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0. INTRODUCTION 

In this paper we utilize sheaf theoretic methods to present a theory for 
resolving the singularities of an implicit analytic differential equation which 
is based upon the corresponding theory of resolving singularities in analytic 
geometry. There is some arbitrariness in the construction of a resolution. 
Our choice of construction was dictated largely by our desire to have the 
construction be natural, and to subsume the theory of singular solutions 
which must be confronted in any serious study of algebraic differential 
equations. 

In its simplest form, the main theorem shows how to associate with any 
differential equation of the form: 

G(x(t), y(t), q(t), p(t)) = 0, (*I 

q(r) = dxjdt, p(t) = dyldt, G analytic in X, y, q, p and homogeneous in q 
and p, another differential equation (**) defined on a two-dimensional 
analytic manifold N in such a way that: 

(1) There is an analytic mapping c(: N + E2, E2 being the real or 
complex 2-space. 

(2) The equation (**) is locally of the form: 

W(t), y(t))(dyldt) = A(x(fL At))(dxldf), (**I 

with A and B analytic in x and y. 
(3) a maps the solutions of (**) onto the solution of (*) about as 

well as it can be expected to do so. 

The ideas presented here in the setting of complex analytic spaces are 
actually applicable in each category for which a theory for resolving 
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singularities has been developed. In particular, the real case is included in 
our discussion. In essence, the “resolution” (**) of (*) is just a simpler dif- 
ferential equation arrived at from (*) by means of a sequence of sub- 
stitutions, e.g., quadratic transformations having certain desirable proper- 
ties. The well-known Frommer transformation is a classical example of this. 
Further examples occur in [IO] and [ 11, where certain differential 
equations of the type (*) are “displayed on” (“separated on” or “lifted to”) 
surfaces such as the torus or Mobius band. In this paper we develop the 
separating and lifting techniques which are necessary and sufficient to bring 
the theory of the general substitution to a point where it can be wielded to 
obtain concrete results. As applications of the theory we include: 

(1) A definition of the index a certain class of singularities of 
(*)-the persistent ones-in a way which makes applying the Poincart- 
Hopf theory to counting these singularities tenable. 

(2) A finiteness theorem for the number of directions along which 
infinitely many solutions of (*) may tend to a certain point. 

(3) The setting of the notion of singular solution in proper perspec- 
tive. 

1. NOTATION, DEFINITIONS, AND RELATED RESULTS 

1.0. Notation 

Let V or V, denote pure dimensional complex analytic spaces. Given V, 
let r(V) be its tangent space, and let P(V) be the projective tangent space 
of V whose elements are tangent lines in 7’(V), cf. [ 141 or [ 151. One then 
has the natural projections $: r( I’) + V and 4: P(V) + V, and a natural 
map y: r( I’) --+ P( I’) which is not defined on zero tangent vectors but for 
which Q 0 y = @ at nonzero tangent vectors. To indicate the dependence of 4 
on V we shall write 4 V in place of 4. An analytic map f: Vi + I’, induces 
the differential map u”: T( VI) + T( VZ). If f does not collapse any open sets 
into points, df induces its meromorphic projective counterpart 
Pf: P( V,) -+ P( Vz). If x E V, let r( I’, X) denote the vector space G-‘(x). 
Then an element of 4 ‘(x) is a one-dimensional subspace of T( V, x). 

Throughout, we shall use V and W to denote pure two-dimensional 
complex analytic spaces. N will denote such a space which in addition is 
normal or nonsingular. We shall also use D, Dc,i, or D, only for domains in 
the complex number system C which contain zero, and q, vi, v,,~, 4 or p for 
analytic maps defined on such domains. 

If (x, v) denote coordinates on an open set U in a two-dimensional 
manifold, then P(U) = U x P’, where P’ is the projective line whose points 
may be represented by homogeneous coordinates {q, p}, 141 + IpI # 0. Thus 
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P(U) is covered by two coordinate patches having coordinates 
(x, y, { 1, p}) or (x, y, {q, 1 }) which we will often simply write as (x, y, p) 
or b, Y, 4). 

DEFINITION 1.1. An implicit analytic differential equation (IADE) on I/ 
is a triple ( W, U, I’), where U is an open subset of P(V) and W is a closed 
analytic subvariety of U. An analytic solution of (W, U, V) is a map 
II: D + I/ from some D into V for which Pq(P(D)) E W. (A different but 
often handier definition of a solution is given in Convention 2.4. We shall 
normally require 9 to be nonconstant in which case note that Pq is defined 
on all of P(D).) 

Let 0, as usual denote the sheaf of germs of holomorphic functions on 
V. 

DEFINITION 1.2. An explicit meromorphic differential equation 
(EMDE) on V is a coherent sub-O,,-module JZ of the sheaf Q’,, of germs of 
holomorphic differential l-forms on V, which is locally of rank one, i.e., for 
every point m E V, the fiber A,,, of J$? is generated (as a module over 0 V,m) 
by a single element o, of the fiber Sz;,, of Q;: For each m E V there exists 
an element o, E Sz;,, such that -R;e, = 0 Y,m. 0,. An analytic solution of JZ 
is a map p: D -+ V with p*(d) = 0, i.e., the sub-O,-module of Szk defined 
by (~*(~))~=O,,.p*(w,,), where y=p(x), co,.~Q;,, and ~v=Oy.v~~y, 
is zero at each point. 

Notation 1.3. If S is a sheaf on Y and f: X-+ Y is a map let f*(S) 
denote the sheaf on X induced from S by f: 

Observe that if S is coherent and locally free of rank one, cf. 
Definition 1.2 then so is f*(S). Observe also that the operation of inducing 
sheaves is natural: if g: 2 +X, then (fo g)*(S) = g*(f*(S)). 

DEFINITION 1.4. Let V be an analytic manifold. Let (x, y) denote local 
coordinates on V, and let (x, y, q) or (x, y, p) denote the associated coor- 
dinales on P(V), cf. Sect. 1.0. Then the canonical contact structure on P(V), 
defined locally by the forms dx- q dy or p dx - dy, induces a coherent 
0 P(,,-module which is locally of rank one and which we denote by +Z. 

Remark 1.5. To verify that 9? in Definition 1.4 is well-defined note that 
if X, j is another chart on V and X, j, 4 or p is the associated chart in 
P( V), then dx -q dy = e(,f, j)(dZ - qdj), where 
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EXAMPLE 1.6a. The sheaf V of Definition 1.4 may be viewed as an 
EMDE on P(V), although in Definition 1.2 we were concerned with an 
EMDE on a two-dimensional space. 

EXAMPLE 1.6b. Let t: N+ P(V), N as in Section 1.0, be given. Then 
r*(U) is an EMDE on N, see the observation following Notation 1.3. 

DEFINITION 1.7. Let N be normal, m EN and JH be an EMDE on N. 
Consider o, in Definition 1.2 as a linear map 0,: T(N, m) -+ C. Define the 
singular set H(A) of &? by H(A) = {m E N ( dimension kernel o, > I}. 

Note 1.8. Because of the coherence of JH, the same o, may be used to 
define H(A) in a neighborhood of m. Thus if o, & 0, H(d) is analytic 
and has codimension at least one in N. Since dimension T(N, m) > 1 if m 
belongs to the singular set N” of N, cf. [ 151, it follows that H(&)?N’. 

DEFINITION 1.9. A map p: D + H(J) will be called a singular solution 
of A. Clearly a singular solution is a solution. 

DISCUSSION 1.10. Giving an EMDE JV on an open set U in C2 is 
equivalent to giving a holomorphic differential l-form o(x, y) = 
a(x, y)dx + b(x, y)dy, defined up to a multiplicative unit e (i.e., e(x, y) # 0 
for any (x, y) E U). Then H = H(A) is the set of zeros common to a(x, y) 
and b(x, y). In general, assuming J&Z’ to be nontrivial, o determines a 
meromorphic section v: N + P(N) given by v(m) = kernel w,, cf. 
Definition 1.7. In terms of local coordinates x, y, p or q in P(U), v is given 
by 4x, y) = (x, y, q = -Kc Y)/~A Y) or P = -4x, y)lH-x, Y)). One may 
think of v as assigning a slope dyldx at (x, y) given by dy/dx = p = 
-a(~, y)/b(x, y). A solution p: D + U is a map for which (a, 3) is parallel 
to (b(x, y), -a(~, y)), i.e., x(t) u(x( t), y(t)) + j(t) b(x(t), y(t)) = 0. Giving 
an EMDE J&! on any N is equivalent to giving a meromorphic section 
v: N + P(N) and an analytic subset H of N of codimension at least one, 
outside of which v is analytic. The fact that this equivalence holds with U 
being replaced by a normal space N follows from Levi’s continuation 
theorem, [12, p. 1331, according to which it suffices to describe a 
meromorphic function on the complement of a subset of N of codimension 
two. When we wish to think of J& in this form, we shall write it as 
(v, K NJ. 

Two meromorphic functions on V are normally identified if they coincide 
on an open dense subset of I’. Since two different forms with different 
singular sets (and hence two EMDEs with different singular sets) may give 
rise to the same section v: V-+ P(V), it is important when expressing an 
EMDE on V in the form (v, H, I’) to keep track of the singular set H. We 
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shall see in Section 3 that H is the key to the notion of a singular solution 
of an IADE. 

2. THE NORMALIZATION AND RESOLUTION OF AN IADE ON A MANIFOLD V 

2.0 

In the rest of this paper let (W, U, V) be an IADE in which V is a 
manifold, and let (N, z), z: N -+ W, be either a normalization of W (cf. [9 
or 151) or a resolution of W (cf. [4 or 91). In particular z is proper, 
analytic and onto, 5: r ~ ’ (the set W- of nonsingular points of W) -+ W- is 
an analytic equivalence, ~-l( W-) is dense in N, and in the case of a nor- 
malization N is normal and z is finite, or in the case of a resolution N is 
nonsingular. (In the case of a normalization the singular set N” of N has 
codimension not less than two in N). 

DEFINITION 2.1. Let ( W, U, I’) be an IADE, let ?Z be as in 
Definition 1.4, and suppose that r: N + W is a normalization (or a 
resolution, or a minimal resolution; cf. [2 or 91) of W. Consider 7 as a map 
into P( I’). The EMDE 7* given by the O,-module 7*(V) is called a nor- 
malization (resp. a resolution or a minimal resolution) of ( W, U, V). 

Let z*(V) = (v, H, N) as in Discussion 1.10. The next proposition 
describes z*(W) when viewed in the form (v, H, N). 

PROPOSITION 2.2. Let (W, U, V), 7: N -+ W, 7*(W)= (v, H, N) be as 
above. Then (v, H, N) is uniquely characterized by conditions A, and AZ or 
equivalently by condition B: 

(A,) m E H if and only if m is a singular point of N or 
4407)(T(N,m))G7(m). 

(Ad if m 4 H, (d(do7)Nvb)) z t(m). 

(B) v(m)= T(N, m)n (d(doz))-‘(s(m)) ij” the latter is one dimen- 
sional; and m E H otherwise. 

Proof. The case of a singular point m of N follows from Note 1.8. So 
assume m to be a regular point of N, and let 7,) z2, 73 be the components 
of 7 in the chart x, y, q near z(m), t(m) being considered as a point in 
P(V), cf. Section 1.0. One has for o = dx - q dy that 7*(w) = dz, - ~~ dt,; 
and for XE T(N, m) that t*(w)(m)(X) =0+-+7,(m) = dT,(m)(X)/ 
dT,(m)(X) tf d(# 0 7)(X) c z(m). Since when it is defined v(m)& 
(Xe T(M m) I 7*(o)(m)(X) = O}, and since m E H if and only if this set is 
not one dimensional, the proposition follows easily from the preceding 
relations and the definitions. 
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Before stating the next lemma note that since D is one-dimensional P(D) 
is essentially the same as D, and when there is no likelihood of confusion 
will be identified with it. The next lemma shows that specifying a solution rl 
of an IADE ( W, U, V) is equivalent to specifying a map y: D --) W with 
y*(V) - 0, where %’ and y*(g) are as in Example 1.6., and y is considered as 
a map into P(V). 

LEMMA 2.3. A map n: D + V is a solution of ( W, U, V) if and only if 
n = 4 0 y where y: D -+ W is such that y*(g) is identically zero. Conversely, a 
curve y(t): D -+ W is such that 0 0 y: D -+ V is a solution of ( W, U, V) if and 
only if y *(Gf?) is identically zero. 

Proof: Let (x, y) and (x, y, q) be local coordinates in V and P(V) 
respectively as in Section 1.0. Write y(t) = (-u(t), y(t), q(t)). The y*(V) z 0 
means (dx- q dy)(x, 3, 4)) = 0 which says q(t) = (dx/dt)/(dy/dt), i.e., 
y = P(d 0 y), or more precisely y = P(4 0 y) 0 4; I. 

For the first statement, if q is a solution then Pn considered as a map 
from D into P(V) maps D into W, and if we take y = Pn, then clearly 
y = P(bo y). Hence y*(V) = 0. Conversely if y: D -+ W and y*(q) = 0, then 
P(~o y) =y. Set q = 40~. Then image Pn = image y c W. Hence q is a 
solution. 

For the second statement, if y: D ---f W is such that 4 0 y is a solution, then 
y=P(~oy),andhencey*(~)~O.Conversely,ify*(~)rO,theny=P(~oy). 
Thus image P($ o y) = image y G W, and hence 4 0 y is a solution. 

Conuention 2.4. By Lemma 2.3 we will mean by a solution of ( W, U, V) 
either a map q: D + V with Pn c W or a map y: D --f W with y*(q) = 0. Of 
course ye and y are related by q = 4 0 y and y = Pn. 

LEMMA 2.5. Let (W, U, V) and 5: N + W be given, and let V and z*(q) 
be as usual. Then n: D -+ N is a solution of z *(%) if and only if 
(T 0 n)*(q) s 0. By Convention 2.4, this means that n is a solution of z*(U) if 
and only if z 0 n is a solution of ( W, U, V). 

ProoJ By the definition of a solution of an EMDE and the functoriality 
of the operation of inducing sheaves, q is a solution of z*(w)w 
q*(r*(u)) E o++ (7 “q)*(%T) = 0. 

The next theorem roughly states that rl ++ t 0 rj is a oneeone correspon- 
dence between the solutions of ( W, U, V) and its resolution. 

THEOREM 2.6. Let ( W, U, V) be an IADE, let 5: N + W be a resolution 
(or normalization), and let z * = r*(g) be the corresponding resolution (or 
normalization) of ( W, U, V). Then a curve n: D -+ N is a solution of 7* if and 
only if7 0 y is a solution of ( W, U, V). Further, if 7: D + W is a solution of 
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(W, U, V), then there is a solution ql: D, + N with q,(O) = q(O) of z* and 
some D2 c D for which q(D2) and ~~(0,) define the same set germ at q(O). 

Proof: The first part of the theorem follows from the preceding lemma. 
The second part follows from the first, provided we show that, roughly 
speaking, any q: D + W is (in the sense of the theorem) an image under r 
of some q, : D, + N. The details follow from the purely analytic path lifting 
property which is given in the appendix. 

Note 2.7. Due to the failure of the proper and open mapping theorems 
for real varieties, the last part of the theorem must in the real case be 
modified to read as follows: There are finitely many solutions vi: D, -+ N of 
T* and some D, c D for which v](D,) and Ui qi(Di) define the same set 
germ at q(O). 

3. APPLICATIONS 

For the applications we shall need the following lemma. We adhere to 
our previous notation. 

LEMMA 3.1. Given an EMDE A&’ on N, there is another EMDE J? on N 
which is characterized by the two properties: 

(1) I” the differential ,form germ w, generates the fiber A’,,, of A%? 
above m (over ON,*), cf: D f ‘t’ e ml ion 1.2, while 15, generates the fiber A@, of 
A# above m, then w, is a multiple of Cj3,, i.e., A,,, c J&,, and 

(2) the singular set B of &? consists of isolated points and is a minimal 
such set. 

Proof When & is viewed in the form (v, H, N) of Discussion 1.10, it is 
easy to see that the lemma is equivalent to the statement that the set of 
nonremovable singularities of a meromorphic function on N has codimen- 
sion at least two. A proof in the case in which N is nonsingular may be 
found in [3, p. 2471 or [14, pp. 92, 57, 1361. The proof in the case in 
which N is normal is accomplished by taking a resolution 0: N, -+ N of N 
and applying the preceding case to VOCJ. The minimality part of the lemma 
is clear. 

To gain insight into the lemma, consider J$’ near a nonsingular point m 
of N and let (x, y) be coordinates valid near m. Let o, = a(x, y) dx + 
b(x, y) dy. We may suppose that a(x, y) = C(x, y) a,(x, y) and b(x, y) = 
C(x, y) b,(x, y), where C, a,, and 6, are analytic near m and where m is the 
only zero common to a, and 6,. Clearly the lemma is satisfied if we let 
G,,, =al(x, y) dx+ b,(x, y) dy. For m E N” one uses an extension of this 
argument or simply applies Levi’s continuation theorem (cf. [ 12, p. 1331). 
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DEFINITIONS 3.2. We shall call the EMDE 2 of Lemma 3.1 the 
reduced equation of J#, and if H denotes the singular set of &Z we let ii 
denote that of 2. A point of A is called an essential singular point of ,H 
(as well as of 2). The points of H which are not in A are the removable 
singular points of J&Z’. The points of N which are not in H are called regular 
points of JV. A solution of 2 is called a regular solution of J%’ (as well as 
of 2). A solution p: D + N is called singular if p(D) E H. 

Note 3.3. A solution may be both regular and singular. Note also that 
p: D + N is a solution of J& if and only if either p is a solution of J? or 
p(D) c H. 

In what follows we suppose that (IV, U, V) and z: N-+ W are given and 
let the corresponding resolution or normalization be z*. We also set 
CI = d,o z. Recall the following: 

Note 3.4. Let 4 be an EMDE on N. According to Discussion 1.10, if 
m E N- one may view J? on a neighborhood U of m as a differential form 
a(x, y)dx + b(x, y) dy which vanishes at most at m. This form gives rise to 
S: U + T(U), S(x, y) = (x, y, (-b(x, y), a(x, y)). The line element field 
v = y 0 S is then orientable near m in the sense of [ 111, and the index of v 
near m is defined in [ 111 as the degree of v considered as a map from a 
deleted neighborhood of m into P’. 

Application I: The Index of a Singularity of an IADE ( W, P(V), V) 

DEFINITION 3.5. For definiteness let z* be a minimal resolution of 
( W, P(V), V), and consider the associated reduced equation f* with 
singular locus i?. Call a point v of V a higher order singular point of 
( W, P(V), V) if v E cr(@, CI = 4 0 z. Define the index of v to be the sum of the 
usual indices-see [ 111 and Note 3.Gof the singularities of z”* which lie in 
a-‘(u). 

Remark 3.6. The compactness of P’ ensures that the sum in 
Definition 3.5 is finite. The index of a higher order singularity of an IADE 
of the form F(x, y, p) = 0, p = j/a, f being a polynomial of degree k in p, 
in which W, = {(x, y, p) 1 F(x, y, p) =O}, 4: W, + C2 and &‘(x, y) is not 
compact, may be obtained from the above by first homogenizing the 
equation by multiplying it by (i)“. This way one obtains an equation of the 
form ( W, P(C’), C’), WI WI, containing ( W, C3, C’) as a “subequation.” 
In calculating the index of a singularity of ( W, , C3, C’) one sums only over 
the singularities of z”*, t: N + W, which lie in W,. In the real case in which 
W, is compact, this procedure is of course redundant. 

PROPOSITION 3.7. Consider a (real) IADE (W, P(V), V) in which W is 
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compact and nonsingular. Then the sum of the indices of the higher order 
singularities of ( W, P(V), V) equals twice the Euler characteristic of W. 

Proof This follows from Theorem 2 of [ 111 applied to ?*, t being the 
identity map, upon using Note 3.4 to verify that N in that theorem is zero. 

In the complex case of Definition 3.5, ?* can be viewed as a divisor or 
line bundle on N. The Chern class of this line bundle is an invariant of 
( W, P(V), V) which is natural with respect to morphisms of differential 
equations. 

Application 2 

In our next application we show that there are at most finitely many 
directions (slopes) along which infinitely many distinct solutions of an 
IADE may pass through a given point. We leave it to the reader to verify 
that the same is true of the number of directions along which infinitely 
many solutions “approach” a given point. 

The next proposition applies to any differential equation of the form 
G(x, y, q, p) = 0, q = ,t, p = j, where G is analytic on C4 and is 
homogeneous in q and p, by letting V= C*, U = P(C’) and W= 
[(x, y, {q, p} ) E C* x P’ 1 G(x, y, q, p) = 0). Equations of the form dy/dx = 
A(x, y)/B(x, y) may be included by writing them in the form 
G = jB - xA = 0. We use the notation of Section 1 .O. The reader is invited 
to attempt proving Proposition 3.8 without using the preceding theory. 

PROPOSITION 3.8. There are at most finitely may directions 
c = {c,, c2} E P’ for which the IADE ( W, P(C*), C’) has infinitely many 
solutions n,,, = (x ,,,, y,,,): D,.,, + C’, i= 1, 2, 3 ,..., with 

lim (X,.,;(t), Yc,,(tL {ic,i(t)> .k,:i(t)}) = (0, 0, CL 
1-O 

distinct in the sense that nc,i(Dc,i) n u~,,~(D,;~) = (0, 0) for each i and j with 
if j. 

Proof We let z* = (v, H. N), T: N -+ W, be a normalization of 
( W, P(C2), C’) and apply Theorem 2.6 to curves in sets of the form 
T ~ ‘(PVc,i(P(D,;i)). S ince z is finite, each family of q,,‘s belonging to the 
same slope c, gives rise to at least one point c” in ~~‘(0, 0, c) = 
s~‘(Pn,;~(~;‘(0))) through which pass infinitely many distinct solutions of 
z*. Since by Note 1.8 H(T*) = H is at most one-dimensional analytic, it 
follows from Note 3.3 that infinitely many of these solutions must be 
solutions of z”*. It then follows from the uniqueness of solutions theorem 
for ordinary analytic differential equations near a regular point that c” is not 
a regular point of z”*, cf. Delinition 3.2. Thus points of the form i: lie in 
l?nt-'((0,O) x P’). Since T is proper z-‘((0,O) x P’) is compact, and 
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since by Lemma 3.1 ti consists of isolated points, it follows that the 
possible set of ?‘s is finite. Hence the possible set of c’s in the proposition is 
finite. 

Application 3: Regular and Singular Solutions 

Remark 3.9. In the same sense in which a complete function shares cer- 
tain properties with its function elements, there are certain properties which 
apply to a solution defined on a domain D if and only if they apply to 
some restriction of it to a nonempty subdomain of D. The property of a 
solution being a member of a nondegeneate one-parameter family of 
solutions is one such. Using the analyticity and the dimensionality of the 
singular set of an EMDE it is easy to see that also the property of being 
singular or regular is one such. We may now lay down the following 
definition. 

DEFINITION 3.10. Call a solution q: D + W of ( W, U, V) regular (resp. 
singular) if some restriction of it to a nonempty subdomain of D is of the 
form z 0 p for some regular (resp. singular) solution p of z* = z*( W, U, V), 
where z: N+ W, and 7* is a normalization or a resolution of ( W, U, V). 

Since every resolution of W can be factored through the normalization of 
W, cf. [9] p. 46, the naturality of the induced equations 7* with respect to 
composition of maps, cf. Notation 1.3 and the observation following it, 
may be used to show that this definition is independent of whether 7* is a 
normalization or a resolution of ( W, U, V). 

Note 3.11. It is easy to see that a solution which is not regular is 
singular (cf. Note 3.3). 

The next proposition extends the fact that any regular solution of an 
EMDE is a member of a nondegenerate one-parameter family of solutions 
to the case of an IADE. The failure of a solution to be a member of a non- 
degenerate one-parameter family of solutions is often taken as the defining 
property of a singular solution (cf. [S, p. 121). Technically this would be 
incorrect, since a solution may be both regular and singular depending on 
the “branch” or “component” or “factor” of the differential equation of 
which it is viewed to be a solution. 

PROPOSITION 3.12. A solution of ( W, U, V) is regular if and only if it is a 
member of a nondegenerate one-parameter family of solutions of ( W, U, V). 

Proof Let 7: N + W be a normalization, and let q: D -+ W be a regular 
solution of ( W, U, V), cf. Convention 2.4. We may assume that q = 7 op, 
where p: D, + N is a regular solution of 7* and is nonconstant. Then p is a 
solution of z”*. Since H(i*) consists of isolated points we may by 
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Remark 3.9 assume that p(D,) does not meet H(z”*). It follows from the 
fundamental theorem on the existence and uniqueness of solutions of 
ordinary differential equations near a resular point that p is a member of a 
nondegenerate one-parameter family F or pr of solutions of z”*. Here the 
parameter t ranges over some domain E in C, F: D x E -+ N, and 
pr=F( Dx (t}, where p=pO. Clearly r 0 pI is a one-parameter family of 
solutions of (W, U, V) containing zo p as a member. Non degeneracy 
merely means that the rank of F at some point of D x E is two, or 
equivalently that F(D x E) is two dimensional. Since r preserves dimension, 
T 0 F is nondegenerate. 

To prove the converse, let G: D x E + W, ql = G 1 D x {t} be a non- 
degenerate one-parameter family of solutions of (W, U, V) containing the 
nonconstant solution yl,, = 9. By restricting the domain of G and excluding 
(0,O) from this domain if necessary, we may by [ 15, p. 2451 assume that: 

(1) G(0, 0) E W- and G(D x E) determines a single irreducible set 
germ component T of W near G(0, 0), and that 

(2) G(0, 0) has a neighborhood K in W for which z-‘(K) consists of 
disjoint open sets N, ,..., N,, one for each point of r - ‘(G(0, 0)), or 
equivalently, one for each irreducible component of the germ of W at 
‘30, 0). 

Let N, be the component in (2) which corresponds to T. Making use of 
the defining properties of a normalization (cf. Sect. 2.0) we may by further 
shrinking of the domain of G and of K also suppose that t / N, is a one- 
one map, and that r( NT) 2 G( D x E). Hence there is no ambiguity in delin- 
ing p:DxE-+N, by p=r-l 0 G. The analyticity of p follows from [ 15, 
p. 2581. This p is just a lifting of an appropriate restriction of G to N. The 
fact that it is a one-parameter family of solutions of t* with the required 
properties now follows from the first part of Theorem 2.6. 

For other aspects of singular solutions we refer the reader to [6], [7], 
[8] and [13]. 

4. APPENDIX 

We outline a proof of the following basic property of a normalization or 
a resolution z: N + W of W, used in the proof of Theorem 2.6. 

The Path Lifting Property 

Let q2: D + W be given. Then there exists a map 4: D, -+ N from some 
D, into N and a sufficiently small neighborhood D, of 0 in D (see Fig. 1) 
for which the following three conditions hold: 
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D,C Q D2c D 

FIGURE I 

(1) Q(O)= (~o$)(o), (TO~)(D~)CYIAD~, and the sets q2(D2) and 
(~0 Q)(Dl) define the same set germ at q,(O) = (rotj)(O). 

(2) If D, is a neighborhood of 0 in D,, then q2(D3) and q2(D2) 
define the same set germ at ~~(0). 

(3) Given t, E D, , there is an element t, of D, depending on r, for 
which (~~S)(~l)=~z(~z) and P(~orj)(T(D,t,))=prl~(T(D,, G)- 

Outline of the Proqf 

We may suppose that y/? is not constant. Then 0 is an isolated point of 
q~~(rl~(O)). By the open mapping theorem [15, p. 1221, we may assume 
(by replacing D by an appropriate neighborhood D, of 0 in D if necessary) 
that ~~(0~) is analytic in W near ~~(0) and that q2(D2) itself is an analytic 
space. Clearly we may also assume that D, is sufficiently small for the set 
germ of y12(D2) at y12(0) to be irreducible and for condition (2) to hold. This 
can be deduced for instance from Theorem 4D, p. 151 of [ 151. It follows 
from the properties of z (outlined in Sect. 2.0) that q2(D2) and T-~(~~(D~)) 
are analytic one-dimensional spaces and that r: TF’(~~(D~)) -+ q2(D2) is 
proper and is onto. Perhaps the quickest way to proceed from here is to let 
(r: Q + T-‘(~~(D~)) be a resolution of TC’(~~(D,)) (cf. Sect. 2.0). Since z 0 cr 
is onto q2(D2), there exists some point 0 in Q with (r 0 p)(o) = ~~(0) and 
such that no neighborhood of 0 is mapped by 7 0 (T into ~~(0). Since the set 
germ of q2(D2) at 0 is irreducible, it follows from the proper mapping 
theorem, cf. [ 151 or [3], that every sufficiently small neighborhood U of 0 
in Q is such that (z” o)( U) and qz(D,) have the same set germ at 
(T. 0 a)(O) = ~~(0). Let U, be such a neighborhood of 0 which is a domain. 
For the purposes of the lemma we identify D, with U, (with 0 in D, 
corresponding to 0 in U,), and for the q in the lemma we take the restric- 
tion of our 0 to D, = U,. The proof of the third assertion can be deduced 
from the fact that (zoYj)(D,)~q~(D~), and that P(r 09) and Pq2 are con- 
tinuous. The details are left to the reader. 
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