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Some Classes of Multivariate Life Distributions
in Discrete Time
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New classes of multivariate survival distribution functions based on monotonic
behaviour of a multivariate failure rate are developed in the discrete set up. Rela-
tionship among the classes along with multivariate geometric distributions that act
as boundaries of the various classes are identified. � 1997 Academic Press

1. INTRODUCTION

The importance of failure rate and mean residual life in the context of
modelling lifetime data is well established and various classes of life dis-
tributions have been identified (for example, [1�6]) on the basis of the
monotone behaviour of these reliability concepts. In the multivariate case,
the pattern of ageing can be viewed from different angles and accordingly
there is more than one way in which monotonicity of failure rates can be
analysed. When lifetime is treated as continuous, often various forms of
multivariate exponential distributions appear as the boundary separating
increasing failure rate and decreasing failure rate models. Recently there
has been considerable interest in developing reliability models in the
discrete time domain. For justification of such models and the analysis
involving them, we refer to [2, 7�13].

In the present note, we attempt a theoretical investigation of the classes
of life distributions using the nature of a multivariate discrete failure rate
and derive the chain of implications among them. In the process forms of
multivariate geometric distributions that are characterized by the no-ageing
property are identified. The results are useful in developing tests for con-
stant failure rate against increasing (decreasing) failure rate alternatives.
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Let X=(X1 , X2 , ..., Xn) be a discrete random vector in the support of
I +

n = [x = (x1 , x2 , ..., xn) | xi = 0, 1, 2, . . . ; i = 1, ..., n] representing the
lifetimes of an n-component system with the joint survival function

R(x)=P(X�x), (1.1)

where the ordering X�x is understood component-wise. We consider the
multivariate failure rate [8]

h(x)=(h1(x), h2(x), ..., hn(x)),

where

hi (x)=P[Xi=xi | X�x]

=1&[R(x1 , ..., xi&1 , xi+1, xi+1 , ..., xn)�R(x)] (1.2)

and derive various classes of increasing failure rate (IFR) and decreasing
failure rate (DFR) models. The failure rate h(x) determines the distribution
of X uniquely through the formula

R(x)= `
x1&1

r=0

[1&h1(x1&r&1, x2 , ..., xn)]

_ `
x2&1

r=0

[1&h2(0, x2&r&1, ..., xn)] } } }

_ `
xn&1

r=0

[1&hn(0, 0, ..., 0, xn&r&1)] (1.3)

as seen from Eq. (1.2).

2. IFR1 (DFR1) CLASS

Definition 2.1. A random vector X in the support of I +
n is said to

have IFR1 (DFR1) distribution if for all x, t in I +
n ,

h(x+t)� (�) h(x), (2.1)

where t=(t1 , t2 , ..., tn).

Theorem 2.1 The only class of distributions in I +
n which is both IFR1

and DFR1 is the multivariate geometric distribution with independent
marginals.

Proof. Let X be such that

R(x)= px1
1 px2

2 } } } pxn
n , 0<pi<1, i=1, 2, ..., n. (2.2)
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Then h(x)=(1& p1 , 1& p2 , ..., 1& pn), implying h(x+t)=h(x) for all x, t
in I +

n . Conversely if h(x+t)=h(x) holds, from (1.2) for i=1 we have

R(x1+t1+1, x2+t2 , ..., xn+tn)
R(x1+t1 , x2+t2 , ..., xn+tn)

=
R(x1+1, x2 , ..., xn)

R(x)
. (2.3)

Taking x=(0, 0, ..., 0) and writing ei for the n-dimensional unit vector with
the i th coordinate as unity

R(t1+1, t2 , ..., tn)= pt1+1
1 R(0, t2 , ..., tn), (2.4)

where p1=R(e1) and 0<p1<1.
By considering (1.2) for i=2, we can have an expression similar to

(2.3) in which if we set x=(0, 0, ..., 0) and t1=0, R(0, t2 , ..., tn)=
pt2

2 R(0, 0, t3 , ..., tn) with p2=R(e2). Continuing the iteration, we arrive at
(2.2) and this proves the assertion.

The implication of Theorem 2.1 is that Definition 2.1 is highly restrictive
in the sense that the components of the system are independent of one
another. In order to include more realistic situations of ageing we consider
alternative definitions.

3. IFR2 (DFR2) CLASS

Definition 3.1. The distribution of X belongs to the IFR2 (DFR2)
class if for all x in I +

n and s in I +
1 ,

hi (x1 , ..., xi+s, xi+1 , ..., xn)� (�) hi (x), i=1, 2, ..., n. (3.1)

Theorem 3.1. A multivariate distribution with support I +
n is both IFR2

and DFR2 if and only if it is multivariate geometric with survival function

R(x)=\`
n

i=1

pxi
i +\`

i< j

pxixj
ij + } } } ( px1x2 } } } xn

12 } } } n ), (3.2)

where

0<pi<1, 0<pij , pijk , ..., p12 } } } n<1

and

1&:
i

pi&: :
i< j

pi pj pij+ } } } +(&1)n p12 } } } n�0. (3.3)
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Proof. When the distribution is as stated in (3.2)

1&hi (x)=pi \`
i< j

pxj
ij +\ `

i< j<k

pxj xk
ijk + } } } ( px1, ..., xi&1, xi+1, ..., xn

12 } } } n )

(3.4)

1&hi (x)=pi \`
i< j

pxj
ij +\ `

i< j<k

pxj xk
ijk + } } } ( px1, ..., xi&1, xi+1, ..., xn

12 } } } n )

which is independent of xi for all i=1, 2, ..., n and hence for all x and s

hi (x1 , ..., xi&1 , xi+s, xi+1 , ..., xn)=hi (x), (3.5)

Thus the condition is necessary. To establish the sufficiency part, we use
the method of induction. It is proved in [10] that in the bivariate case the
failure rate having functional form hi (x1 , x2)=ai (xj), i, j=1, 2, i{ j,
characterizes the distribution (3.2) for n=2. Thus the theorem holds for
n=2. Assume that the condition holds for every subset of m variables in
X. The same condition holds for (m+1) variables (X1 , ..., Xm+1) if and
only if 1&hi (x1 , ..., xm+1)=Bi (xi*), where xi*=(x1 , ..., xi&1, xi+1, ..., xm+1).

Thus from (1.2) and by induction hypothesis

R(x1 , x2 , ..., xm+1)

=[Bi (xi*)]xi R(x1 , ..., xi&1 , 0, xi+1 , ..., xm+1)

=[Bi (xi*)]xi \ `
m+1

j=1

pxj
j +\`

j<k

pxjxk
jk + } } } ( px1 x2 , ..., xi&1, xi+1, ..., xm+1

12 } } } m+1
),

j=1, 2, ..., m+1; j{i. (3.6)

For i=1, 2, ..., n we can write equivalent expressions for R(x1 , x2 , ...,
xm+1). Dividing each of them by

\ `
m+1

i=1

pxi
i +\ `

m+1

j=1
i< j

pxi xj
pij + } } } ( px1x2 } } } xm

12 } } } m )

and taking (x1 , x2 , ..., xm+1)th root we find

_B1(x1*) _px1
1 \`

j{1

px1xj
1j + } } } ( px1 x3 } } } xm+1

13 } } } m+1
)&

&1

&
(x1x2 } } } xm+1)&1

=_B2(x2*) _px2
2 \`

j{2

px2xj
2j + } } } ( px2x3 } } } xm+1

23 } } } m+1
)&

&1

&
(x1x2 } } } xm+1)&1

= } } }

=_Bm+1(x*m+1) _pxm+1
m+1 \ `

j{m+1

pxm+1 xj
m+1, j+ } } } ( px1 } } } xm

1 } } } m )&
&1

&
(x1 } } } xm+1)&1

.
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This, however, means that

_Bi (xi*) _pxi
i \`

j{i

pxi xj
ij + } } } ( px1 } } } x1 } } } xm

1 } } } i } } } m )&
&1

&
(x1x2 } } } xm+1)&1=const

,

independent of x1 , ..., xm+1 , say, p12 } } } m+1. Then

Bi (xi*)= pxi
i \`

j{i

pxj
ij + } } } ( px1 } } } xi&1xi+1 } } } xm+1

12 } } } m+1
). (3.7)

Substituting (3.7) into (3.6) we recover the survival function (3.2) for
n=m+1. The conditions on the parameters are obtained from the
relationships

R(x1 , ..., xi&1)�R(x1 , ..., xi), i=1, 2, ..., n ; f (0, 0, ..., 0)�0.

4. IFR3 (DFR3) CLASS

An alternative way of relaxing the Definition 2.1 is realized by assuming
that the failure rate of system with n components of different ages is
observed after each component has worked through the same time. Thus
we have

Definition 4.1. The distribution of X belongs to the IFR3(DFR3) class
if for all m�n, x in I +

m , t in I +
1 ,

hi (x1+t, ..., xm+t)� (�) hi (x1 , ..., xm). (4.1)

Theorem 4.1. The only multivariate distribution that is both IFR3 and
DFR3 in I +

m for all m�n is specified by

R(x)=pxi1i1
( pi1 i2

�pi1
)xi2

_( pi1 i2 i3
�pi1 i2

)xi3 } } } ( pi1 } } } i2
�Pi1 } } } im&1

)xim, xi1
�xi2

� } } } �xim
,

(4.2)

for each permutation (i1 , i2 , ..., im) of the integers from 1 to m. The
parameters are such that

0<pi1 i2 } } } im
� } } } �pi1, i2

�p1 , p2 , ..., pm<1,

pi1 i2 } } } ij
= p123 } } } j for j=2, ..., m
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and

1& :
n

j=1

pj&: :
j<k

pjk+ } } } +(&1)n&1 p123 } } } m�0.

Proof. The distribution of X is both IFR3 and DFR3 if and only if

h(x1+t, ..., xm+t)=h(x1 , ..., xm) for all m�n. (4.3)

First we prove that (4.3) is equivalent to the multivariate lack of memory
property (MLMP),

R(x1+t, ..., xm+t)=R(x1 , ..., xm) R(t, ..., t) for all m�n. (4.4)

When (4.3) holds, from (1.2) for i=1,

R(x1+t+1, x2+t, ..., xm+t)
R(x1+1, x2 , ..., xm)

=
R(x1+t, x2+t, ..., xm+t)

R(x1 , ..., xm)

=
R(t, x2+t, ..., xm+t)

R(0, x2 , ..., xm)
. (4.5)

Similarly using the definitions of h2(x1 , ..., xm)

R(x1+t, x2+t, ..., xm+t)
R(x1 , x2 , ..., xm)

=
R(x1+t, t, ..., xm+t)

R(x1 , 0, x3 , ..., xm)
. (4.6)

Setting x2=0 in (4.5) and substituting in (4.6)

R(x1+t, x2+t, ..., xm+t)
R(x1 , x2 , ..., xm)

=
R(t, t, x3+t, ..., xm+t)

R(0, 0, x3 , ..., xm)
.

Successively using h3 , ..., hm and noting R(0, 0, ..., 0)=1 we obtain (4.4).
The converse is obtained by using (4.4) in the expression for h(x+t). To
complete the proof it remains to establish that the only solution of (4.4) is
(4.2).

For m=1, the only solution is R(xj)= pxj
1 for some 0<p1<1 and for

m=2,

R(x1+t, x2+t)=R(x1 , x2) R(t, t).

Setting x2=0,

R(x1+t, t)= px1
1 R(t, t). (4.7)
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Further,

R( y+t, y+t)=R( y, y) R(t, t)

gives R(t, t)= pt
12 for some 0<p12<1. Thus for x1�x2 from (4.7),

R(x1 , x2)= px1
1 ( p12 �p1)x2. (4.8)

Assuming the solution (4.2) to hold for any m variables in X,

R(x1+t, ..., xm+t, t)=R(x1 , x2 , ..., xm) R(t, ..., t)

specializes to

R(x1+t, x2+t, ..., xm+t, t)=R(x1 , x2 , ..., xm , 0) R(t, ..., t)

= px1
1 ( p12 �p1)x2 } } } ( p1 } } } m�P12 } } } m&1)xm R(t, ..., t), x1�x2� } } } �xm .

(4.9)

Also,

R( y+t, ..., y+t)=R( y, ..., y) R(t, ..., t)

R(t, ..., t)=pt
12 } } } m+1 , 0<p12 } } } m+1<1.

R(x)=px1
1 ( p12 �p1)x2 } } } ( p1 } } } m+1 �p12 } } } m)xm+1

x1�x2� } } } xm+1.

By induction we have derived the result for x1�x2� } } } �xm+1. The
expression for R(x) in other regions of the sample space are similarly
obtained and the conditions on the parameters are obtained as in
Theorem 3.1.

Note. It is possible to have a stronger class than that provided by
Eq. (4.1) by defining it as X belongs to IFR4 (DFR4) class if for all m�n
and

h(x+t, ..., x+t)� (�) h(x, ..., x), (4.10)

but there is no characterization of the corresponding boundary class.

5. INTER RELATIONSHIPS

From the definitions given above it is clear that

(i) IFR2 o IFR1 O IFR3 O IFR4 and

(ii) DFR2 o DFR1 O DFR3 O DFR4 .
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TABLE I

Bivariate distribution (h1(x), h2(x)) Example for

(i) Bivariate geometric [7]

px1
1 px2

2 %x1 x2

0<pi<1, 1+p1 p2 %�p1+p2 .
xi=0, 1, ..., i=1, 2

(1& p1 %x2, 1&p2%x1) IFR2 O% DFR4

DFR2 O% DFR4

(ii) Bivariate Waring
(m)x1+x2

(m+n)x1+x2

m, n>0; xi=0, 1, ..., i=1, 2
\ n

m+n+x1+x2

,
n

m+n+x1+x2+
DFR2 O% IFR2

DFR2 O% IFR4

(iii) Bivariate geometric [6]

px2px1&x2
1 , x1�x2

px1px2x1
2 , x1�x2

0<p�pi<1, xi=0, 1, 2, ...
1+p�p1+p2 , i=1, 2

(1& p1 , 1&p�p1)x1>x2

(1& p�p2 , 1& p2)x1<x2

(1& p1 , 1&p2)x1=x2

When p�p1 p2

DFR3 O% DFR2

When p�p1 p2

IFR3 O% IFR2

(iv) Bivariate negative
hypergeometric

\k+n&x1&x2

n&x1&x2 +<\k+n
n +

x1+x2�n. xi=0, 1, 2, ..., n

\ k
k+n&x1&x2

,
k

k+n&x1&x2+ IFR1 O% DFR2

IFR1 O% DFR4

(v) Bivariate geometric mixture
:px1+x2+(1&:) px1, x1�x2

:px1+x2+(1&:) px2, x1�x2

0<p, :<1, xi=0, 1, 2, ..., i=1, 2
\1&p, 1&

:px2+1+(1&:)
:px2+(1&:) +

x1�x2+1

\1&
:px1+1+(1&:)

:px1+(1&:)
, 1&p+

x1+1�x2

(1& p, 1&p), x1=x2

IFR4 O% IFR3

DFR4 O% DFR3

(vi) Bivariate geometric
px1

1 , px1
1 � px2

2

px2
2 , px1

1 � px2
2

0<pi<1, xi=0, 1, 2, ..., i=1, 2

(1& p1 , 0), px1
1 �px2+1

2

(0, 1&p2), px1+1
1 �px2

2

\1&p1 , 1&
px2+1

2

px1
1 +

px1
1 �px2

2 , px1
1 � px2+1

2

\1&
px1+1

1

px2
2

, 1&p2+
px1

1 �px2
2 , px1+1

1 � px2
2

IFR2 O% IFR4
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Further the counterexamples provided in Table I illustrate that there exist
no other implications between the different classes.
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