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Abstract

Surface interpolation finds application in many aspects of science and technology. Two specific areas of interest are surface
reconstruction techniques for plant architecture and approximating cell face fluxes in the finite volume discretisation strategy
for solving partial differential equations numerically. An important requirement of both applications is accurate local gradient
estimation. In surface reconstruction this gradient information is used to increase the accuracy of the local interpolant, while in the
finite volume framework accurate gradient information is essential to ensure second order spatial accuracy of the discretisation.

In this work two different least squares strategies for approximating these local gradients are investigated and the errors
associated with each analysed. It is shown that although the two strategies appear different, they produce the same least squares
error. Some carefully chosen case studies are used to elucidate this finding.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The desire to determine accurate estimates of the gradient of a function f : D ⊂ R2
→ R, for some domain of

interest D, from a set of scattered function values arises in several different ways. In the applications which motivated
the work reported here, the need arose in approximating the diffusive flux in finite volume discretisation methods for
solving conservation equations numerically [4,14] and in the representation of the surfaces of leaves [1,2,10,13] where
a smooth fit to scattered data may be required.

Taylor expansions relate function values to derivatives and these generate linear relations amongst the derivatives
and function values, which provides a mechanism for derivative estimation. When the data points are subject to error
it is natural to form overdetermined systems of equations and then obtain gradient estimates by minimising residuals.

A simple approach to derivative estimation is to evaluate difference quotients to approximate directional derivatives.
The latter are inner products of direction vectors with the gradient and are thus linear combinations of the components
of the gradient derivatives. From these relationships a linear system for the gradients can be obtained. However, at
best, such approximations only provide first order spatial accuracy and to determine higher orders of accuracy some
form of extrapolation may be used.
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We report two methods based on the extrapolation approach; these are superficially different but they lead to the
same least squares solution for full rank problems. We present a proof of this result.

Our result is in the context of bivariate interpolation. Considerably more generality is offered by Moving Least
Squares (MLS) methods [5,7]. Such methods may be used in an arbitrary number of dimensions. Interpreted in terms
of projection operators these local methods lead to powerful mesh independent surface interpolation algorithms for
scattered data [8].

Our methods are appropriate when the scale of the problem is such that the presence of noise in the data may
be disregarded. For problems in which this assumption is inappropriate regularisation methods may be used. The
MLS algorithm of Reference [8] uses Backus–Gilbert and the work of Ling, [9], uses Tikhonov regularisation on this
important class of problems.

The structure of the paper is as follows. In Section 2 we review the literature on surface fitting for plant leaves
and outline the least squares approach used for local gradient estimation when constructing a surface interpolant [10].
In Section 3 we give a brief overview of the finite volume method for solving diffusion equations and provide the
motivation for accurate gradient estimation to ensure second order spatial accuracy of the discretisation. The least
squares strategy is again instrumental in this gradient approximation and the method employed in [4,14] is presented.
Although this solution process appears somewhat different to that utilised for surface fitting given in [10], in Section 4
we prove that the two methods give the same least squares solution. In Section 5 numerical case studies are presented
exhibiting the second order accuracy of these methods. This section also includes comparative comments on Ling’s
results and addresses a complexity issue. Finally in Section 6 the conclusions of the research are summarised and we
hint at future research directions.

2. Surface fitting for leaves of plants

Surface fitting arises in many different applications. The latest application for the authors is in the measurement of
leaves of plants to capture their image for simulation and modelling purposes.

Many representations of surfaces are possible. Here our representation is as a function from R2 to R, z = f (x, y),
thus a reference plane is assumed to exist, with a unique ordinate at each data point in the xy-plane. This is a restriction
that will be reasonable in many situations, but will not be valid in situations where leaves curl sufficiently. The
placement of points in the reference plane cannot be totally controlled, thus the situation is one of scattered data
points.

In order to obtain a surface with a continuously turning normal, i.e. continuous gradient, we chose to represent the
function by a set of cubic elements defined on a union of triangular domains obtained by a Delaunay triangulation
of the data points in the reference plane. This plane was determined by a least squares fit of a single affine function
to the data points. We represented the surface by using Clough–Tocher basis functions (see, for example, [6]). A
piecewise cubic surface with continuous gradient may be obtained if the function values and the gradient are known at
the original data points and the gradient is known at the mid-points of the edges of the triangulation. In fact the same
is true if the gradient at the mid-point of an edge is approximated by the arithmetic mean of its value at the nodes.
In the latter case we can only reproduce quadratics exactly, whereas cubics are reproduced if the true values of the
gradient at the mid-points are used.

There are many alternative ways of interpolating a scattered data set. Our method is taken from Lancaster and
Salkauskas [6]. A survey may be found in the paper in [12] with further references to the literature within.

Since the problem was specified with data values prescribed at the scattered points it was necessary to determine
the gradient at these points. The problem becomes: Given the values zi at the points (xi , yi )

T estimate the values of
the gradient, ∇ f (xi , yi ).

An estimate of the directional derivative at a point may be obtained simply by calculating the difference quotient
in the direction in question. Since the directional derivative is the inner product of the direction with the gradient
the difference quotient provides information for an approximation to the gradient. By evaluating several difference
quotients we can obtain a set of linear relations from which a linear system may be obtained whose solution is a first
order approximation to the gradient.

In order to describe the gradient estimation strategy, let f : D ⊂ R2
→ R be differentiable at x0 ∈ D, define

Frechet derivative d fx0 : R2
→ R as d fx0(h) = ∇ f (x0) · h, h = (h1, h2)

T and let the scalar function E(x0,h) be
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such that limh→0 E(x0,h) = 0 then

f (x0 + h)− f (x0) = ∇ f (x0) · h+ ‖h‖E(x0,h). (2.1)

Suppose that x0 = (x0, y0)
T and we are given p scattered data points xi = (xi , yi )

T
∈ Bδ(x0), i = 1, . . . , p

with δ suitably chosen and we require an estimate of the gradient ∇ f (x0). The relation (2.1) can be used to write an
overdetermined system of equations for g = ( ∂ f

∂x ,
∂ f
∂y )

T in the form:

Dg = δf, (2.2)

whose least squares solution, according to (2.1), will provide a first order estimate of the required gradient. The matrix

D ∈ Rp×2 is given by

(
δx1 δy1
.
.
.

.

.

.

δx p δyp

)
with δxi = xi − x0, δyi = yi − y0 and the right hand side vector δf ∈ Rp×1 has its

i th component given by δfi = f (x0 + δxi )− f (x0). Supposing now that I is an open interval in R containing [0, 1],
f ∈ Cr+1 in D and x0 + th ∈ D, ∀t ∈ I , then Taylor’s Theorem for Several Variables states that ∃θ, 0 < θ < 1,
such that

f (x0 + h) = f (x0)+
(h ·∇) f (x0)

1!
+ · · · +

(h ·∇)r f (x0)

r !
+ Rr ,

where the remainder Rr has the Lagrange form

Rr =
(h ·∇)r+1 f (x0 + θh)

(r + 1)!
.

Truncating the Taylor expansion for f after the second order term enables the following overdetermined system to
be solved, in the least squares sense, to obtain a second order approximation for the components of ∇ f (x0):

(D
...M)

(
g
z

)
= δf, (2.3)

where now the matrix M ∈ Rp×3 is given by


1
2
δx2

1 δx1δy1
1
2
δy2

1

.

.

.

.

.

.
1
2
δx2

p δxsδyp
1
2
δy2

p

and z = ( ∂
2 f
∂x2 ,

∂2 f
∂x∂y ,

∂2 f
∂y2 )

T. Eq. (2.3) can also be

written in the expanded form

Dg = δf−Mz, (2.4)

from which it can be seen that a more accurate estimate of the gradient than that offered by Eq. (2.2) can be obtained
if the second order derivative terms are eliminated from the system. This elimination can be performed using an
orthogonal reduction of M, namely QTM = T with QT

∈ Rp×p constructed using the product of elementary reflectors
and T ∈ Rp×3 has upper-trapezoidal form.

Applying QT to (2.4) produces

QTDg = QTδf− Tz, (2.5)

and discarding the first three equations from system (2.5) ensures that the remaining equations will not contain the
unknown second derivatives. The least squares solution of the remaining p−3 equations then provides a second order
accurate estimate of the gradient g.

Note also that each of the estimates of the directional derivative may be weighted without loss of second
order accuracy. This follows since the effect of a weight factor wi is to introduce a diagonal matrix W =

diag(w1, w2, . . . , ws), where typically one would use inverse distance, or inverse distance squared, weights wi =

‖δxi‖
−d , d = 1, 2 to give more significance to points closer to x0. In this case the system (2.4) becomes

WDg =Wδf−WMz

and now we apply orthogonal reduction to WM and then follow the steps of the earlier paragraph.
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Fig. 1.

Although the initial thought might be that the ordering of the equations would have some impact on the gradient
estimation process, this is indeed not the case. To see why, let R ∈ Rp×p be a permutation matrix that permutes the
rows of M. Because the orthogonal reduction of M produces unique matrices Q and T such that QTM = T, it follows

that applying orthogonal reduction to the permuted system RMx = Rδf yields with Q̃
T

RM = T and Q = RTQ̃
exactly the same system as (2.5).

3. Flux calculation

The need to solve two-dimensional conservative laws numerically finds application in many fields of science and
engineering and a method well suited for the task is the finite volume method (FVM). Typically, this method sees
the solution domain tessellated with control volumes, or cells, (see Fig. 1) and the conservation law is then integrated
over the cell in a discrete sense. It is well known that the spatial accuracy of the FVM is influenced to a large extent
by two factors—the quadrature rule used to approximate the surface integral of the flux and the estimation of the flux
itself at a cell face using only the cell and neighbouring nodal information. Since for diffusion equations the flux is
proportional to the gradient of the transported quantity, substantial effort is placed on its accurate reconstruction at the
cell face. Numerous methods have been investigated for this purpose, including Gauss reconstruction methods, finite
element shape function methods and least squares methods. These methods have been explored extensively in [4,14]
and the wealth of other references cited there.

We illustrate the FVM discretisation process for a representative diffusion equation of the following form:

∂ψ(ϕ)

∂t
= ∇ · (D∇ϕ)+ S(ϕ). (3.1)

Eq. (3.1) is transformed into control-volume form by integrating over the control volume VP :

d
dt

∫
VP

ψ(ϕ) dV −
∫

VP

∇ · (D∇ϕ)dV −
∫

VP

SdV = 0. (3.2)

Applying the Divergence theorem to (3.2), and defining

ψ̄ =
1

∆VP

∫
VP

ψdV, S̄ =
1

∆VP

∫
VP

SdV (3.3)

as the volume-averaged values of the accumulation term and source term respectively, we obtain (in a two-dimensional
setting):

dψ̄
dt
−

1
∆AP

∫
CP

D∇ϕ · n̂ds − S̄ = 0 (3.4)

which, since no approximation has been made at this stage, is an exact reformulation of (3.1). In Eq. (3.4) ∆AP
represents the cell area and CP the line integral path that defines the cell surface (or boundary).
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The FVM discretisation process proceeds by approximating the cell averages with their corresponding cell nodal
values and using the mid-point quadrature rule to approximate the line integral:

dψP

dt
−

1
∆AP

∑
j∈Np

(
D∇ϕ · n̂

)
j − Sp ≈ 0, (3.5)

where subscript j indicates evaluation at the mid-point of the j th cell face and Np is the set of cell faces that defines
CP . One notes from (3.5) that to evaluate this discrete finite volume equation it is necessary to approximate ∇ϕ at the
cell face mid-point.

In this work we analyse the least squares strategy proposed in [4] for this gradient estimation. One obvious
difference to the method outlined in Section 2 is that the value of the dependent variable ϕ (the conserved quantity) is
unknown at the cell face and consequently, it is necessary to solve a linear least squares problem with six unknowns,
namely the function value, its gradient components and the second derivative values. In [4] the gradient estimation
was obtained by solving the normal equations for the least squares solution and extracting the relevant components.

An alternate formulation [3] sees the gradient estimation required at the vertices of the triangles where the value
of ϕ is known and in this case the resulting overdetermined system with five unknowns is identical to the system
described by (2.3) in Section 2. If we apply orthogonal reduction directly to this system:

PT(D
...M)

(
g
z

)
= PTδf (3.6)

an upper triangular system can be solved and the relevant gradient approximation extracted. Denoting PT(D
...M) =

(
U
0

)
and PTδf =

(
c1
c2

)
the least squares solution x is obtained by solving Ux = c1 with error given by ‖c2‖

2
2. The relevant

gradient approximation is then taken as ∂ f
∂x ≈ x1 and ∂ f

∂y ≈ x2.
We show in the next section that the two least squares methods outlined in Sections 2 and 3 lead to identical

gradient approximations.

4. Uniqueness of the gradient estimates

The uniqueness of the gradient estimates presented in Sections 2 and 3 is not a result of the analytical properties of
the approximation processes, it is a consequence of the method of linear least squares. There is no loss of generality in
demonstrating this uniqueness for a system with five unknowns as arises in the gradient estimation processes discussed
in Sections 2 and 3.

Denote the residual for system (2.3) by

E = Ax− δf (4.1)

where x = (g, z)T and A = (D
...M) is assumed to have full rank. D, M and δf are as defined in Section 2. We wish to

find

e = min
x∈R5
‖E‖22 = min

x∈R5
‖Ax− δf‖22 . (4.2)

Method 1
As described in Section 2, the orthogonal reduction of M enables the system residual to be written as

(QTD
...QTM)

(
g
z

)
−QTδf = QTE. (4.3)

After partitioning QTD and QTδf the left hand side of the above equation becomes(
D11 T̃
D21 0

)(
g
z

)
−

(
d1
d2

)
, (4.4)
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where D11 ∈ R3×2, D21 ∈ R(p−3)×2, T̃ ∈ R3×3, d1 ∈ R3×1 and d2 ∈ R(p−3)×1, we then expand and take norms in
(4.3) to obtain:

‖E‖22 =
∥∥∥QTE

∥∥∥2

2
=

∥∥∥D11g+ T̃z− d1

∥∥∥2

2
+ ‖D21g− d2‖

2
2 . (4.5)

Let x1 be the minimiser of the second term on the right hand side, namely

x1 = arg min
g∈R2
‖D21g− d2‖

2
2 . (4.6)

Once x1 is determined, it then can be used to compute z by solving T̃z = d1−D11x1 so that the first term on the right
hand side of (4.5) can be made zero.

Using this strategy, we denote the least squares error for Method 1 as

e1 = ‖D21x1 − d2‖
2
2 . (4.7)

The gradient approximation is then given by ∂ f
∂x ≈ (x1)1 and ∂ f

∂y ≈ (x1)2.
Method 2

Suppose we now consider the orthogonal reduction discussed for the flux estimation problem discussed in
Section 3. In this case we have

PTAx− PTδf = PTE (4.8)

with PTδf =
(

c1
c2

)
where c1 ∈ R5×1, c2 ∈ R(p−5)×1 and PTA =

(
U
0

)
where U ∈ R5×5 is upper triangular, and

‖E‖22 = ‖Ux− c1‖
2
2 + ‖c2‖

2
2 (4.9)

so that we can write the least squares error given in (4.2) as

e = min
x∈R5
‖E‖22 = ‖c2‖

2
2 . (4.10)

The gradient approximation in this case is obtained by extracting the first two components of the least squares solution
x = U−1c1.

It is interesting to note that although the gradient approximations for Method 1 and Method 2 are determined using
quite different approaches the two methods produce the same error, which we now formally state and prove.

Proposition 1. The errors e defined in (4.10) and e1 defined in (4.7) are equal.

Proof. First observe that

e = min
x∈R5
‖E‖22 ≤ ‖Ax− δf‖22 , ∀ x ∈ R5 (4.11)

or, according to (4.5)

e ≤
∥∥∥D11g+ T̃z− d1

∥∥∥2

2
+ ‖D21g− d2‖

2
2 , x = (g, z)T. (4.12)

In particular, with the choice x = (x1, z)T, with x1 and z as given above, we obtain

e ≤ ‖D21x1 − d2‖
2
2 = e1. (4.13)

Our objective to complete the proof is to show that e ≥ e1 implying that e = e1. First partition Q = (Q1
...Q2) with the

matrices Q1 ∈ Rp×3 and Q2 ∈ Rp×(p−3). Then

QTA =

(
QT

1 D QT
1 M

QT
2 D QT

2 M

)
so that in (4.4), D11 = QT

1 D, D21 = QT
2 D, QT

1 M = T̃ and QT
2 M = 0.
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Using d2 = QT
2 δf we see that

D21g− d2 = QT
2 (Dg− δf). (4.14)

Now partition P = (P1
...P2), where P1 ∈ Rp×5,

PTA =

(
PT

1

PT
2

)
A =

(
U
0

)
and PTδf =

(
PT

1 δf

PT
2 δf

)
=

(
c1
c2

)
.

From this partitioning we deduce that c2 = PT
2 δf, PT

2 A = 0 and hence, P2PT
2 is a projector onto N (AT), the left hand

null space of A.
Denoting x as the least squares solution of Eq. (4.1), the residual is simply the projection of δf ontoN (AT), namely

Ax− δf = P2PT
2 δf,

which implies that e =
∥∥P2PT

2 δf
∥∥2

2 .

Furthermore, we can write with x = (x̄1, x̄2)
T so that

P2PT
2 δf = Dx̄1 +Mx̄2 − δf. (4.15)

Applying QT
2 to (4.15) gives:

QT
2 P2PT

2 δf = QT
2 (Dx̄1 − δf)+QT

2 Mx̄2

and since QT
2 M = 0, we obtain

QT
2 P2PT

2 δf = QT
2 r1 where r1 = Dx̄1 − δf.

Taking norms and using QT
2 Q2 = I we have:∥∥∥Q2QT

2 P2PT
2 δf
∥∥∥ = ∥∥∥QT

2 r1

∥∥∥ .
Noting that Q2QT

2 is an orthogonal projector onto null space N (MT) and since N (AT) ⊂ N (MT) we deduce that

Q2QT
2 (P2PT

2 δf) = P2PT
2 δf. (4.16)

Finally, e =
∥∥P2PT

2 δf
∥∥2

2 = ‖D21x̄1 − d2‖
2
2 ≥ ‖D21x1 − d2‖

2
2 = e1. Thus, we have the main result e = e1 as

asserted. �

It should be noted that the result e ≥ e1 in the above proof was obtained from a linear algebra perspective. It
provides us with the insight to derive an alternative proof based on analytic considerations, which we state as follows:

e = min
x∈R5
‖E‖22 = min

x∈R5

{∥∥∥D11g+ T̃z− d1

∥∥∥2

2
+ ‖D21g− d2‖

2
2

}
≥ min

x∈R5

∥∥∥D11g+ T̃z− d1

∥∥∥2

2
+ min

x∈R5
‖D21g− d2‖

2
2

= 0+ e1 = e1 (4.17)

where we have partitioned x = (g, z)T.
In fact the inequality relation between e and the terms on the right hand side of Eq. (4.17) can be sharpened to

equality, for the minima of those terms are taken at the same value of x, (g, z)T.
In the light of this remark we note that the solution of Method 1, (g, z)T, is the solution of

min
g,z

∥∥∥∥QT A

[
g
z

]
− QTδ f

∥∥∥∥2

2
. (4.18)
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where Q is orthogonal. The normal equations for this problem are

(QT A)T(QT A)

[
g
z

]
= (QT A)T QTδ f (4.19)

which under the assumption of full rank for A are equivalent to

AT A

[
g
z

]
= ATδ f. (4.20)

The solution of Method 2 is

min
g,z

∥∥∥∥PT A

[
g
z

]
− PTδ f

∥∥∥∥2

2
(4.21)

where P is orthogonal. Following the same manipulation as was done for Q we find that this, too, is equivalent to Eq.
(4.20). So we conclude for the third time that the solutions of Method 1 and Method 2 are identical.

Finally, returning to the problem of gradient estimation, Method 1 does not directly involve the higher order
derivatives. Thus it appears that the higher order terms may be eliminated from any subset of the equations, leading
to apparently different estimates. The equivalence of Methods 1 and 2 shows that in fact the solution obtained will be
identical in all cases.

5. Experimental results

All results presented in this section were performed using Matlab version 7.0.1 run on an Apple PowerBook G4.

5.1. Test problem 1

A set of numerical experiments were performed with the purpose of testing the accuracy of the estimates of the
gradient and to verify their asymptotic behaviour. We chose a random set of 20 points, uniformly distributed with
respect to their polar distance and angles to lie within a circle of unit radius. We then made the transformation
x → ρx + c, x = (x, y)T for various choices of c = (a, b)T and ρ. We chose a small, fixed number of points,
being those points nearest the test point c. We took, in turn, 6, 8, 10, 12 and 14 points. The weighting of the data
points was progressively increased by applying scale factors of dα for α = 0,−1,−2. Finally the seed for the random
number generator was given several different values. The tests were carried out on the function

sin r

r
, r2

= x2
+ y2, (5.1)

which is smooth, but mildly oscillatory. The error measures we use to interpret the results given in the Tables 1 and 2
are the norms of the difference between the approximate and exact values. Thus,

ge =

∥∥(∇ f )exact − (∇ f )approx
∥∥

‖(∇ f )exact‖
(5.2)

and

sde =

∥∥( fxx , fxy, fyy)error
∥∥∥∥( fxx , fxy, fyy)exact
∥∥ .

The results depend, therefore, on five distinct combinations of parameters. The most important of these is the
dependence on ρ which quantifies the convergence rate of the approximation ; this is the focus of Table 1. It shows
the accuracy of the approximation to the gradient for data within distances which are successively reduced by an order
of magnitude. The quadratic dependence of the error is evidenced by the values of ge, as is the first order accuracy of
the second derivative estimates, evidenced by the values of sde. The test point was (3, 4), the data points were equally
weighted, and the 6 nearest points were used.
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Table 1
Errors in gradient and Hessian estimates for the function (5.1), scaled relative to the magnitudes of their exact values

Radius 2.5000e−01 2.5000e−02 2.5000e−03 2.5000e−04 2.5000e−05 Exact ∇ f
∂ f
∂x 5.4717e−02 5.7029e−02 5.7053e−02 5.7054e−02 5.7054e−02 5.7054e−02
∂ f
∂y 7.3850e−02 7.6050e−02 7.6071e−02 7.6072e−02 7.6072e−02 7.6072e−02

ge 3.3907e−02 3.3753e−04 3.3725e−06 3.3724e−08 3.6708e−10

Radius 2.5000e−01 2.5000e−02 2.5000e−03 2.5000e−04 2.5000e−05 Exact 2nd
order derivatives

∂2 f
∂x2 4.9594e−02 6.5700e−02 6.7339e−02 6.7503e−02 6.7521e−02 6.7521e−02

∂2 f
∂x∂y 5.8292e−02 6.4103e−02 6.4615e−02 6.4665e−02 6.4671e−02 6.4671e−02
∂2 f
∂y2 1.1236e−01 1.0594e−01 1.0532e−01 1.0525e−01 1.0525e−01 1.0525e−01

sde 1.4431e−01 1.4422e−02 1.4414e−03 1.4413e−04 1.6062e−05

Table 2
Errors in gradient estimates for the function (5.1), for various field points, weightings, number of field points and random seeds

(a, b) (3 4)*1e−2 (3 4)*1e−1 (3 4) (3 4)*1e1 (3 4)*1e2

ge 9.0412e−07 8.9218e−07 3.3725e−06 1.9317e−06 1.9043e−06
scale index 0 −1 −2 −3 −4
ge 3.3725e−06 3.3706e−06 3.3689e−06 3.3674e−06 3.3661e−06
number of field pts 6 8 10 12 14
ge 3.3725e−06 4.5109e−06 1.1857e−06 1.1906e−06 1.8288e−06
seed number 1 2 3 4 5
ge 3.8766e−07 2.1210e−06 2.6842e−06 2.3917e−06 1.0448e−06

Table 2 gives an indication of how the errors vary with the remaining parameter combinations. These results show
that there is little change in the error with these parameters, certainly within an order of magnitude over the variation of
any single parameter. The values of the errors in the second derivative exhibit similar insensitivity to these parameters
and are not given here.

Finally we permuted the choice of rows for elimination and observed the machine accurate identical results for all
permutations which the observations and theorems of the earlier sections predicted.

5.2. Test problem 2

A similar set of numerical experiments were performed on the solution φ of the following classical steady-state
heat diffusion equation

∇ · (D∇u) = −g0 (5.3)

on the square domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. For the first sets of numerical experiments, a constant diffusion tensor
D = diag(Dxx , Dyy) is used, together with a constant source g0. The boundaries x = 0 and y = 0 are taken to be
insulated, and the boundaries x = 1 and y = 1 are subjected to Newtonian cooling with external temperature ϕ∞.
This problem is solvable analytically, and its solution is given by, [11],

ϕ(x, y) =
∞∑

n=1

2(λn
2
+ Hx

2)Fn cos(λn x) cosh(λnηy)

(λn
2
+ Hx + Hx

2)(λnη sinh(λnη)+ Hy cosh(λnη))
+ g0

[
1− x2

2Dxx
+

1
h

]
+ ϕ∞ (5.4)

where

η2
=

Dxx

Dyy
,

Hx =
h

Dxx
,
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Fig. 2.

Table 3
Errors in gradient estimates for the function (5.4), scaled relative to the magnitudes of their exact values

Radius 2.5000e−01 2.5000e−02 2.5000e−03 2.5000e−04 2.5000e−05 Exact ∇ f

∂ f
∂x −2.6947e−01 −2.7125e−01 −2.7127e−01 −2.7127e−01 −2.7127e−01 −2.7127e−01

∂ f
∂y −8.6722e−02 −8.6513e−02 −8.6512e−02 −8.6512e−02 −8.6512e−02 −8.6512e−02

ge 6.3577e−03 6.7051e−05 6.7436e−07 6.7395e−09 4.1078e−10

Fn =

∫ 1

0

g0

Dyy

[
h(x2
− 1)

2Dxx
− 1

]
cos(λn x)dx

and the λn are the solutions to

Hx

λ
= tan(λ).

The complete set of parameter values used for this test problem are ϕ∞ = 20, D = diag(5, 50), g0 = 10 and
h = 2 with the first 30 terms of the series for ϕ used. The exact solution of (5.3) is shown in Fig. 2.

The test data was generated almost exactly as described for problem 1, the only difference being the test points
at which the gradient was estimated. They were chosen so that they lay within the unit square [0, 1] × [0, 1].
The first test point chosen was (.3, .4) and this was varied with four perturbations (±.2,±.1). As before there
were five combinations of parameters used in the numerical experiments, these followed the same pattern as for
problem 1.

The results shown in Table 3 again affirm the quadratic dependence on the test region radius as exhibited for test
problem 1. The results in Table 4 record the insensitivity of the gradient error to the remaining parameter values. In
problem 2 we did not test the second derivative estimates.

Figs. 3–5 are log–log plots of the data for the variation of the error with the radius of the test region. These are
plots of the gradient and second derivative errors for problem 1 and for the gradient for problem 2. In all three cases
the points are, almost precisely, collinear. The slopes of the lines, are 2, 1 and 2, confirming the quadratic dependence
of the gradient error and the linear dependence for the second derivative error.
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Fig. 3.

Fig. 4.

Table 4
Errors in gradient estimates for the function (5.4), for various field points, weightings, number of field points and random seeds

(a, b) (.3.4) (.1.3) (.2.6) (.5.5) (.4.2)

ge 6.7436e−07 9.5189e−07 9.5785e−07 6.0470e−07 4.7791e−07
scale index 0 −1 −2 −3 −4
ge 6.7436e−07 6.7531e−07 6.7605e−07 6.7663e−07 6.7709e−07
number of field pts 6 8 10 12 14
ge 3.3725e−06 4.5109e−06 1.1857e−06 1.1906e−06 1.8288e−06
seed number 1 2 3 4 5
ge 8.6164e−08 2.7465e−08 7.7532e−07 2.8179e−07 3.6752e−07
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Table 5
Errors in gradient estimates for the function (5.5), scaled relative to the magnitudes of their exact values with ge as defined in Eq. (5.2)

Radius 2.5000e−01 2.5000e−02 2.5000e−03 2.5000e−04 2.5000e−05 Exact ∇ f

∂ f
∂x −1.9783e−03 −2.1224e−03 −2.1309e−03 −2.1310e−03 −2.1310e−03 −2.1310e−03
∂ f
∂y −3.9333e−02 −3.8148e−02 −3.8141e−02 −3.8140e−02 −3.8140e−02 −3.8140e−02

ge 3.1483e−02 3.0482e−04 3.1120e−06 3.1193e−08 3.1755e−10

5.3. A comparison and some remarks on complexity

Ling, [9], applies his algorithm to the function

sin(πx) sin(πy) exp(−x2
− y2) (5.5)

on the square [−2, 2] × [−2, 2]. For 1609 points with minimum separation distance not less than 5.092e−02, the root
mean square errors based on a 100× 100 grid lie between 1.5e−03 for zero noise and 3.84e−1 for 10% noise.

Performing the same tests as those described in Section 5.1 on this function we obtained the results shown in
Table 5. The test point was at (1.3, 1.7); the results are typical, taken from a grid of points with spacing of 0.1 in
both coordinate directions. The second order dependence of the error may be observed as in the earlier examples. In
comparison with Ling’s results [9] those given for a radius of .025 are perhaps the most relevant. The errors for Ling’s
noise free results [9] are of a similar order of magnitude to those given in Table 5. Results for differing spacing over a
range of magnitudes and statements regarding complexity are not given by Ling [9].

The complexity of an algorithm using function values and gradients at the data points is of the same order as one
using function values only. To determine a gradient estimate at a particular node, a set of data points is located. Either
of the least squares problems described in Section 4, (Method 1 or Method 2) is set up and solved. The coefficient
matrix will be p × 5, where p is the number of points nearest the node. Thus the cost at each node is a fixed number,
the maximum number of flops needed for the least squares solution of the p × 5 system (Numerical evidence, as
presented below, suggests that the six closest points give sufficient accuracy.) The interpolant is evaluated using a
Lagrange formula based on the cardinal functions (cubic polynomials) given in Reference [6]. Thus if there are n
data points the computation needed to compute the interpolant will be, at most, a fixed multiple of that needed to
compute a counterpart based on function values only. Since the complexity of a Delaunay triangulation is O(n log n),
the method, to an order of magnitude has the same complexity as a piecewise linear approximation.
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6. Conclusions

We have introduced two methods for estimating gradients for use in scattered data surface fitting. Although these
methods appeared superficially different, we have proven that they produce the same least squares errors and derivative
estimates. Furthermore, the results indicate that the methods are robust in the context of the location of the gradient
estimation point x0, the number of points used for generating the least squares system and the weightings based on
the inverse distance of these points from x0. The results are consistent over a range of randomly generated data sets.
The chosen applications highlight the importance of the technique.

The analysis which proves the uniqueness of the gradient estimate is applicable for any full column rank
overdetermined linear least squares problem. If offers the opportunity of solving a least squares by partitioning or
divide and conquer methods in the following way. First factorise a subset of the columns, reducing the dimension
of the least squares problem. Follow this by solving the remaining triangular system. Clearly the process can be
continued recursively and any structure such as sparsity within a subset of the original problem could be handled in a
similar fashion.
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