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For non-metrizable spaces the classical Hausdorff dimension is meaningless. We
extend the notion of Hausdorff dimension to arbitrary locally convex linear topolog-
ical spaces and thus to a large class of non-metrizable spaces. This involves a limiting
procedure using the canonical bornological structure. In the case of normed spaces
the new notion of Hausdorff dimension is equivalent to the classical notion.  2002
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1. INTRODUCTION

In the late 1970s the attention of many physicists and applied mathemati-
cians turned to the study of the complexity of strange attractors. The lack
of appropriate techniques caused several important developments. Most
notably, the notion of Hausdorff dimension, along with other quantities
measuring complexity, grew up to the dimension theory of dynamical sys-
tems, which today plays a crucial role in the study of invariant sets and of
their complexity. We refer the reader to [1, 3] for a list of references and
for a detailed discussion.

This treatment of complexity uses several dimensional quantities, strongly
based on the metric structure of the ambient space. On the other hand
there exists the clear interest in spaces of transformations that may not
be metrizable. This is the case, for example, when one considers spaces of
distributions, which often occur in the study of partial differential equations.
In these situations one can use the notion of topological dimension in order
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to characterize the complexity of complicated subsets, but this will provide
a very rough classification. Furthermore, these spaces may not have the
Baire property and thus topological dimension may in general lack good
embedding properties.

These observations motivate our interest in a notion of Hausdorff dimen-
sion in non-metrizable spaces. In this paper we introduce such a notion
in arbitrary locally convex linear topological spaces. In the particular case
of normed spaces the new notion is equivalent to the classical notion of
Hausdorff dimension.

The new notion of Hausdorff dimension is introduced through a limiting
procedure which requires the canonical von Neumann bornological struc-
ture. In fact, the natural framework for the introduction of the new notion is
precisely that of convex bornological linear spaces. Namely, given a disk D
we consider the subspace XD spanned by D and the associated Minkowski
semi-norm pD (see Section 2.1 for details). The Hausdorff dimension of a
set Z shall be defined by

dimH Z = lim
D

lim
D′

dim�Z ∩XD� XD′ ��

where dim�Z ∩ XD�XD′ � denotes the classical Hausdorff dimension of
Z ∩XD in the semi-normed space �XD′� pD′ � and the limits run through
all bounded disks. The new notion applies, for example, to the space of
germs of holomorphic functions on a compact set and to the space of
tempered distributions.

2. HAUSDORFF DIMENSION IN
BORNOLOGICAL CONVEX SPACES

2.1. Convex Bornological Spaces

In this section we recall several basic notions from the theory of
bornological linear spaces. A bornology on a set X is a family � of subsets
of X such that � is a cover of X, finite unions of elements of � are in �,
and any subset of an element of � is also in �. The elements of � are
called bounded sets.

A bornological linear space is a linear space over the field � (the real or
complex field) together with a bornology on the underlying set of vectors
such that the sum of vectors and the product of elements of � by vectors
are bounded operations; i.e., the sets A + B and C · B are bounded sets
whenever A and B are bounded subsets of X and C is a bounded subset
of �.

A disk in a linear space X is a convex subset of X closed under products
by numbers λ with 
λ
 ≤ 1. The disked hull of a set A ⊂ X is the intersection
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of all disks in X containing A. A convex bornological space is a bornological
linear space for which the disked hull of every bounded set is bounded.

It is well known that in any topological linear space there is a canon-
ical notion of bounded set—the von Neumann bornology. In this case
the underlying linear space constitutes a bornological linear space when
endowed with this bornology. Moreover, if the topological linear space is
a locally convex space, then the associated bornological linear space is a
convex bornological space. Furthermore, linear continuous maps between
topological linear spaces are bounded maps between the corresponding
bornological linear spaces, in the sense that bounded sets are mapped onto
bounded sets.

Given a disk D in a linear space X, we denote by XD the subspace of
X spanned by D. Moreover, we denote by pD the Minkowski semi-norm
defined on XD by

pD�x� = infr > 0 � x ∈ rD��
Henceforth, whenever there is no danger of confusion we shall write XD to
indicate the semi-normed space �XD�pD�.

If D and D′ are disks of X with D ⊂ D′, the embedding of XD into XD′

is a continuous mapping. Furthermore, given two disks D1 and D2, there
exists a disk D containing D1 and D2—the disked hull of D1 ∪D2. It can
be shown that any convex bornological space X is the canonical inductive
limit—in the category of convex bornological spaces and linear functions
that map bounded sets onto bounded sets—of the family of semi-normed
spaces �XD�pD�, where the index D ranges over all bounded disks of X.

2.2. Classical Hausdorff Dimension

We now briefly recall the classical notion of Hausdorff dimension. Let X
be a metric space and consider a subset Z of X. Given α ≥ 0, we set

H�Z�α� = lim
δ→0

inf
�

∑
U∈�

�diamU�α�

where the infimum is taken over all countable covers � of Z by sets of diam-
eter at most δ, with the usual convention that inf � = +∞. The Hausdorff
dimension of Z is the unique number dimZ such that H�Z�α� = +∞ for
every α < dimZ; moreover,

dimZ = supα � H�Z�α� = +∞� = infα � H�Z�α� = 0��
Observe that if for some δ there exists no countable cover of Z by sets of
diameter at most δ, then dimZ = +∞. One can readily extend the notion
of Hausdorff dimension to semi-metric spaces, and this will be used in the
following. Henceforth, given a set Z, we shall also denote by dim�Z�X�
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the Hausdorff dimension of Z ∩X in the space X, especially when there
is a need to stress the space.

Clearly, if φ� E → F is a Lipschitz map between semi-metric spaces and
Z ⊂ E, then dimφ�Z� ≤ dimZ. This is the case, for example, when φ is
a linear continuous map between semi-normed spaces. This also happens
when φ is the natural embedding into a semi-metric space F of a semi-
metric subspace E. In these cases, we have

dim�Z�E� = dim�φ�Z�� φ�E�� = dim�φ�Z�� F��

2.3. Hausdorff Dimension in Convex Bornological Spaces

Let X be a convex bornological space and let Z be a subset of X. Let D
be a bounded disk of X. By associating to each bounded disk D′ the value of
dim�Z ∩XD�XD′ �, we define a net, since the union of two bounded disks
is contained in some bounded disk. Moreover, this net is non-increasing
when restricted to disks containing D, since for D′′ ⊃ D′ the embedding of
XD′ into XD′′ is continuous. We set

dD�Z� = lim
D′

dim�Z ∩XD�XD′ ��
On the other hand, given bounded disks D1 and D2 such that D1 ⊂ D2, the
inclusion Z ∩XD1

∩XD′ ⊂ Z ∩XD2
∩XD′ holds for every bounded disk D′.

It follows that

dim�Z ∩XD1
�XD′ � ≤ dim�Z ∩XD2

�XD′ �
for all D′, and thus the net �dD�Z��D is non-decreasing. We define the
Hausdorff dimension of Z (on the space X) by

dimH Z = lim
D
dD�Z� = lim

D
lim
D′

dim�Z ∩XD�XD′ ��
We shall also write dimH�Z�X� when there is a need to stress the space X.

The notion above can be lifted to locally convex spaces via the von
Neumann bornology: For any locally convex space E, we define the
Hausdorff dimension of a subset Z of E as the value of dimH Z in the
convex bornological space corresponding to E.

If Z is contained in some XD—in particular, if Z is bounded—then the
definition simplifies to

dimH Z = lim
D′

dim�Z�XD′ ��
Given a convex bornological space X, a bornological linear subspace of X

is any linear subspace Y of X endowed with the induced bornology, i.e., the
family of intersections of Y with all bounded subsets of X; a bornological
linear subspace of a convex bornological space is still a convex bornological
space. We now show that the Hausdorff dimension is preserved by embed-
dings of bornological linear subspaces.
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Theorem 1. Let X be a convex bornological space and let Y be a
bornological linear subspace of X. If Z is a subset of Y , then dimH�Z�Y � =
dimH�Z�X�.

Proof. For every bounded disk D of X, write D− = D ∩ Y . Since XD ∩
Y = YD− and Z ⊂ Y , it follows that

dim�Z ∩XD�XD1
� = dim�Z ∩ YD−�XD1

�
for all bounded disks D and D1 of X. It is easy to see that pD1

�x� =
pD−

1
�x� for x ∈ YD−

1
, which means that YD−

1
is a semi-normed subspace

of XD1
. Therefore,

dim�Z ∩ YD−� YD−
1
� = dim�Z ∩ YD−�XD1

� = dim�Z ∩XD�XD1
��

Hence,

dimH�Z�X� = lim
D

lim
D1

dim�Z ∩XD�XD1
� = lim

D
lim
D1

dim�Z ∩ YD−� YD−
1
��

For fixed D, we observe that

lim
D1

dim�Z ∩ YD−� YD−
1
� = lim

�1

dim�Z ∩ YD−� Y�1
��

where �1 ranges over all bounded disks of Y , because the former net
depends on D1 only through D1 ∩ Y and we know that both limits exist.
Similarly we obtain

lim
D

lim
D1

dim�Z ∩XD�XD1
� = lim

�
lim
�1

dim�Z ∩ Y��Y�1
� = dimH�Z�Y ��

where � and �1 range over all bounded disks of Y . This implies that
dimH�Z�X� = dimH�Z�Y �.

The following corollary is a consequence of the definition of Hausdorff
dimension in locally convex spaces, together with the fact that the von
Neumann bornology associated with a locally convex subspace Y of a locally
convex space X coincides with the bornology induced on the linear sub-
space Y of X by the von Neumann bornology associated with X.

Corollary 2. Let X be a locally convex space and let Y be a lin-
ear subspace of X with the induced topology. If Z is a subset of Y , then
dimH�Z�Y � = dimH�Z�X�.

The Hausdorff dimension in convex bornological spaces can also be intro-
duced through a limiting procedure involving Hausdorff measures in each
of the semi-normed spaces XD. Consider a subset Z ⊂ X. Given α ≥ 0, we
define

HD�Z�α� = lim
δ→0

inf
�

∑
U∈�

�diamD U�α�
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where diamD denotes the diameter with respect to the semi-norm of XD

and where the infimum is taken over all covers � of Z ∩ XD by sets of
diameter diamD at most δ. One can easily show that the Hausdorff dimen-
sion of Z satisfies

dimH Z = sup
{
α � lim

D
lim
D′

HD′ �Z ∩XD�α� = +∞
}

= inf
{
α � lim

D
lim
D′

HD′ �Z ∩XD�α� = 0
}
� (1)

This characterization of Hausdorff dimension implies that

dimH

∞⋃
n=1

Yn = supdimH Yn � n ∈ ��� (2)

as for the classical Hausdorff dimension. A simple consequence of this
identity is that countable subsets of convex bornological spaces have zero
Hausdorff dimension (see also Proposition 3 below). In order to estab-
lish (2), observe first that the inequality

dimH

∞⋃
n=1

Yn ≥ supdimH Yn � n ∈ ��

is immediate. Whenever the supremum is infinite we have the desired iden-
tity. Otherwise, choosing α > 0 such that dimH Yn < α for every n, we
obtain

lim
D

lim
D′

HD′ �Yn ∩XD�α� = 0�

The σ-subadditivity of the Hausdorff measures (which is valid in semi-
metric spaces) yields

HD′

( ∞⋃
n=1

Yn ∩XD�α

)
≤

∞∑
n=1

HD′ �Yn ∩XD�α� = 0�

It follows from (1) that

lim
D

lim
D′

HD′

( ∞⋃
n=1

Yn ∩XD�α+ ε

)
= 0

for every ε > 0. Therefore dimH

⋃∞
n=1 Yn ≤ α+ ε and thus

dimH

∞⋃
n=1

Yn ≤ supdimH Yn � n ∈ ���

Now let X be a semi-normed space. Denote by Bn the ball of radius
n ∈ � centered at the origin. For every n, the linear space XBn

coincides
with X. Moreover, the balls Bn with n ∈ � constitute a fundamental system
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of bounded sets, in the sense that every bounded subset of X is contained
in some Bn. Therefore, for any subset Z of X,

dimH Z = lim
D′

dim�Z�XD′ � = lim
n→∞ dim�Z�XBn

��

The identity between the semi-normed spaces XBn
and X is bi-Lipschitz,

since pBn�x� = �x�/n for every x ∈ X. Hence,

dimH Z = lim
n→∞ dim�Z�X� = dim�Z�X��

This shows that for semi-normed spaces the classical notion of Hausdorff
dimension and the notion of Hausdorff dimension introduced in Section 2.3
are equivalent. The following statement further justifies that it is appropri-
ate to call the number dimH Z introduced above the Hausdorff dimension
of Z, thus maintaining the designation used in the classical theory.

Proposition 3. Let φ� E → X be an embedding of a finite-dimensional
space E into a Hausdorff locally convex space X. For every subset Z of E, the
classical Hausdorff dimension of Z coincides with dimH φ�Z�.

Proof. Since φ�E� is finite-dimensional, the topology induced on φ�E�
by the locally convex space X is the unique Hausdorff topology for which
φ�E� is a linear topological space. Such topology is normable, whence it
follows that φ yields a bi-Lipschitz map from E onto φ�E�. Therefore, for
any subset Z of E,

dim�Z�E� = dimH�φ�Z�� φ�E���

We conclude by Corollary 2 that dim�Z�E� = dimH�φ�Z��X�.

A priori the notion of Hausdorff dimension on locally convex spaces
could very well be trivial. For example, it could be always zero or always
infinity. The following statement shows that this is never the case.

Proposition 4. In every infinite-dimensional Hausdorff locally convex
space X, for each α ≥ 0 there exists a subset of X with Hausdorff dimension
equal to α.

Proof. Choose n ∈ � such that n ≥ α, and consider a set A ⊂ �n

with (classical) Hausdorff dimension equal to α. Take n linearly indepen-
dent vectors e1� � � � � en of X, and define an embedding φ� �n → X by
φ�a1� � � � � an� =

∑n
i=1 aiei. By Proposition 3 we obtain dimH φ�A� = α.
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2.4. Hausdorff Dimension in Non-Metrizable Spaces

In convex bornological spaces with a fundamental sequence of bounded
sets, the limits of nets in the definition of Hausdorff dimension can
be replaced by limits of sequences. In fact, any increasing fundamental
sequence �Dn�n of bounded disks in a space X constitutes a family cofinal
to the family of all bounded disks D of X, and therefore to each D-indexed
net is associated a Dn-indexed subnet. Writing Xn = XDn

, we obtain

dimH Z = lim
D

lim
D′

dim�Z ∩XD�XD′ � = lim
Dn

lim
Dk

dim�Z ∩XDn
�XDk

�

= lim
n→∞ lim

k→∞
dim�Z ∩Xn�Xk�

for every subset Z of X.
A simple argument shows that it is impossible for a non-normable metriz-

able locally convex space X to have a fundamental sequence of bounded
sets: There would exist a decreasing fundamental sequence �Vn�n of neigh-
borhoods of 0 and an increasing fundamental sequence �Dn�n of bounded
sets. For each n one might choose xn ∈ Vn\Dn, for otherwise there would be
a bounded neighborhood of 0, whence X would be normable. The sequence
thus obtained would converge to zero and would be unbounded, which is a
contradiction.

The so-called Silva spaces constitute a particular class of locally convex
spaces for which a fundamental sequence of bounded sets does exist. Given
a sequence �Xn�n of linear subspaces of a space X such that Xn ⊂ Xn+1
for each n ∈ �, we shall denote by in� Xn → Xn+1 and jn� Xn → X the
associated linear embeddings. We say that a locally convex space X is a
Silva space if there exists a sequence �Xn�n of normed subspaces of X such
that

1. Xn ⊂ Xn+1 for each n ∈ �, and X = ⋃
n∈�Xn;

2. in is compact; i.e., in maps bounded subsets of Xn onto relatively
compact subsets of Xn+1, for each n ∈ �;

3. jn is continuous for each n ∈ �, and the topology of X is the finest
locally convex topology on X that makes all maps jn continuous.

Since compact operators between normed spaces are continuous, every
Silva space is the inductive limit of any of its associated sequences �Xn�n.

We remark that no infinite-dimensional Silva space is a Baire space (see
[2, Corollary 7.2.10]; note that Silva spaces are special cases of the (LF)-
spaces in [2]), and thus topological dimension may in general lack good
embedding properties.

The designation “Silva space” was proposed by Köthe after Sebastião e
Silva, who introduced these spaces in particular in connection with his study
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of distributions. Every finite-dimensional normed space is a Silva space:
in this case one can simply consider the constant sequence Xn = X for
each n ∈ �. Silva spaces are a natural generalization of finite-dimensional
normed spaces, although no infinite-dimensional Silva space is metrizable.

We now collect several well-known properties of Silva spaces.
If �Xn�n is a sequence of normed spaces associated with the Silva

space X, then the following properties hold:

1. A subset Z ⊂ X is open (respectively, closed) if and only if Z ∩Xn

is an open (respectively, closed) subset of Xn for every n ∈ �.
2. A subset Z ⊂ X is bounded (respectively, compact) if and only if

it is a bounded (respectively, compact) subset of Xn for some n ∈ �.
3. A sequence converges in X if and only if it converges in Xn for

some n ∈ �.

Moreover, Silva spaces are complete Hausdorff spaces, and the closed
graph theorem holds for linear maps between Silva spaces.

Theorem 5. Let X be a Silva space and let �Xn�n be a sequence of
normed spaces associated with X. For every subset Z of X,

dimH Z = lim
n→∞ lim

k→∞
dim�Z ∩Xn�Xk��

Proof. Let Z be a subset of X. We shall prove the following facts, from
which the statement readily follows: (i) The identity in the theorem holds
for a particular sequence of normed spaces associated with X; (ii) the iden-
tity holds for a sequence �En�n if and only if it holds for ��En�n, where �En is
the completion of En; and (iii) if the identity holds for a particular sequence
of Banach spaces associated with X, then it also holds for any other such
sequence.

Proof of (i). Let �Xn�n be a sequence as in the theorem. Denote by
Bn the unit ball in Xn. Set D1 = B1 and let Dn+1 be the disked hull of
�n+ 1��Dn ∪ Bn+1�, for every n. The sequence �Dn�n is an increasing fun-
damental sequence of bounded disks, since the ball of Xn with radius m
and center at the origin is contained in Dn+m. Therefore, the identity holds
when Xn is replaced by XDn

. We observe that pDn
is a norm, since the

space X is Hausdorff.

Proof of (ii). Let �En�n be a sequence of normed spaces associated
with X. Since X is complete, the completion �En of En is identifiable to a
subspace of X. Hence �En is embedded into �En+1, and it is easy to prove
that this embedding is compact. Thus the sequence ��En�n yields a Silva
space Y . The linear spaces X and Y are clearly identical, and the closed
graph theorem for Silva spaces ensures that X and Y are identical as
locally convex spaces.
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By Corollary 2 and by taking into account that Z ∩En ⊂ Z ∩ �En and that
Z ∩ En ⊂ Ek for k > n, we obtain

dim�Z ∩ En�Ek� = dim�Z ∩ En� �Ek� ≤ dim�Z ∩ �En� �Ek��
whence

lim
n→∞ lim

k→∞
dim�Z ∩ En�Ek� ≤ lim

n→∞ lim
k→∞

dim�Z ∩ �En� �Ek��

For each n ∈ �, let Bn be the unit ball in �En. Since Bn is a bounded subset
of X, it is also a bounded subset of Emn

for some mn ∈ �. Since every
vector of �En is collinear with some element of Bn and Emn

is a linear space,
it follows that �En ∈ Emn

. Moreover, one can choose mn so that the sequence
�mn�n is strictly increasing. For k > mn the identity dim�Z ∩ Emn

� Ek� =
dim�Z ∩ Emn

� �Ek� holds. Hence dim�Z ∩ �En� �Ek� ≤ dim�Z ∩ Emn
� Ek�, and

therefore

lim
n→∞ lim

k→∞
dim�Z ∩ �En� �Ek� ≤ lim

n→∞ lim
k→∞

dim�Z ∩ Emn
� Ek�

≤ lim
n→∞ lim

k→∞
dim�Z ∩ En�Ek��

Proof of (iii). Let �Xn�n and �Ym�m be two sequences of Banach spaces
associated with X. For some increasing sequence �mn�n of natural numbers
we have Xn ⊂ Ymn

(see Proof of (ii)). We now show that the embedding
of Xn into Ymn

is continuous. Let �xj�j be a sequence of elements of Xn

such that xj → 0 as j → ∞ with respect to the norm of Xn, and suppose
that �xj�j converges in Ymn

to some element x of Ymn
. By the closed graph

theorem, it suffices to prove that x = 0. Since the embeddings of Xn and
Ymn

into X are continuous, we must have xj → 0 and xj → x in X as
j → ∞, and hence x = 0.

By a similar argument one can obtain an increasing sequence �%n�n of
natural numbers such that each Ymn

is continuously embedded into X%n
.

For every n� k, the inclusions Ymk
↪→ X%k

and Xn ⊂ Ymn
entail

dim�Z ∩Xn�X%k
� ≤ dim�Z ∩Xn�Ymk

� ≤ dim�Z ∩ Ymn
� Ymk

��
It follows that

lim
k→∞

dim�Z ∩Xn�Xk� ≤ lim
k→∞

dim�Z ∩ Ymn
� Yk��

since both limits exist and �X%k
�k and �Ymk

�k are subsequences of �Xk�k
and �Yk�k, respectively. Similarly one obtains

lim
n→∞ lim

k→∞
dim�Z ∩Xn�Xk� ≤ lim

n→∞ lim
k→∞

dim�Z ∩ Yn�Yk��

By interchanging the roles of �Xn�n and �Ym�m we prove the desired
identity.
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An example of infinite-dimensional Silva space is given by the space of
tempered distributions � ′. This is the dual of the space � of functions ψ ∈
C∞��� such that ψ and each of its derivatives tend to zero at infinity faster
than any polynomial. In this case, each space Xn comprises the distributions
of the form Dn�pnF�, where pn is the polynomial pn�x� = �1 + x2�n and
F is any bounded continuous function. The norm in Xn is defined as the
infimum of the L∞-norms corresponding to all functions F associated with
a given distribution. The compactness of the embedding of Xn into Xn+1
is a consequence of the theorem of Ascoli. Other examples of Silva spaces
are provided by some spaces of ultradistributions.

Another example of Silva space is provided by the space H�C� of germs
of holomorphic functions on a non-empty compact set C ⊂ �. The elements
of H�C� are equivalence classes of holomorphic functions defined on some
open set containing C, two functions being equivalent when they coincide
on some open neighborhood of C.

For each n, let Bn be the 1
n
-open neighborhood of C. The space Xn of

all bounded holomorphic functions defined on Bn is a Banach space when
endowed with the supremum norm. Every element of Xn can be considered
as an element of Xn+1, since the restriction to the set Bn+1 yields a one-
to-one operator. By Montel’s theorem on normal families, the restriction
operator is compact. The space H�C� is the inductive limit of the sequence
�Xn�n.

We now consider the particular case of C = 0�. Set X = H�0��. The
space X can be identified with the set of Mac Laurin series with posi-
tive radius of convergence, and each element f ∈ X is represented by the
sequence of numbers an�f � that are the coefficients of the Mac Laurin
series f �z� = ∑∞

n=0 an�f �zn. Therefore, the Silva space X can be identified
with the subspace of sequences

Y =
{
�an�n ∈ �� � 1/ lim

n→∞
n

√

an
 > 0

}
�

It is straightforward to see that Y comprises the sequences �an�n with
at most exponential growth. The topology of X induces a non-metrizable
topology on Y . Furthermore, Y becomes a Silva space. The following exam-
ple considers the notion of Hausdorff dimension on the space X (and
hence, also on Y ).

Example 6. Consider the Silva space X = H�0��. For each ε > 0, let
fε be the element of X represented by

fε�z� =
∞∑
n=0

ε−nzn�

Its radius of convergence is equal to ε, and hence fε ∈ Xn whenever
1
n
< ε. Let K ⊂ � be a bounded set of positive numbers such that 0 ∈ �K,
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and consider the set Z = fε � ε ∈ K�. (We note that if 0 �∈ �K then Z ⊂ Xn

for some n, and thus in this case one could apply the classical notion of
Hausdorff dimension.) We shall show that

dimH Z = dimH K� (3)

For every n, let Zn = fε ∈ X � ε > 1
n
� and Kn = ε ∈ K � ε > 1

n
�.

Set c1 = 1/ �supK + 1
n+k�2 and c2 = � n�n+k�

k
�2. Using the identity fε�z� −

fδ�z� = δ−ε
�ε−z��δ−z� and the maximum principle, we easily obtain

c1
δ− ε
 ≤ �fδ − fε�n+k ≤ c2
δ− ε
�
Therefore, for every k and n the mapping from Kn into Xn+k given by
ε �→ fε is bi-Lipschitz, and dimH Kn = dim�Zn�Xn+k�. It follows that

dimH Z = lim
n→∞dn�Z� = lim

n→∞ dimH Kn = dimH K�

This establishes the identity in (3).

We remark that the set of sequences in Y corresponding to the set Z ⊂ X
in Example 6 is not in %p��� for any p ∈ �1�∞�. Therefore, the classical
notion of Hausdorff dimension in %p��� cannot be applied, and we need
the new notion introduced in Section 2.3.
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