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1. Introduction

Let H be a real Hilbert space with scalar product 〈· | ·〉 and associated norm ‖ · ‖. The best approximation to a point
z ∈ H from a nonempty closed convex set C ⊂ H is the point P C z ∈ C that satisfies ‖PC z − z‖ = minx∈C ‖x− z‖. The induced
best approximation operator PC : H → C , also called the projector onto C , plays a central role in several branches of applied
mathematics [13]. If we designate by ιC the indicator function of C , i.e.,

ιC : x 	→
{

0, if x ∈ C;
+∞, if x /∈ C,

(1.1)

then PC z is the solution to the minimization problem

minimize
x∈H

ιC (x) + 1

2
‖x − z‖2. (1.2)

Now let Γ0(H) be the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such that dom f = {x ∈ H |
f (x) < +∞} �= ∅. In [16] Moreau observed that, for every function f ∈ Γ0(H), the proximal minimization problem

minimize
x∈H

f (x) + 1

2
‖x − z‖2 (1.3)
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possesses a unique solution, which he denoted by prox f z. The resulting proximity operator prox f : H → H therefore extends
the notion of a best approximation operator for a convex set. This fruitful concept has become a central tool in mechanics,
variational analysis, optimization, and signal processing, e.g., [1,10,19].

Though in certain simple cases closed-form expressions are available [10,11,17], computing prox f z in numerical appli-
cations is a challenging task. The objective of this paper is to propose a splitting algorithm to compute proximity operators
in the case when f can be decomposed as a sum of composite functions.

Problem 1.1. Let z ∈ H and let (ωi)1�i�m be reals in ]0,1] such that
∑m

i=1 ωi = 1. For every i ∈ {1, . . . ,m}, let (Gi,‖ · ‖Gi ) be
a real Hilbert space, let ri ∈ Gi , let gi ∈ Γ0(Gi), and let Li : H → Gi be a nonzero bounded linear operator. The problem is to

minimize
x∈H

m∑
i=1

ωi gi(Li x − ri) + 1

2
‖x − z‖2. (1.4)

The underlying practical assumption we make is that the proximity operators (proxgi
)1�i�m are implementable (to

within some quantifiable error). We are therefore aiming at devising an algorithm that uses these operators separately. Let
us note that such splitting algorithms are already available to solve Problem 1.1 under certain restrictions.

A) Suppose that G1 = H, that L1 = Id, that the functions (gi)2�i�m are differentiable everywhere with a Lipschitz continu-
ous gradient, and that ri ≡ 0. Then (1.4) reduces to the minimization of the sum of f1 = g1 ∈ Γ0(H) and of the smooth
function f2 = ∑m

i=2 ωi gi ◦ Li + ‖· − z‖2/2, and it can be solved by the forward–backward algorithm [11,21].
B) The methods proposed in [7] address the case when, for every i ∈ {1, . . . ,m}, Gi = H, Li = Id, and ri = 0.
C) The method proposed in [8] addresses the case when m = 2, G1 = H, and L1 = Id, and r1 = 0.

The restrictions imposed in A) are quite stringent since many problems involve at least two nondifferentiable potentials. Let
us also observe that since, in general, there is no explicit expression for proxgi◦Li

in terms of proxgi
and Li , Problem 1.1

cannot be reduced to the setting described in B). On the other hand, using a product space reformulation, we shall show that
the setting described in C) can be exploited to solve Problem 1.1 using only approximate implementations of the operators
(proxgi

)1�i�m . Our algorithm is introduced in Section 2, where we also establish its convergence properties. In Section 3,
our results are applied to best approximation and image recovery problems.

Our notation is standard. B(H, G) is the space of bounded linear operators from H to a real Hilbert space G . The
adjoint of L ∈ B(H, G) is denoted by L∗ . The conjugate of f ∈ Γ0(H) is the function f ∗ ∈ Γ0(H) defined by f ∗ : u 	→
supx∈H(〈x | u〉 − f (x)). The projector onto a nonempty closed convex set C ⊂ H is denoted by P C . The strong relative
interior of a convex set C ⊂ H is

sri C = {
x ∈ C

∣∣ cone(C − x) = span(C − x)
}
, where cone C =

⋃
λ>0

{λx | x ∈ C}, (1.5)

and the relative interior of C is ri C = {x ∈ C | cone(C − x) = span(C − x)}. We have int C ⊂ sri C ⊂ ri C ⊂ C and, if H is
finite-dimensional, ri C = sri C . For background on convex analysis, see [4,22].

2. Main result

To solve Problem 1.1, we propose the following algorithm. Its main features are that each function gi is activated in-
dividually by means of its proximity operator, and that the proximity operators can be evaluated simultaneously. It is
important to stress that the functions (gi)1�i�m and the operators (Li)1�i�m are used at separate steps in the algorithm,
which is thus fully decomposed. In addition, an error ai,n is tolerated in the evaluation of the ith proximity operator at
iteration n.

Algorithm 2.1. For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in Gi .

Initialization⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ =

(
max

1�i�m
‖Li‖

)−2

ε ∈ ]
0,min{1,ρ}[

For i = 1, . . . ,m⌊
v ∈ G
i,0 i



682 P.L. Combettes et al. / J. Math. Anal. Appl. 380 (2011) 680–688
For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = z −
m∑

i=1

ωi L
∗
i vi,n

γn ∈ [ε,2ρ − ε]
λn ∈ [ε,1]
For i = 1, . . . ,m⌊

vi,n+1 = vi,n + λn
(
proxγn g∗

i

(
vi,n + γn(Li xn − ri)

)+ ai,n − vi,n
)
. (2.1)

Note that an alternative implementation of (2.1) can be obtained via Moreau’s decomposition formula in a real Hilbert
space G [11, Lemma 2.10](∀g ∈ Γ0(G)

)(∀γ ∈ ]0,+∞[)(∀v ∈ G) proxγ g∗ v = v − γ proxγ −1 g

(
γ −1 v

)
. (2.2)

We now describe the asymptotic behavior of Algorithm 2.1.

Theorem 2.2. Suppose that

(ri)1�i�m ∈ sri

{
(Li x − yi)1�i�m

∣∣∣ x ∈ H, (yi)1�i�m ∈
m×

i=1

dom gi

}
(2.3)

and that(∀i ∈ {1, . . . ,m}) ∑
n∈N

‖ai,n‖Gi < +∞. (2.4)

Furthermore, let (xn)n∈N, (v1,n)n∈N, . . . , (vm,n)n∈N be sequences generated by Algorithm 2.1. Then Problem 1.1 possesses a unique
solution x and the following hold.

(i) For every i ∈ {1, . . . ,m}, (vi,n)n∈N converges weakly to a point vi ∈ Gi . Moreover, (vi)1�i�m is a solution to the minimization
problem

minimize
v1∈G1,...,vm∈Gm

1

2

∥∥∥∥∥z −
m∑

i=1

ωi L
∗
i vi

∥∥∥∥∥
2

+
m∑

i=1

ωi
(

g∗
i (vi) + 〈vi

∣∣ ri〉
)
, (2.5)

and x = z −∑m
i=1 ωi L∗

i vi .
(ii) (xn)n∈N converges strongly to x.

Proof. Set f : H → ]−∞,+∞] : x 	→ ∑m
i=1 ωi gi(Li x − ri). The assumptions imply that, for every i ∈ {1, . . . ,m}, the function

x 	→ gi(Li x − ri) is convex and lower semicontinuous. Hence, f is likewise. On the other hand, it follows from (2.3) that

(ri)1�i�m ∈
{

(Li x − yi)1�i�m

∣∣∣ x ∈ H, (yi)1�i�m ∈
m×

i=1

dom gi

}
(2.6)

and, therefore, that dom f �= ∅. Thus, f ∈ Γ0(H) and, as seen in (1.3), Problem 1.1 possesses a unique solution, namely
x = prox f z.

Now let H be the real Hilbert space obtained by endowing the Cartesian product Hm with the scalar product
〈· | ·〉H : (x, y) 	→ ∑m

i=1 ωi〈xi | yi〉, where x = (xi)1�i�m and y = (yi)1�i�m denote generic elements in H. The associated
norm is

‖ · ‖H : x 	→
√√√√ m∑

i=1

ωi‖xi‖2. (2.7)

Likewise, let G denote the real Hilbert space obtained by endowing the Cartesian product G1 × · · · × Gm with the scalar
product and the associated norm respectively defined by

〈· | ·〉G : (y, z) 	→
m∑

ωi〈yi | zi〉Gi and ‖ · ‖G : y 	→
√√√√ m∑

ωi‖yi‖2
Gi

. (2.8)

i=1 i=1
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Define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = ιD , where D = {
(x, . . . , x) ∈ H

∣∣ x ∈ H
}
,

g :G → ]−∞,+∞] : y 	→
m∑

i=1

ωi gi(yi),

L :H → G : x 	→ (Li xi)1�i�m,

r = (r1, . . . , rm),

z = (z, . . . , z).

(2.9)

Then f ∈ Γ0(H), g ∈ Γ0(G), and L ∈ B(H,G). Moreover, D is a closed vector subspace of H with projector

prox f = P D : x 	→
(

m∑
i=1

ωi xi, . . . ,

m∑
i=1

ωi xi

)
(2.10)

and

L∗ :G → H : v 	→ (
L∗

i vi
)

1�i�m. (2.11)

Note that (2.8) and (2.7) yield

(∀x ∈ H) ‖Lx‖2
G =

m∑
i=1

ωi‖Li xi‖2
Gi

�
m∑

i=1

ωi‖Li‖2‖xi‖2

�
(

max
1�i�m

‖Li‖2
) m∑

i=1

ωi‖xi‖2

=
(

max
1�i�m

‖Li‖2
)
‖x‖2

H. (2.12)

Therefore,

‖L‖ � max
1�i�m

‖Li‖. (2.13)

We also deduce from (2.3) that

r ∈ sri
(

L(dom f ) − dom g
)
. (2.14)

Furthermore, in view of (2.7) and (2.9), in the space H, (1.4) is equivalent to

minimize
x∈H

f (x) + g(Lx − r) + 1

2
‖x − z‖2

H. (2.15)

Next, we derive from [8, Proposition 3.3] that the dual problem of (2.15) is to

minimize
v∈G

f̃ ∗(z − L∗v
)+ g∗(v) + 〈v | r〉G, (2.16)

where f̃ ∗ : u 	→ infw∈H( f ∗(w) + (1/2)‖u − w‖2
H) is the Moreau envelope of f ∗ . Since f = ιD , we have f ∗ = ιD⊥ . Hence,

(2.7) and (2.10) yield

(∀u ∈ H) f̃ ∗(u) = 1

2
‖u − P D⊥ u‖2

H = 1

2
‖P D u‖2

H = 1

2

∥∥∥∥∥
m∑

i=1

ωiui

∥∥∥∥∥
2

. (2.17)

On the other hand, (2.8) and (2.9) yield

(∀v ∈ G) g∗(v) =
m∑

i=1

ωi g∗
i (vi) and proxg∗ v = (proxg∗

i
vi)1�i�m. (2.18)

Altogether, it follows from (2.11), (2.17), (2.18), and (2.8), that

(2.16) is equivalent to (2.5). (2.19)
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Now define

(∀n ∈ N)

⎧⎨⎩
xn = (xn, . . . , xn),

vn = (v1,n, . . . , vm,n),

an = (a1,n, . . . ,am,n).

(2.20)

Then, in view of (2.9), (2.10), (2.11), (2.13), and (2.18), (2.1) is a special case of the following routine.

Initialization⎢⎢⎢⎢⎣ ρ = ‖L‖−2

ε ∈ ]
0,min{1,ρ}[

v0 ∈ G
For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎣

xn = prox f
(
z − L∗vn

)
γn ∈ [ε,2ρ − ε]
λn ∈ [ε,1]
vn+1 = vn + λn

(
proxγn g∗

(
vn + γn(Lxn − r)

)+ an − vn
)
. (2.21)

Moreover, (2.4) implies that
∑

n∈N
‖an‖G < +∞. Hence, it follows from (2.14) and [8, Theorem 3.7] that the following hold,

where x is the solution to (2.15).

(a) (vn)n∈N converges weakly to a solution v to (2.16) and x = prox f (z − L∗v).
(b) (xn)n∈N converges strongly to x.

In view of (2.7), (2.8), (2.9), (2.10), (2.11), (2.19), and (2.20), items (a) and (b) provide respectively items (i) and (ii). �
Remark 2.3. Let us consider Problem 1.1 in the special case when(∀i ∈ {1, . . . ,m}) Gi = H, Li = Id, and ri = 0. (2.22)

Then (1.4) reduces to

minimize
x∈H

m∑
i=1

ωi gi(x) + 1

2
‖x − z‖2. (2.23)

Now let us implement Algorithm 2.1 with γn ≡ 1, λn ≡ 1, ai,n ≡ 0, and vi,0 ≡ 0. The iteration process resulting from (2.1)
can be written as

Initialization⎢⎢⎢⎢⎣ x0 = z

For i = 1, . . . ,m⌊
vi,0 = 0

For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎣
For i = 1, . . . ,m⌊

vi,n+1 = proxg∗
i
(xn + vi,n)

xn+1 = z −
m∑

i=1

ωi vi,n+1. (2.24)

For every i ∈ {1, . . . ,m} and n ∈ N, set zi,n = xn + vi,n . Then (2.24) yields

Initialization⎢⎢⎢⎢⎣ x0 = z

For i = 1, . . . ,m⌊
z = z
i,0
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For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎣
xn+1 = z −

m∑
i=1

ωi proxg∗
i

zi,n

For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + proxg∗

i
zi,n. (2.25)

Next we observe that (∀n ∈ N)
∑m

i=1 ωi zi,n = z. Indeed, the identity is clearly satisfied for n = 0 and, for every n ∈ N,
(2.25) yields

∑m
i=1 ωi zi,n+1 = xn+1 + ∑m

i=1 ωi proxg∗
i

zi,n = (z − ∑m
i=1 ωi proxg∗

i
zi,n) + ∑m

i=1 ωi proxg∗
i

zi,n = z. Thus, invoking
(2.2) with γ = 1, we can rewrite (2.25) as

Initialization⎢⎢⎢⎢⎣ x0 = z

For i = 1, . . . ,m⌊
zi,0 = z

For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎣
xn+1 =

m∑
i=1

ωi proxgi
zi,n

For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + zi,n − proxgi

zi,n. (2.26)

This is precisely the Dykstra-like algorithm proposed in [7, Theorem 4.2] for computing prox∑m
i=1 ωi gi

z (which itself extends
the classical parallel Dykstra algorithm for projecting z onto an intersection of closed convex sets [2,14]; for sequential
algorithms operating under assumption (2.22), see [3] for the case when m = 2, and [5] for the case of best approximation).
Hence, Algorithm 2.1 can be viewed as an extension of this algorithm, which was derived and analyzed with different
techniques in [7].

3. Applications

As noted in the Introduction, special cases of Problem 1.1 have already been considered in the literature under certain re-
strictions on the number m of composite functions, the complexity of the linear operators (Li)1�i�m , and/or the smoothness
of the potentials (gi)1�i�m (one will find specific applications in [6,8,10–12,18] and the references therein). The proposed
framework makes it possible to remove these restrictions simultaneously. In this section, we provide two illustrations.

3.1. Best approximation from an intersection of composite convex sets

In this subsection, we consider the problem of finding the best approximation P D z to a point z ∈ H from a closed convex
subset D of H defined as an intersection of affine inverse images of closed convex sets.

Problem 3.1. Let z ∈ H and, for every i ∈ {1, . . . ,m}, let (Gi,‖ · ‖Gi ) be a real Hilbert space, let ri ∈ Gi , let Ci be a nonempty
closed convex subset of Gi , and let 0 �= Li ∈ B(H, Gi). The problem is to

minimize
x∈D

‖x − z‖, where D =
m⋂

i=1

{x ∈ H | Li x ∈ ri + Ci}. (3.1)

In view of (1.1), Problem 3.1 is a special case of Problem 1.1, where (∀i ∈ {1, . . . ,m}) gi = ιCi and ωi = 1/m. It follows
that, for every i ∈ {1, . . . ,m} and every γ ∈ ]0,+∞[, proxγ gi

reduces to the projector PCi onto Ci . Hence, using (2.2), we
can rewrite Algorithm 2.1 in the following form, where we have set ci,n = −γ −1

n ai,n for simplicity.

Algorithm 3.2. For every i ∈ {1, . . . ,m}, let (ci,n)n∈N be a sequence in Gi .

Initialization⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ =

(
max

1�i�m
‖Li‖

)−2

ε ∈ ]
0,min{1,ρ}[

For i = 1, . . . ,m⌊
v ∈ G
i,0 i
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For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = z −
m∑

i=1

ωi L
∗
i vi,n

γn ∈ [ε,2ρ − ε]
λn ∈ [ε,1]
For i = 1, . . . ,m⌊

vi,n+1 = vi,n + γnλn
(
Li xn − ri − P Ci

(
γ −1

n vi,n + Li xn − ri
)− ci,n

)
. (3.2)

In the light of the above, we obtain the following application of Theorem 2.2(ii).

Corollary 3.3. Suppose that

(ri)1�i�m ∈ sri

{
(Li x − yi)1�i�m

∣∣∣ x ∈ H, (yi)1�i�m ∈
m×

i=1

Ci

}
(3.3)

and that (∀i ∈ {1, . . . ,m}) ∑n∈N
‖ci,n‖Gi < +∞. Then every sequence (xn)n∈N generated by Algorithm 3.2 converges strongly to the

solution P D z to Problem 3.1.

3.2. Nonsmooth image recovery

A wide range of signal and image recovery problems can be modeled as instances of Problem 1.1. In this subsection, we
focus on the problem of recovering an image x ∈ H from p noisy measurements

ri = Ti x + si, 1 � i � p. (3.4)

In this model, the ith measurement ri lies in a Hilbert space Gi , Ti ∈ B(H, Gi) is the data formation operator, and si ∈ Gi is
the realization of a noise process. A typical data fitting potential in such models is the function

x 	→
p∑

i=1

ωi gi(Ti x − ri), where 0 � gi ∈ Γ0(Gi) and gi vanishes only at 0. (3.5)

The proposed framework can handle p � 1 nondifferentiable functions (gi)1�i�p as well as the incorporation of additional
potential functions to model prior knowledge on the original image x. In the illustration we provide below, the following is
assumed.

• The image space is H = H1
0(Ω), where Ω is a nonempty bounded open domain in R

2.
• x admits a sparse decomposition in an orthonormal basis (ek)k∈N of H. As discussed in [12,23] this property can be

promoted by the “elastic net” potential x 	→ ∑
k∈N

φk(〈x | ek〉), where (∀k ∈ N) φk : ξ 	→ α|ξ | + β|ξ |2, with α > 0 and
β > 0. More general choices of suitable functions (φk)k∈N are available in [9].

• x is piecewise smooth. This property is promoted by the total variation potential tv(x) = ∫
Ω

|∇x(ω)|2 dω, where | · |2
denotes the Euclidean norm on R

2 [20].

Upon setting gi ≡ ‖ · ‖Gi in (3.5), these considerations lead us to the following formulation (see [8, Example 2.10] for
more general nonsmooth potentials).

Problem 3.4. Let H = H1
0(Ω), where Ω ⊂ R

2 is nonempty, bounded, and open, let (ωi)1�i�p+2 be reals in ]0,1] such that∑p+2
i=1 ωi = 1, and let (ek)k∈N be an orthonormal basis of H. For every i ∈ {1, . . . , p}, let 0 �= Ti ∈ B(H, Gi), where (Gi,‖ · ‖Gi )

is a real Hilbert space, and let ri ∈ Gi . The problem is to

minimize
x∈H

p∑
i=1

ωi‖Ti x − ri‖Gi +
∑
k∈N

(
ωp+1

∣∣〈x | ek〉
∣∣+ 1

2

∣∣〈x | ek〉
∣∣2)+ ωp+2 tv(x). (3.6)
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It follows from Parseval’s identity that Problem 3.4 is a special case of Problem 1.1 in H = H1
0(Ω) with m = p + 2, z = 0,

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gi = ‖ · ‖Gi and Li = Ti, if 1 � i � p;

G p+1 = �2(N), gp+1 = ‖ · ‖�1 , rp+1 = 0, and Lp+1 : x 	→ (〈x | ek〉
)

k∈N
;

G p+2 = L2(Ω) ⊕ L2(Ω), gp+2 : y 	→
∫
Ω

∣∣y(ω)
∣∣
2 dω, rp+2 = 0, and Lp+2 = ∇.

(3.7)

To implement Algorithm 2.1, it suffices to note that L∗
p+1 : (νk)k∈N 	→ ∑

k∈N
νkek and L∗

p+2 = −div, and to specify the
proximity operators of the functions (γ g∗

i )1�i�m , where γ ∈ ]0,+∞[. First, let i ∈ {1, . . . , p}. Then gi = ‖ · ‖Gi and therefore
g∗

i = ιBi , where Bi is the closed unit ball of Gi . Hence proxγ g∗
i
= P Bi . Next, it follows from (2.2) and [11, Example 2.20] that

proxγ g∗
p+1

: (ξk)k∈N 	→ (P [−1,1]ξk)k∈N . Finally, since gp+2 is the support function of the set [15]

K = {
y ∈ G p+2

∣∣ |y|2 � 1 a.e.
}
, (3.8)

g∗
p+2 = ιK and therefore proxγ g∗

p+2
= P K , which is straightforward to compute. Altogether, as ‖L p+1‖ = 1 and ‖L p+2‖ � 1,

Algorithm 2.1 assumes the following form (since all the proximity operators can be implemented with simple projections,
we dispense with the errors terms).

Algorithm 3.5.

Initialization⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ = (
max

{
1,‖T1‖, . . . ,‖T p‖})−2

ε ∈ ]
0,min{1,ρ}[

For i = 1, . . . , p⌊
vi,0 ∈ Gi

v p+1,0 = (νk,0)k∈N ∈ �2(N)

v p+2,0 ∈ L2(Ω) ⊕ L2(Ω)

For n = 0,1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = z −
p∑

i=1

ωi T
∗
i vi,n − ωp+1

∑
k∈N

νk,nek + ωp+2 div v p+2,n

γn ∈ [ε,2ρ − ε]
λn ∈ [ε,1]
For i = 1, . . . , p⌊

vi,n+1 = vi,n + λn

(
vi,n + γn(Ti xn − ri)

max{1,‖vi,n + γn(Ti xn − ri)‖Gi }
− vi,n

)
For every k ∈ N, νk,n+1 = νk,n + λn

(
νk,n + γn〈xn | ek〉

max{1, |νk,n + γn〈xn | ek〉|} − νk,n

)
For almost every ω ∈ Ω,

v p+2,n+1(ω) = v p+2,n(ω) + λn

(
v p+2,n(ω) + γn∇xn(ω)

max{1, |v p+2,n(ω) + γn∇xn(ω)|2} − v p+2,n(ω)

)
. (3.9)

Let us establish the main convergence property of this algorithm.

Corollary 3.6. Every sequence (xn)n∈N generated by Algorithm 3.5 converges strongly to the solution to Problem 3.4.

Proof. In view of the above discussion and of Theorem 2.2(ii), it remains to check that (2.3) is satisfied. Set S =
{(Li x − yi)1�i�m | x ∈ H, (yi)1�i�m ∈×m

i=1 dom gi}. We have dom gi = Gi for every i ∈ {1, . . . , p}, dom gp+1 = �1(N), and
dom gp+2 = L2(Ω) ⊕ L2(Ω). Consequently,

S =
{(

T1x − y1, . . . , T p x − yp,
(〈x | ek〉 − ηk

)
k∈N

,∇x − yp+2
) ∣∣∣

x ∈ H, (yi)1�i�p ∈
p×Gi, (ηk)k∈N ∈ �1(N), yp+2 ∈ L2(Ω) ⊕ L2(Ω)

}

i=1
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=
(

p×
i=1

Gi

)
× �2(N) × (

L2(Ω) ⊕ L2(Ω)
)

=
m×

i=1

Gi . (3.10)

Hence, we trivially have (r1, . . . , rp,0,0) ∈ sri S . �
Let us emphasize that a novelty of the above variational framework is to perform total variation image recovery in the

presence of several nondifferentiable composite terms, with guaranteed strong convergence to the solution to the problem,
and with elementary steps in the form of simple projections. The finite-dimensional version of the algorithm can easily
be obtained by discretizing the operators ∇ and div as in [6] (see also [8, Section 4.4] for variants of the total variation
potential).
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