorylated PIs and since PI(4,5)P2 is the predominant phosphoi-

nositide found at the plasma membrane, we examined the

distribution of this lipid in cells overexpressing endophilin. Coex-

pression of endophilin with the PI(4,5)P2 probe PLCd1-PH

(Hurley and Meyer, 2001) showed that the tubules induced by

endophilin overexpression are enriched in PI(4,5)P2, similar to

the plasma membrane (Figure 4C). Consistent with a primary

role of PI(4,5)P2 in the recruitment of endophilin, overexpression

of PLCd1-PH at higher levels and the resulting sequestration of

this lipid blocks the tubulating activity of endophilin (data not

shown). Since endophilin binds to membranes via electrostatic

interaction between the basic residues lining its concave face

and the anionic lipids in membranes, we investigated whether

the membranes of the endophilin-induced tubules would be

areas of high surfacepotential (i.e., areas containing a concentra-

tion of negative charge). Coexpression of the high surface poten-

tial probe, R-pre probe (McLaughlin and Murray, 2005; Yeung

et al., 2006), with endophilin resulted in localization of the probe

with the endophilin-induced tubules (Figure 4D). Finally, extra-

cellular application of membrane impermeable fluorescent dye,

FM4-64, shows that the vast majority of membrane tubules are

accessible by the dye (Figure 4E). Together, these data suggest

that endophilin-induced tubules are largely derived from the

plasma membrane, have a high surface potential and are en-

riched in PI(4,5)P2.

Induced PI(4,5)P2 Dephosphorylation on Endophilin
Tubules Results in Membrane Fission
Having determined that endophilin-coated tubules are enriched

in PI(4,5)P2, the impact of PI(4,5)P2-to-PI4P conversion on

membrane dynamics and specifically, membrane fission, can

be assessed in intact cells. While endophilin mediates the

recruitment of Synj1 via its SH3 domain and the PRD of the

enzyme (Figures S3C and S3D) (see also Gad et al., 2000;
ier Inc.
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Ringstad et al., 1997), consistent with the colocalization of these

two proteins in neurons (Figure S3E), amethod to temporally and

spatially control the recruitment of Synj1 to endophilin-induced

tubules was required. A general drug-inducible protein heterodi-

merization strategy takes advantage of the ability of various

small molecules to bring together two different protein domains.

In this paradigm, proteins and/or discrete domains of interest are

fused to either the FK506-binding protein (FKBP) or a rapamycin-

binding domain of mTOR (FRB) allowing heterodimerization

upon addition of rapamycin or a chemical analog (rapalog).

This approach has been used to target phosphoinositide phos-

phatases or kinases to the plasma membrane or endosomes

(Haucke and Di Paolo, 2007; Nakatsu et al., 2010).

To utilize the rapamycin- or rapalog-induced heterodimeriza-

tion approach, the 5-phosphatase domain of Synj1, either

wild-type or the catalytically inactive version (Synj1-Ptase,

Synj1-PtaseD730A, respectively) (Mani et al., 2007), was fused

to the FKBP domain and the fluorescent tag mRFP while endo-

philin without the SH3 domain (endoDSH3) was fused to the

mutant FRB domain and the fluorescent tag EGFP (Figure 5A).
Developm
The SH3 and PRD domains were not included in these fusions

in order that interaction of these two heterologous proteins be

spatially and temporally regulated exclusively by the heterodi-

merization paradigm. Coexpression of these two chimeric

proteins in COS-7 cells resulted in endophilin-marked tubules

that showed no recruitment of the Synj1 chimera, which was

instead diffuse in the cytoplasm (Figures 5B–5D, pre-rapa and

t = 0). Addition of the AP21967 rapalog to the media of these

cotransfected COS-7 cells caused the recruitment of the

Synj1-Ptase chimera to the endophilin-induced tubules (Fig-

ure 5B-C, post-rapa and t = 5 min) and was followed by at least

two types of behavior: fragmentation and condensation of the

tubules (Figures 5B and 5C; Movies S1–S3). These phenomena

resulted in a �60% reduction in tubule length (Figure 5E) and

resemble the breakage and movement of tubules after latruncu-

lin washout seen in a study of F-BAR proteins (Itoh et al., 2005).

Addition of the AP21967 rapalog to cells coexpressing the

catalytically inactive mutant Synj1-PtaseD730A chimera and

endophilin chimera resulted in relocalization of the cytosolic

Synj1-PtaseD730A to the endophilin-induced tubules but did
ental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc. 211



A

B

D

C

Synj1-Ptase mRFPFKBP

endo SH3 EGFPFRB

Synj1-PtaseD730A mRFPFKBP

pre-rapa post-rapa

endo SH3

Synj1-Ptase

merge

Synj1-Ptase

merge

endo SH3

0’ 5’ 8’ 13’

pre-rapa post-rapa

endo SH3

Synj1-

PtaseD730A

merge

E

e
n
d
o
-

S
H
3

S
y
n
j1

-5
P
ta

s
e

e
n
d
o
-

S
H
3

S
y
n
j1

-5
P
ta

s
e

(D
7
3
0
A
)

e
n
d
o
-

S
H
3

S
y
n
j1

-5
P
ta

s
e

d
y
n
a
s
o
re

F
B
P
1
7
-F

B
A
R

S
y
n
j1

-5
P
ta

s
e

e
n
d
o
-F

L

S
y
n
j1

-5
P
ta

s
e

e
n
d
o
-F

L

S
y
n
j1

-5
P
ta

s
e

d
y
n
-K

4
4
A
/K

1
4
2
A

e
n
d
o
-F

L

S
y
n
j1

-5
P
ta

s
e

d
y
n
-K

1
4
2
A

e
n
d
o
-F

L

S
y
n
j1

-5
P
ta

s
e

d
y
n
-K

4
4
A

***

***

***

***

*
*

Figure 5. Acute Recruitment of the Inositol

5-Phosphatase Domain of Synj1 to Endophi-

lin-Induced Tubules Results in Membrane

Fragmentation and Condensation

(A) Diagram of the heterodimerization constructs:

rat endophilin1 without the SH3 domain (en-

doDSH3) is fused to the NH2-terminal side of the

FRB domain followed by EGFP; the inositol

5-phosphatase domain of Synj1, either wild-type

or catalytically dead mutant D730A (Synj1-Ptase,

Synj1-PtaseD730 respectively), is fused to the

NH2-terminal side of two FKBP domains followed

by mRFP.

(B) In transfected COS-7 cells, Synj1-Ptase shows

a diffuse signal before rapalog treatment (pre-

rapa). Rapalog treatment results in Synj1-Ptase

recruitment to endophilin-induced membrane

tubules and fragmentation and condensation of

the membrane tubules take place (post-rapa).

(C) A time-lapse view of the fragmentation and

condensation events upon rapalog treatment

from a magnified field of the cell seen in B) as

indicated by the dotted square. Examples of

fragmentation sites are indicated by the arrows.

(D) In transfected COS-7 cells, Synj1-PtaseD730A

shows a diffuse signal before rapalog treatment

(pre-rapa). Rapalog addition results in Synj1-Pta-

seD730A recruitment to endophilin-induced mem-

brane tubules but no fragmentation/condensation

events are observed (post-rapa).

(E) Reduction of tubule size as a measure of

membrane fragmentation and condensation effi-

ciency. To quantify the extent of membrane fission,

tubule length before and after rapamycin/rapalog-

treatment were measured. Data are represented

as mean ± SEM. ***p < 0.001; *p < 0.05; from left

to right, n=24,9,5,6 (topgraph);n=7,8,9,22 (bottom

graph). Scale bars represent (B) 10 mm, (C) 5 mm,

and (D) 5mm.See alsoFigureS3andMoviesS1–S4.
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not result in fragmentation or condensation of the tubules

(Figures 5D and 5E; Movie S4). Use of rapamycin in place of

the AP21967 rapalog resulted in the same effects: recruitment

of the Synj1 chimera to endophilin-induced tubules, albeit with

faster kinetics, and, in the case of active Synj1, fragmentation

and condensation of these tubules (data not shown).

To monitor the hydrolysis of PI(4,5)P2 on endophilin-coated

tubules, the heterodimerization experiment was performed using

a mRFP-tagged PLCd1-PH, in order to follow the presence of

PI(4,5)P2, and anonfluorescently taggedSynj1-Ptase (Figure 6A).

Before rapamycin addition, PLCd1-PH localized to the endophi-

lin-induced tubules, as expected (Figure 4C). After rapamycin

treatment, the PLCd1-PH translocated from the tubules to the

cytosol, thus denoting PI(4,5)P2 hydrolysis (Figure 6A; Movies

S5 and S6). In addition, a membrane-impermeable amphipathic

fluorescent probe, FM4-64, was used to follow the membrane

remodeling dynamics during the observed fission phenomenon

to rule out that the disappearance of tubules is merely a result
212 Developmental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc.
of endophilin falling off the tubules (Fig-

ure 6B). Again, a nonfluorescently tagged

Synj1-Ptase was used and cells were

exogenously treated with FM4-64 to label
the tubules as in Figure 4E. Upon rapamycin treatment, fragmen-

tation/ condensation of the tubules were observed with the FM4-

64 labeling indicating that the membrane tubules were under-

going reorganization. However, in cases where fat tubular

structures (likely corresponding to large bundles of tubules)

were present, FM fluorescence resisted the phosphatase treat-

ment (unlike the endophilin fluorescence; data not shown).

Last, whether tubules induced by other membrane-deforming

proteins can produce the same fragmentation/condensation

phenomenon was examined. Overexpression of the F-BAR

domain of FBP17 deforms membranes into tubules (Figure 6C)

(Frost et al., 2008; Itoh et al., 2005) that are not enriched in PI

(4,5)P2 (data not shown). Upon Synj1-Ptase recruitment to these

F-BAR-induced tubules, there was no strong fragmentation/

condensation phenotype observed (Figures 5E and 6C; Movie

S7). The ENTH domain of epsin has also been reported to tubu-

latemembranes that are enriched for PI(4,5)P2 (Ford et al., 2002).

When this ENTH domain was used in the heterodimerization
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Figure 6. Characterization of Membrane Dynamics during Synj1-Induced Membrane Fission

(A) The PI(4,5)P2 marker PLC1d-PH localizes to endophilin-induced tubules prior to rapamycin-treatment. This marker translocates into the cytoplasm upon

rapamycin-treatment demonstrating the hydrolysis of PI(4,5)P2 by the Synj1-Ptase.

(B) Using FM4-64 as a membrane marker, fragmentation and beading of the membrane are observed.

(C) FBP17-F-BAR-induced membrane tubules do not undergomembrane reorganization upon Synj1-Ptase recruitment. Scale bars represent (A) 5 mm, (B) 10 mm

(left) and 5 mm (right), and (C) 10 mm. See also Movies S5–S7.
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paradigm, ENTH-labeled tubules were observed proximal to the

plasma membrane and disappeared (i.e., the fluorescence

became cytosolic) upon recruitment of Synj1-Ptase, somewhat

reminiscent of the PH domain of PLCd1 (data not shown).

Thus, the fragmentation/condensation phenotype induced by

PI(4,5)P2 dephosphorylation appears specific for the N-BAR

domain of endophilin.

Fission of Endophilin-Coated Tubules Triggered
by PI(4,5)P2 Hydrolysis Is Dynamin Dependent
Next, the dynamin dependency of the observed fission phenom-

enon was examined. The large GTPase dynamin has been es-

tablished as an endocytic factor critical for membrane fission

(Ferguson et al., 2009; Mettlen et al., 2009; Praefcke and

McMahon, 2004). Staining for endogenous dynamin 2 in

COS-7 cells overexpressing endophilin lacking its SH3 domain

revealed that dynamin was localized at the endophilin-induced
Developm
tubules, where it may have been recruited either independently

[e.g., via PI(4,5)P2] or through other endogenous BAR/SH3

proteins (Figure 7A). Preincubation of COS-7 cells expressing

the endophilin and wild-type Synj1 chimerae with the dynamin

inhibitor dynasore (Macia et al., 2006) resulted in the inhibition

of the rapamycin-induced fragmentation/ condensation phe-

nomenon (Figures 5E and 7B; Movie S8). To further confirm the

dynamin dependency, two point mutants of dynamin 2 were

used: (1) the dyn-K44A, which shows a deficiency in nucleotide

binding (Praefcke and McMahon, 2004); and (2) the more potent

dynaminmutant, dyn-K142A, which is defective in the conforma-

tional change observed with wild-type dynamin upon GTP

hydrolysis (Marks et al., 2001). Expression of these dynamin

mutants, either as a single mutation or double mutation, along

with a full-length endophilin chimera and a nonfluorescent

Synj1-Ptase chimera resulted in a decrease in the reduction of

tubule length, albeit to a lesser degree than with the use of
ental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc. 213
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Figure 7. Synj1-Induced Membrane Fission Depends upon Dynamin

(A) Staining of COS-7 cells expressing the endoDSH3-FRB-EGFP with anti-dynamin antibody shows that the endophilin-induced tubules are coated with

endogenous dynamin 2.

(B) Pretreatment of transfected cells with the dynamin inhibitor dynasore prevents the fragmentation and condensation events induced by recruitment of

Synj1-Ptase to the endophilin-induced tubules by rapamycin treatment.

(C) Effect of the single (K44A or K142A) and double (K44A/K142A) dynamin mutants on Synj1-Ptase-induced membrane fragmentation and condensation.

Scale bars represent (A) 25 mm, (B) 5 mm, and (C) 5 mm (left), 5 mm (middle), and 10 mm (right). See also Movies S8 and S9.
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dynasore (Figures 5E and 7C; Movie S9). Full-length endophilin,

which causes the same effect as seen with the endoDSH3 in this

heterodimerization paradigm (Figure 5E), was used in these

experiments to ensure proper recruitment of the overexpressed

dynamin constructs to the endophilin-induced tubules via its

SH3 domain. The single mutants, dyn-K44A and dyn-K142A,

caused partial inhibition in the percentage of tubule length

reduction (49.6% ± 3.7% and 42.9% ± 5.9%, respectively) while

the double mutant, dyn-K44A/K142A, had an even stronger

effect (36.9%. ± 2.7%). Altogether, these results suggest that

the recruitment of Synj1 and the hydrolysis of PI(4,5)P2 to PI4P

by this phosphatase play a role inmodulating fission of the endo-

philin-induced tubules and that this process is largely dependent

on dynamin.

DISCUSSION

This study provides new insights into the molecular mechanisms

controlling PI(4,5)P2 metabolism and the potential roles of

PI(4,5)P2 dephosphorylation during the endocytic process. The

complexity of biological processes regulated by PI(4,5)P2 neces-

sitates the fine-tuned regulation of this lipid’s metabolism at the

plasma membrane. Failure to achieve this regulation dramati-

cally interferes with membrane transport to and from the cell

surface, particularly the endocytic process (Di Paolo and

De Camilli, 2006; Hayashi et al., 2008; Mani et al., 2007; Zoncu

et al., 2007).

We have hypothesized in this study that membrane geometry

may be a key factor modulating the balance between synthesis

and elimination of PI(4,5)P2. Cell-free assays were utilized to

address the relationship between the size of substrate liposomes

and PI(4,5)P2 metabolism. A main conclusion drawn from our

data is that PI(4,5)P2 is subject to a greater turnover on small

liposomes and that increased catabolism of this lipid is mediated

by the Synj1-endophilin partnership. This phenomenon reflects

both an increased recruitment of Synj1 onto small vesicles by en-
214 Developmental Cell 20, 206–218, February 15, 2011 ª2011 Elsev
dophilin and an intrinsic enzymatic preference of Synj1 for

PI(4,5)P2 on these small vesicles. The latter is suggested by

PI(4,5)P2 phosphatase assays, whereby the recruitment of

Synj1 to liposomes was normalized for both large and small lipo-

somes using the His-NiNTA interaction. Indeed, under equal

recruitment conditions, there was an increased hydrolysis of

PI(4,5)P2 by His-Synj1 on the small liposomes. While other

studies have shown that lipid hydrolysis by enzymes can be facil-

itated on small vesicles (Ahyayauch et al., 2005), our work disso-

ciates the contribution of enzyme recruitment from that of the

actual catalytic activity of a PI(4,5)P2-metabolizing enzyme. Alto-

gether, our results suggest that the Synj1-endophilin partnership

acts as a curvature sensor to enhance PI(4,5)P2 hydrolysis on

highly curved membranes. This mechanism would allow for the

effective elimination of PI(4,5)P2 from highly curved endocytic

membranes during the invagination process and from coated

vesicles. In addition, although the increased phosphatase

activity of Synj1 on small liposomes may appear fairly modest,

previous studies onmice lacking PIP Kinase type 1 or Synj1 indi-

cate that biochemical changes of the same magnitude in

PI(4,5)P2 levels correlate with significant phenotypes at the phys-

iological and organismal levels (Cremona et al., 1999; Di Paolo

et al., 2004). Furthermore, gene dosage imbalance for Synj1,

which results in even more subtle defects in PI(4,5)P2 metabo-

lism, has major implications for brain dysfunction in such disor-

ders as Down syndrome (Voronov et al., 2008) and Alzheimer’s

disease (Berman et al., 2008). Thus, the ‘‘curvature effect’’ on

PI(4,5)P2 metabolism is likely to be meaningful in the physiology

of the endocytic process.

Coupling specific biochemical reactions with the acquisition of

membrane curvature represents a powerful mechanism for en-

dowing novel or differential molecular attributes to nascent

membrane carriers. The disassembly of the COPI coat from

Golgi-derived membrane carriers has been shown to be medi-

ated by the hydrolysis of GTP via the small GTPase Arf1, which

is promoted by a specific GTPase-activating protein, ArfGAP1,
ier Inc.
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in a curvature dependent manner (Bigay et al., 2003). ArfGAP-1

senses changes in lipid packing induced by the coat, rather

than curvature per se (Antonny et al., 2005), in contrast to the

BAR domain of endophilin. Indeed, experiments with liposomes

of smaller diameter than 50 nm did not show decreased PIP2 ra-

diolabeling or increased phosphate release (data not shown),

suggesting that the preference of the Synj1-endophilin partner-

ship for more highly curved membranes most likely arises from

the ability to sense curvature rather than lipid packing defects.

Altogether, our study expands on previous work showing that

membrane curvature plays a key role in the regulation of

protein-membrane interactions underlying budding processes

and coat dynamics.

While the first part of our study suggests the occurrence of

a geometry-based mechanism for the efficient elimination of PI

(4,5)P2 from invaginating membranes, the second part indicates

that the rapid PI(4,5)P2-to PI4P conversion occurring on tubules

may help to facilitate membrane fission. Although previously

published literature is consistent with a role of synaptojanin in

the fission process (Mani et al., 2007; Perera et al., 2006; Stefan

et al., 2002, 2005; Sun et al., 2007), this study provides direct

evidence that Synj1, via its inositol 5-phosphatase domain,

can facilitate the fission of cell surface-derived membrane

tubules in intact cells. Based on our data showing that the dyna-

min-inhibitor dynasore as well as dynamin mutants significantly

impair Synj1-induced membrane fission, we conclude that PI

(4,5)P2 hydrolysis facilitates membrane fission largely in a dyna-

min-dependent fashion. Since dynamin binds PI(4,5)P2 and this

interaction is critical for its function, this notion may appear

counterintuitive. However, recent work from a number of groups

has indicated that dynamin disassembly is required for the

completion of the fission process in cell-free assays (Bashkirov

et al., 2008; Pucadyil and Schmid, 2008). It is possible that the

PI(4,5)P2-to-PI4P conversion by Synj1-endophilin may play

a role in facilitating disassociation of dynamin from the mem-

brane. Interestingly, dynamin itself is subject to regulation by

membrane curvature, based on data showing that dynamin

nucleation on membrane tubules is greatly dependent upon

the diameter of these tubules (Roux et al., 2010).

Our experimental results are in agreement with a recent

modeling study by Drubin, Oster, and colleagues. Indeed, these

groups developed a mathematical model of endocytosis that

uses membrane curvature as a central factor of endocytosis

and compiles experimental knowledge attained from yeast en-

docytic dynamics and various mechanochemical theories to

explain the spatial and temporal regulation of endocytic events

(Liu et al., 2009). In this model, the feedback betweenmembrane

curvature and coupled biochemical reactions control the

progression of endocytic events leading to vesicle formation

and fission. In the data presented here, the activity of the endo-

philin-Synj1 partnership is positively regulated by membrane

curvature and rapid PI(4,5)P2 hydrolysis promotes membrane

fission. It is of note that with the rapid diffusion rates of

PI(4,5)P2 in membranes (Golebiewska et al., 2008), a curva-

ture-based mechanism to potentiate PI(4,5)P2 hydrolysis may

be futile without specific mechanisms in place to limit the diffu-

sion of this phosphoinositide and its metabolites (Liu et al.,

2009). Interestingly, Stuart McLaughlin and colleagues have

recently provided evidence for the existence of a PI(4,5)P2
Developm
‘‘fence’’ at the plasma membrane of a macrophage cell line (S.

McLaughlin, personal communication), further suggesting that

PI(4,5)P2 metabolism may be locally regulated.

Synj1 has been established as an important component in the

machinery controlling synaptic vesicle recycling. The most

prominent morphological phenotype observed in Synj1–/–

neurons is the accumulation of clathrin-coated vesicles in inhib-

itory neurons suggesting the importance for this enzyme in the

uncoating of endocytic vesicles (Cremona et al., 1999; Kim

et al., 2002). However, slowed endocytic kinetics in Synj1–/–

neurons (Mani et al., 2007), an accumulation of endocytic inter-

mediates at various stages in nerve terminals from lower

organisms lacking functional Synj enzymes (Harris et al., 2000;

Verstreken et al., 2003) or from blockade of Synj enzymes (Gad

et al., 2000), and recruitment of Synj to endocytic pits immedi-

ately prior to vesicle scission (Perera et al., 2006; Sun et al.,

2007) have been reported. All these lines of evidence intimate

a role of Synj1 (and its orthologs in lower organisms) prior to

uncoating during the recycling process. The accumulation of

coated vesicles is not incompatible with suboptimal fission since

PI(4,5)P2 is known to modulate the endocytic machinery at

multiple levels. Thus, the PI(4,5)P2-to PI4P conversion may act

as a switch to facilitate and coordinate the fission and uncoating

processes.

In summary, our study describes how the PI(4,5)P2-to-PI4P

conversion by Synj1 is regulated by membrane curvature and

the endophilin-Synj1 partnership and that this conversion partic-

ipates in regulating the dynamin-dependent membrane fission

process. The recent identification of inositol 5-phosphatase

OCRL as an interactor for BAR protein APPL1 suggests that

our findings may apply to other protein complexes involved in

membrane trafficking events in various cellular compartments

(Erdmann et al., 2007). OCRL and another 5-phosphatase,

SHIP2, have been reported to be recruited to clathrin-coated

pits (Nakatsu et al., 2010), and, thus, may be under similar prin-

ciples of regulation as Synj1, that is, by membrane curvature.

Such 5-phosphatasesmay also cooperate with Synj1 to facilitate

membrane fission.

EXPERIMENTAL PROCEDURES

Brain Cytosol, Plasmids, Antibodies, Protein Expression,

and Purification

All reagents, including brain cytosols, plasmids, and antibodies, as well as

protein expression and purification methods can be found in the Supplemental

Experimental Procedures.

Following is a summary of the materials and methods used. Detailed

methods and information can be found in the Supplemental Experimental

Procedures.

Liposome Preparation

Lipids were obtained from Sigma-Aldrich, Avanti Polar Lipids, and Echelon

Biosciences. Liposomes were prepared as recommended at www.

avantilipids.com. The resulting liposomes were large, multilamellar vesicles/

liposomes (crude liposomes). Sizing of liposomes was achieved by extrusion

through polycarbonate membranes with different pore sizes. Measurement

of liposome sizes can be found in the Supplemental Experimental Procedures.

Liposome Radiolabeling Assay

Folch liposomes and brain cytosol samples were incubated for 15 min at 37�C
in kinase buffer and 5 mCi [g-32P]-ATP and then processed as previously

described (Cremona et al., 1999), with a few modifications. Lipids were
ental Cell 20, 206–218, February 15, 2011 ª2011 Elsevier Inc. 215
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extracted, separated by TLC, and then visualized by phosphorimaging using

a Storm Imaging System (GE Heathcare).

Liposome Sedimentation Assay

Rat brain cytosol was incubated with Folch liposomes for 15 min. at either 4�C
or 37�C. These reactions were then subjected to high-speed centrifugation

and pellets analyzed by western blotting. For binding of purified endophilin

proteins, proteins were incubated with crude liposomes with varying phospho-

lipid compositions for 30 min at RT and then sedimented and analyzed by

Coomassie staining. Blots were analyzed on the Odyssey Infrared Imaging

System (LI-COR Biosciences).

PI(4,5)P2 Phosphatase Assay

For the soluble-PI(4,5)P2 phosphatase assay, brain cytosol and water soluble,

short-chain (C6) BODIPY-labeled PI(4,5)P2 in kinase buffer were incubated for

15 min at 37�C. The reaction products were separated by TLC, visualized

under UV light and quantified using Image J software (NIH). In the PI(4,5)P2

phosphatase time-course studies, 5% PI(4,5)P2 liposomes were incubated

with purified FLAG-Synj1 with or without endophilin at 37�C for the times spec-

ified. Levels of released phosphate were measured using the PiPer Phosphate

Assay kit according to manufacturer’s instructions (Invitrogen). Phosphate

release was not assessed for time points below 1 min for technical reasons.

His-Synj1 Activity and Recruitment Assay

For the His-Synj1 activity assay, NiNTA liposomes in liposome buffer

B, ± EDTA, were preincubated on ice. Once His-Synj1 was added, the reaction

tubes were immediately incubated at 37�C for 10 min. The lipids were

extracted and processed by ImageJ as in the PI(4,5)P2 phosphatase assay.

To measure the amount of His-Synj1 recruitment to NiNTA liposomes, we

modified a liposome flotation assay described previously (Bigay and Antonny,

2005). Recovery of liposomes was assessed using fluorimetry. His-Synj1

levels were checked by western blot.

Fluorescence Microscopy and Live Imaging

COS-7 cells were transfected and grown on glass coverslips (Warner Instru-

ments). For fixed staining, cells were fixed with 4% paraformaldehyde at RT.

For live imaging, coverslips were placed in a Chamlide recording chamber

(Life Cell Instruments, South Korea) filled with HBS solution and imaging

was performed at 37�C using the Olympus IX-81 microscope using Slidebook

5.0 software (Olympus). For FM4-64 (Invitrogen) staining, cells were incubated

with the dye in HBS. For the heterodimerization experiments, cells were

treated with either 5 mM rapalog or 100 nM rapamycin. In experiments using

dynasore, cells were preincubated with 80 mM dynasore for 20 min before ra-

pamycin treatment. Tubule length before and after rapamycin or rapalog treat-

ment was measured using ImageJ. For each cell recorded, the initial length of

tubules before the application of rapamycin was measured by drawing

a segmented thin line along the tubules (Li). The residual length of the same

tubules was measured similarly from the image obtained 2 min after the appli-

cation of rapamycin (Lr). The lengths of the tubules before (SLi) and after (SLr)

were summated and the difference (SLi- SLr) was normalized to the total

lengths of the tubules before rapamycin treatment (SLi).

Statistics

Statistical analyses were performed using two-tailed equal variance Student’s

t test or one-way ANOVA analysis with Tukey-Kramer multiple comparisons

post-test.
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