Some Classes of Multivariate Life Distributions in Discrete Time

N. Unnikrishnan Nair and G. Asha
Cochin University of Science and Technology, Cochin 22, India

Abstract

New classes of multivariate survival distribution functions based on monotonic behaviour of a multivariate failure rate are developed in the discrete set up. Relationship among the classes along with multivariate geometric distributions that act as boundaries of the various classes are identified. © 1997 Academic Press

View metadata, citation and similar papers at core.ac.uk

1. INTRODUCTION

The importance of failure rate and mean residual life in the context of modelling lifetime data is well established and various classes of life distributions have been identified (for example, [1-6]) on the basis of the monotone behaviour of these reliability concepts. In the multivariate case, the pattern of ageing can be viewed from different angles and accordingly there is more than one way in which monotonicity of failure rates can be analysed. When lifetime is treated as continuous, often various forms of multivariate exponential distributions appear as the boundary separating increasing failure rate and decreasing failure rate models. Recently there has been considerable interest in developing reliability models in the discrete time domain. For justification of such models and the analysis involving them, we refer to [2, 7-13].

In the present note, we attempt a theoretical investigation of the classes of life distributions using the nature of a multivariate discrete failure rate and derive the chain of implications among them. In the process forms of multivariate geometric distributions that are characterized by the no-ageing property are identified. The results are useful in developing tests for constant failure rate against increasing (decreasing) failure rate alternatives.

[^0]AMS subject classifications: $62 \mathrm{E} 15,62 \mathrm{~N}$.
Key words and phrases: life distributions, multivariate failure rates, multivariate geometric laws.

Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a discrete random vector in the support of $I_{n}^{+}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=0,1,2, \ldots ; i=1, \ldots, n\right\}$ representing the lifetimes of an n-component system with the joint survival function

$$
\begin{equation*}
R(\mathbf{x})=P(\mathbf{X} \geqslant \mathbf{x}), \tag{1.1}
\end{equation*}
$$

where the ordering $\mathbf{X} \geqslant \mathbf{x}$ is understood component-wise. We consider the multivariate failure rate [8]

$$
h(\mathbf{x})=\left(h_{1}(\mathbf{x}), h_{2}(\mathbf{x}), \ldots, h_{n}(\mathbf{x})\right),
$$

where

$$
\begin{align*}
h_{i}(\mathbf{x}) & =P\left[X_{i}=x_{i} \mid \mathbf{X} \geqslant \mathbf{x}\right] \\
& =1-\left[R\left(x_{1}, \ldots, x_{i-1}, x_{i}+1, x_{i+1}, \ldots, x_{n}\right) / R(\mathbf{x})\right] \tag{1.2}
\end{align*}
$$

and derive various classes of increasing failure rate (IFR) and decreasing failure rate (DFR) models. The failure rate $h(\mathbf{x})$ determines the distribution of \mathbf{X} uniquely through the formula

$$
\begin{align*}
R(\mathbf{x})= & \prod_{r=0}^{x_{1}-1}\left[1-h_{1}\left(x_{1}-r-1, x_{2}, \ldots, x_{n}\right)\right] \\
& \times \prod_{r=0}^{x_{2}-1}\left[1-h_{2}\left(0, x_{2}-r-1, \ldots, x_{n}\right)\right] \cdots \\
& \times \prod_{r=0}^{x_{n}-1}\left[1-h_{n}\left(0,0, \ldots, 0, x_{n}-r-1\right)\right] \tag{1.3}
\end{align*}
$$

as seen from Eq. (1.2).

2. $\mathrm{IFR}_{1}\left(\mathrm{DFR}_{1}\right) \mathrm{CLASS}$

Definition 2.1. A random vector \mathbf{X} in the support of I_{n}^{+}is said to have $\operatorname{IFR}_{1}\left(\mathrm{DFR}_{1}\right)$ distribution if for all \mathbf{x}, \mathbf{t} in I_{n}^{+},

$$
\begin{equation*}
h(\mathbf{x}+\mathbf{t}) \geqslant(\leqslant) h(\mathbf{x}), \tag{2.1}
\end{equation*}
$$

where $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Theorem 2.1 The only class of distributions in I_{n}^{+}which is both IFR_{1} and DFR_{1} is the multivariate geometric distribution with independent marginals.

Proof. Let \mathbf{X} be such that

$$
\begin{equation*}
R(\mathbf{x})=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{n}^{x_{n}}, \quad 0<p_{i}<1, \quad i=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

Then $h(\mathbf{x})=\left(1-p_{1}, 1-p_{2}, \ldots, 1-p_{n}\right)$, implying $h(\mathbf{x}+\mathbf{t})=h(\mathbf{x})$ for all \mathbf{x}, \mathbf{t} in I_{n}^{+}. Conversely if $h(\mathbf{x}+\mathbf{t})=h(\mathbf{x})$ holds, from (1.2) for $i=1$ we have

$$
\begin{equation*}
\frac{R\left(x_{1}+t_{1}+1, x_{2}+t_{2}, \ldots, x_{n}+t_{n}\right)}{R\left(x_{1}+t_{1}, x_{2}+t_{2}, \ldots, x_{n}+t_{n}\right)}=\frac{R\left(x_{1}+1, x_{2}, \ldots, x_{n}\right)}{R(\mathbf{x})} . \tag{2.3}
\end{equation*}
$$

Taking $\mathbf{x}=(0,0, \ldots, 0)$ and writing e_{i} for the n-dimensional unit vector with the i th coordinate as unity

$$
\begin{equation*}
R\left(t_{1}+1, t_{2}, \ldots, t_{n}\right)=p_{1}^{t_{1}+1} R\left(0, t_{2}, \ldots, t_{n}\right), \tag{2.4}
\end{equation*}
$$

where $p_{1}=R\left(e_{1}\right)$ and $0<p_{1}<1$.
By considering (1.2) for $i=2$, we can have an expression similar to (2.3) in which if we set $\mathbf{x}=(0,0, \ldots, 0)$ and $t_{1}=0, R\left(0, t_{2}, \ldots, t_{n}\right)=$ $p_{2}^{t_{2}} R\left(0,0, t_{3}, \ldots, t_{n}\right)$ with $p_{2}=R\left(e_{2}\right)$. Continuing the iteration, we arrive at (2.2) and this proves the assertion.

The implication of Theorem 2.1 is that Definition 2.1 is highly restrictive in the sense that the components of the system are independent of one another. In order to include more realistic situations of ageing we consider alternative definitions.

3. $\mathrm{IFR}_{2}\left(\mathrm{DFR}_{2}\right) \mathrm{CLASS}$

Definition 3.1. The distribution of \mathbf{X} belongs to the $\operatorname{IFR}_{2}\left(\mathrm{DFR}_{2}\right)$ class if for all \mathbf{x} in I_{n}^{+}and s in I_{1}^{+},

$$
\begin{equation*}
h_{i}\left(x_{1}, \ldots, x_{i}+s, x_{i+1}, \ldots, x_{n}\right) \geqslant(\leqslant) h_{i}(\mathbf{x}), \quad i=1,2, \ldots, n . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. A multivariate distribution with support I_{n}^{+}is both IFR_{2} and DFR_{2} if and only if it is multivariate geometric with survival function

$$
\begin{equation*}
R(\mathbf{x})=\left(\prod_{i=1}^{n} p_{i}^{x_{i}}\right)\left(\prod_{i<j} p_{i j}^{x_{i} x_{j}}\right) \cdots\left(p_{12 \cdots n}^{x_{1} x_{2} \cdots x_{n}}\right), \tag{3.2}
\end{equation*}
$$

where

$$
0<p_{i}<1, \quad 0<p_{i j}, p_{i j k}, \ldots, p_{12 \cdots n}<1
$$

and

$$
\begin{equation*}
1-\sum_{i} p_{i}-\sum_{i<j} \sum_{i} p_{i} p_{j} p_{i j}+\cdots+(-1)^{n} p_{12 \cdots n} \geqslant 0 . \tag{3.3}
\end{equation*}
$$

Proof. When the distribution is as stated in (3.2)

$$
\begin{align*}
& 1-h_{i}(\mathbf{x})=p_{i}\left(\prod_{i<j} p_{i j}^{x_{j}}\right)\left(\prod_{i<j<k} p_{i j k}^{x_{i j} x_{k}}\right) \cdots\left(p_{12 \ldots n}^{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}}\right) \\
& 1-h_{i}(\mathbf{x})=p_{i}\left(\prod_{i<j} p_{i j}^{x_{j}}\right)\left(\prod_{i<j<k} p_{i j k}^{x_{j} x_{k}}\right) \cdots\left(p_{12 \ldots n}^{x_{1}, \ldots x_{i-1}, x_{i+1}, \ldots, x_{n}}\right) \tag{3.4}
\end{align*}
$$

which is independent of x_{i} for all $i=1,2, \ldots, n$ and hence for all \mathbf{x} and s

$$
\begin{equation*}
h_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i}+s, x_{i+1}, \ldots, x_{n}\right)=h_{i}(\mathbf{x}) \tag{3.5}
\end{equation*}
$$

Thus the condition is necessary. To establish the sufficiency part, we use the method of induction. It is proved in [10] that in the bivariate case the failure rate having functional form $h_{i}\left(x_{1}, x_{2}\right)=a_{i}\left(x_{j}\right), i, j=1,2, i \neq j$, characterizes the distribution (3.2) for $n=2$. Thus the theorem holds for $n=2$. Assume that the condition holds for every subset of m variables in \mathbf{X}. The same condition holds for $(m+1)$ variables $\left(X_{1}, \ldots, X_{m+1}\right)$ if and only if $1-h_{i}\left(x_{1}, \ldots, x_{m+1}\right)=B_{i}\left(x_{i}^{*}\right)$, where $x_{i}^{*}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+1}\right)$.

Thus from (1.2) and by induction hypothesis

$$
\begin{align*}
& R\left(x_{1}, x_{2}, \ldots, x_{m+1}\right) \\
& \quad=\left[B_{i}\left(x_{i}^{*}\right)\right]^{x_{i}} R\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{m+1}\right) \\
& \quad=\left[B_{i}\left(x_{i}^{*}\right)\right]^{x_{i}}\left(\prod_{j=1}^{m+1} p_{j}^{x_{j}}\right)\left(\prod_{j<k} p_{j k}^{x_{j} x_{k}}\right) \cdots\left(p_{12 \ldots m+1}^{\left.x_{1} x_{2}, \ldots x_{i-1}, x_{i+1}, \ldots, x_{m+1}\right),}\right. \\
& \quad j=1,2, \ldots, m+1 ; j \neq i . \tag{3.6}
\end{align*}
$$

For $i=1,2, \ldots, n$ we can write equivalent expressions for $R\left(x_{1}, x_{2}, \ldots\right.$, x_{m+1}). Dividing each of them by

$$
\left(\prod_{i=1}^{m+1} p_{i}^{x_{i}}\right)\left(\prod_{\substack{j=1 \\ i<j}}^{m+1} p_{p_{i j}}^{x_{i} x_{j}}\right) \cdots\left(p_{12 \cdots m}^{x_{1} x_{2} \cdots x_{m}}\right)
$$

and taking $\left(x_{1}, x_{2}, \ldots, x_{m+1}\right)$ th root we find

$$
\begin{aligned}
& {\left[B_{1}\left(x_{1}^{*}\right)\left[p_{1}^{x_{1}}\left(\prod_{j \neq 1} p_{1 j}^{x_{1} x_{j}}\right) \cdots\left(p_{13 \cdots m+1}^{x_{1} x_{3} \cdots x_{m+1}}\right)\right]^{-1}\right]^{\left(x_{1} x_{2} \cdots x_{m+1}\right)^{-1}}} \\
& \quad=\left[B_{2}\left(x_{2}^{*}\right)\left[p_{2}^{x_{2}}\left(\prod_{j \neq 2} p_{2 j}^{x_{2} x_{j}}\right) \cdots\left(p_{23 \cdots m+1}^{x_{2} x_{3} \cdots x_{m+1}}\right)\right]^{-1}\right]^{\left(x_{1} x_{2} \cdots x_{m+1}\right)^{-1}} \\
& \quad=\cdots \\
& \quad=\left[B_{m+1}\left(x_{m+1}^{*}\right)\left[p_{m+1}^{x_{m+1}}\left(\prod_{j \neq m+1} p_{m+1, j}^{x_{m+1} x_{j}}\right) \cdots\left(p_{1 \cdots m}^{x_{1} \cdots x_{m}}\right)\right]^{-1}\right]^{\left(x_{1} \cdots x_{m+1}\right)^{-1}} .
\end{aligned}
$$

This, however, means that

$$
\left[B_{i}\left(x_{i}^{*}\right)\left[p_{i}^{x_{i}}\left(\prod_{j \neq i} p_{i j}^{x_{i} x_{j}}\right) \cdots\left(p_{1 \cdots i \cdots m}^{x_{1} \cdots x_{1} \cdots x_{m}}\right)\right]^{-1}\right]^{\left(x_{1} x_{2} \cdots x_{m+1}\right)^{-1}=\mathrm{const}},
$$

independent of x_{1}, \ldots, x_{m+1}, say, $p_{12 \ldots m+1}$. Then

$$
\begin{equation*}
B_{i}\left(x_{i}^{*}\right)=p_{i}^{x_{i}}\left(\prod_{j \neq i} p_{i j}^{x_{j}}\right) \cdots\left(p_{12 \cdots m+1}^{x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{m+1}}\right) . \tag{3.7}
\end{equation*}
$$

Substituting (3.7) into (3.6) we recover the survival function (3.2) for $n=m+1$. The conditions on the parameters are obtained from the relationships

$$
R\left(x_{1}, \ldots, x_{i-1}\right) \geqslant R\left(x_{1}, \ldots, x_{i}\right), \quad i=1,2, \ldots, n ; \quad f(0,0, \ldots, 0) \geqslant 0 .
$$

4. $\mathrm{IFR}_{3}\left(\mathrm{DFR}_{3}\right) \mathrm{CLASS}$

An alternative way of relaxing the Definition 2.1 is realized by assuming that the failure rate of system with n components of different ages is observed after each component has worked through the same time. Thus we have

Definition 4.1. The distribution of \mathbf{X} belongs to the $\mathrm{IFR}_{3}\left(\mathrm{DFR}_{3}\right)$ class if for all $m \leqslant n, \mathbf{x}$ in I_{m}^{+}, t in I_{1}^{+},

$$
\begin{equation*}
h_{i}\left(x_{1}+t, \ldots, x_{m}+t\right) \geqslant(\leqslant) h_{i}\left(x_{1}, \ldots, x_{m}\right) . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. The only multivariate distribution that is both IFR_{3} and DFR_{3} in I_{m}^{+}for all $m \leqslant n$ is specified by

$$
\begin{align*}
R(\mathbf{x})= & p_{i_{1}}^{x_{1}}\left(p_{i_{1} i_{2}} / p_{i_{1}}\right)^{x_{i_{2}}} \\
& \times\left(p_{i_{1} i_{2} i_{3}} / p_{i_{1} i_{2}} i^{x_{i 3}} \cdots\left(p_{i_{1} \cdots i_{2}} / P_{i_{1} \cdots i_{m-1}}\right)^{x_{i_{i m}}}, \quad x_{i_{1}} \geqslant x_{i_{2}} \geqslant \cdots \geqslant x_{i_{m}},\right. \tag{4.2}
\end{align*}
$$

for each permutation $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ of the integers from 1 to m. The parameters are such that

$$
\begin{aligned}
& 0<p_{i_{1} i_{2} \cdots i_{m}} \leqslant \cdots \leqslant p_{i_{1}, i_{2}} \leqslant p_{1}, p_{2}, \ldots, p_{m}<1, \\
& p_{i_{1} i_{2} \cdots i_{j}}=p_{123 \cdots j} \quad \text { for } \quad j=2, \ldots, m
\end{aligned}
$$

and

$$
1-\sum_{j=1}^{n} p_{j}-\sum_{j<k} \sum_{j k} p_{j k}+\cdots+(-1)^{n-1} p_{123 \ldots m} \geqslant 0 .
$$

Proof. The distribution of \mathbf{X} is both IFR_{3} and DFR_{3} if and only if

$$
\begin{equation*}
h\left(x_{1}+t, \ldots, x_{m}+t\right)=h\left(x_{1}, \ldots, x_{m}\right) \quad \text { for all } \quad m \leqslant n \tag{4.3}
\end{equation*}
$$

First we prove that (4.3) is equivalent to the multivariate lack of memory property (MLMP),

$$
\begin{equation*}
R\left(x_{1}+t, \ldots, x_{m}+t\right)=R\left(x_{1}, \ldots, x_{m}\right) R(t, \ldots, t) \quad \text { for all } \quad m \leqslant n \tag{4.4}
\end{equation*}
$$

When (4.3) holds, from (1.2) for $i=1$,

$$
\begin{align*}
\frac{R\left(x_{1}+t+1, x_{2}+t, \ldots, x_{m}+t\right)}{R\left(x_{1}+1, x_{2}, \ldots, x_{m}\right)} & =\frac{R\left(x_{1}+t, x_{2}+t, \ldots, x_{m}+t\right)}{R\left(x_{1}, \ldots, x_{m}\right)} \\
& =\frac{R\left(t, x_{2}+t, \ldots, x_{m}+t\right)}{R\left(0, x_{2}, \ldots, x_{m}\right)} . \tag{4.5}
\end{align*}
$$

Similarly using the definitions of $h_{2}\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{equation*}
\frac{R\left(x_{1}+t, x_{2}+t, \ldots, x_{m}+t\right)}{R\left(x_{1}, x_{2}, \ldots, x_{m}\right)}=\frac{R\left(x_{1}+t, t, \ldots, x_{m}+t\right)}{R\left(x_{1}, 0, x_{3}, \ldots, x_{m}\right)} . \tag{4.6}
\end{equation*}
$$

Setting $x_{2}=0$ in (4.5) and substituting in (4.6)

$$
\frac{R\left(x_{1}+t, x_{2}+t, \ldots, x_{m}+t\right)}{R\left(x_{1}, x_{2}, \ldots, x_{m}\right)}=\frac{R\left(t, t, x_{3}+t, \ldots, x_{m}+t\right)}{R\left(0,0, x_{3}, \ldots, x_{m}\right)}
$$

Successively using h_{3}, \ldots, h_{m} and noting $R(0,0, \ldots, 0)=1$ we obtain (4.4). The converse is obtained by using (4.4) in the expression for $h(\mathbf{x}+\mathbf{t})$. To complete the proof it remains to establish that the only solution of (4.4) is (4.2).

For $m=1$, the only solution is $R\left(x_{j}\right)=p_{1}^{x_{j}}$ for some $0<p_{1}<1$ and for $m=2$,

$$
R\left(x_{1}+t, x_{2}+t\right)=R\left(x_{1}, x_{2}\right) R(t, t)
$$

Setting $x_{2}=0$,

$$
\begin{equation*}
R\left(x_{1}+t, t\right)=p_{1}^{x_{1}} R(t, t) . \tag{4.7}
\end{equation*}
$$

Further,

$$
R(y+t, y+t)=R(y, y) R(t, t)
$$

gives $R(t, t)=p_{12}^{t}$ for some $0<p_{12}<1$. Thus for $x_{1} \geqslant x_{2}$ from (4.7),

$$
\begin{equation*}
R\left(x_{1}, x_{2}\right)=p_{1}^{x_{1}}\left(p_{12} / p_{1}\right)^{x_{2}} . \tag{4.8}
\end{equation*}
$$

Assuming the solution (4.2) to hold for any m variables in \mathbf{X},

$$
R\left(x_{1}+t, \ldots, x_{m}+t, t\right)=R\left(x_{1}, x_{2}, \ldots, x_{m}\right) R(t, \ldots, t)
$$

specializes to

$$
\begin{align*}
& R\left(x_{1}+t, x_{2}+t, \ldots, x_{m}+t, t\right)=R\left(x_{1}, x_{2}, \ldots, x_{m}, 0\right) R(t, \ldots, t) \\
& \quad=p_{1}^{x_{1}}\left(p_{12} / p_{1}\right)^{x_{2}} \cdots\left(p_{1 \cdots m} / P_{12 \ldots m-1}\right)^{x_{m}} R(t, \ldots, t), \quad x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{m} . \tag{4.9}
\end{align*}
$$

Also,

$$
\begin{aligned}
& R(y+t, \ldots, y+t)=R(y, \ldots, y) R(t, \ldots, t) \\
& R(t, \ldots, t)=p_{12 \ldots m+1}^{t}, \quad 0<p_{12 \ldots m+1}<1 . \\
& R(\mathbf{x})=p_{1}^{x_{1}}\left(p_{12} / p_{1}\right)^{x_{2}} \cdots\left(p_{1 \cdots m+1} / p_{12 \ldots m}\right)^{x_{m+1}} \\
& x_{1} \geqslant x_{2} \geqslant \cdots x_{m+1} .
\end{aligned}
$$

By induction we have derived the result for $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{m+1}$. The expression for $R(\mathbf{x})$ in other regions of the sample space are similarly obtained and the conditions on the parameters are obtained as in Theorem 3.1.

Note. It is possible to have a stronger class than that provided by Eq. (4.1) by defining it as \mathbf{X} belongs to $\mathrm{IFR}_{4}\left(\mathrm{DFR}_{4}\right)$ class if for all $m \leqslant n$ and

$$
\begin{equation*}
h(x+t, \ldots, x+t) \geqslant(\leqslant) h(x, \ldots, x) \tag{4.10}
\end{equation*}
$$

but there is no characterization of the corresponding boundary class.

5. INTER RELATIONSHIPS

From the definitions given above it is clear that
(i) $\mathrm{IFR}_{2} \Leftarrow \mathrm{IFR}_{1} \Rightarrow \mathrm{IFR}_{3} \Rightarrow \mathrm{IFR}_{4}$ and
(ii) $\mathrm{DFR}_{2} \Leftarrow \mathrm{DFR}_{1} \Rightarrow \mathrm{DFR}_{3} \Rightarrow \mathrm{DFR}_{4}$.

TABLE I

Bivariate distribution $\quad\left(h_{1}(x), h_{2}(x)\right) \quad$ Example for
(i) Bivariate geometric [7]

$$
\begin{array}{cc}
p_{1}^{x_{1}} p_{2}^{x_{2}} \theta^{x_{1} x_{2}} & \left(1-p_{1} \theta^{x_{2}}, 1-p_{2} \theta^{x_{1}}\right) \\
0<p_{i}<1,1+p_{1} p_{2} \theta \geqslant p_{1}+p_{2} . & I F R_{2} \nRightarrow D F R_{4} \\
\mathrm{DFR}_{2} \nRightarrow D F R_{4}
\end{array}
$$

$$
x_{i}=0,1, \ldots, i=1,2
$$

(ii) Bivariate Waring

$$
\frac{(m)_{x_{1}+x_{2}}}{(m+n)_{x_{1}+x_{2}}} \quad\left(\frac{n}{m+n+x_{1}+x_{2}}, \frac{n}{m+n+x_{1}+x_{2}}\right) \quad \begin{aligned}
& D F R_{2} \nRightarrow I F R_{2} \\
& D F R_{2} \nRightarrow I F R_{4}
\end{aligned}
$$

$m, n>0 ; x_{i}=0,1, \ldots, i=1,2$
(iii) Bivariate geometric [6]

$$
\begin{array}{ccc}
p^{x_{2}} p_{1}^{x_{1}-x_{2}}, x_{1} \geqslant x_{2} & \left(1-p_{1}, 1-p / p_{1}\right) x_{1}>x_{2} & \text { When } p \geqslant p_{1} p_{2} \\
p^{x_{1}} p_{2}^{x_{2} x_{1}}, x_{1} \leqslant x_{2} & \left(1-p / p_{2}, 1-p_{2}\right) x_{1}<x_{2} & D F R_{3} \nRightarrow D F R_{2} \\
0<p \leqslant p_{i}<1, x_{i}=0,1,2, \ldots & \left(1-p_{1}, 1-p_{2}\right) x_{1}=x_{2} & \text { When } p \leqslant p_{1} p_{2} \\
1+p \geqslant p_{1}+p_{2}, i=1,2 & & I F R_{3} \nRightarrow I F R_{2}
\end{array}
$$

(iv) Bivariate negative hypergeometric

$$
\begin{aligned}
& \binom{k+n-x_{1}-x_{2}}{n-x_{1}-x_{2}} /\binom{k+n}{n} \quad\left(\frac{k}{k+n-x_{1}-x_{2}}, \frac{k}{k+n-x_{1}-x_{2}}\right) \quad \begin{array}{l}
I F R_{1} \nRightarrow D F R_{2} \\
I F R_{1} \nRightarrow D F R_{4}
\end{array} \\
& x_{1}+x_{2} \leqslant n . x_{i}=0,1,2, \ldots, n
\end{aligned}
$$

(v) Bivariate geometric mixture

$$
\begin{array}{cc}
\alpha p^{x_{1}+x_{2}}+(1-\alpha) p^{x_{1}}, x_{1} \geqslant x_{2} \\
\alpha p^{x_{1}+x_{2}}+(1-\alpha) p^{x_{2}}, x_{1} \leqslant x_{2} \\
0<p, \alpha<1, x_{i}=0,1,2, \ldots, i=1,2
\end{array} \quad\left(\begin{array}{c}
\left.1-p, 1-\frac{\alpha p^{x_{2}+1}+(1-\alpha)}{\alpha p^{x_{2}}+(1-\alpha)}\right)
\end{array} \begin{array}{c}
I F R_{4} \nRightarrow I F R_{3} \\
D F R_{4} \nRightarrow D F R_{3}
\end{array}\right)
$$

(vi) Bivariate geometric

$$
\begin{array}{cl}
\begin{array}{c}
\text { Bivariate geometric } \\
p_{1}^{x_{1}}, p_{1}^{x_{1}} \leqslant p_{2}^{x_{2}} \\
p_{2}^{x_{2}}, p_{1}^{x_{1}} \geqslant p_{2}^{x_{2}} \\
0<p_{i}<1, x_{i}=0,1,2, \ldots, i=1,2
\end{array} & \left(1-p_{1}, 0\right), p_{1}^{x_{1}} \leqslant p_{2}^{x_{2}+1} \\
& \left(0,1-p_{2}\right), p_{1}^{x_{1}+1} \geqslant p_{2}^{x_{2}} \\
& \left(1-p_{1}, 1-\frac{p_{2}^{x_{2}+1}}{p_{1}^{x_{1}}}\right) \\
& p_{1}^{x_{1}} \leqslant p_{2}^{x_{2}}, p_{1}^{x_{1}} \geqslant p_{2}^{x_{2}+1} \\
& \left(1-\frac{p_{1}^{x_{1}+1}}{p_{2}^{x_{2}}}, 1-p^{2}\right) \\
& p_{1}^{x_{1}} \geqslant p_{2}^{x_{2}}, p_{1}^{x_{1}+1} \leqslant p_{2}^{x_{2}}
\end{array}
$$

Further the counterexamples provided in Table I illustrate that there exist no other implications between the different classes.

REFERENCES

[1] Barlow, R. E., and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart, \& Winston, New York.
[2] Brindley, J. E. C., and Thompson., J. W. A. (1972). Dependence and ageing aspects of multivariate survival. J. Amer. Statist. Assoc. 67 882-829.
[3] Buchanan, W. B., and Singpurwalla, N. D. (1977). Some stochastic characterizations of multivariate survival. In Theory and Application of Reliability, Vol. 1 (C. P. Toskos and I. N. Shimi, Eds.), pp. 329-348. Academic Press, New York.
[4] Ebrahami, N. (1986). Classes of discrete decreasing and increasing mean residual life distributions. IEEE Trans. Rel. 35 403-405.
[5] Harris, R. (1970). A multivariate definition for increasing hazard rate distribution functions. Ann. Math. Statist. 41 713-717.
[6] Marshall, A. W. (1975). Multivariate distribution with monotone hazard rate. In Reliability and Fault Tree Analysis (R. E. Barlow et al., Eds.), pp. 259-284. Soc. Indust. Appl. Math., Philadelphia.
[7] Mi, J. (1993). Discrete bathtub failure rate and upside-down bathtub mean residual life. Nav. Res. Logist. 40 361-371.
[8] Nair, N. U., and Asha, G. (1994). Characteristic properties of a bivariate geometric law. J. Ind. Statist. Assoc. 32 111-116.
[9] Nair, K. R. M., and Nair, N. U. (1988). On characterizing a bivariate geometric distribution. J. Ind. Statist. Assoc. 26 45-49.
[10] Nair, N. U., and Nair, K. R. M. (1990). Characterizations of a bivariate geometric distribution. Statistica 46(1) 247-253.
[11] Roy, D. (1993). Reliability measure in discrete bivariate setup and related characterization results for a bivariate geometric distribution. J. Multivariate Anal. 46 362-373.
[12] Shaked, M., Santhikumar, J. G., and Toress, J. B. V. (1995). Discrete hazard rate functions. Comput. Oper. Res. [to appear]
[13] Xekalaki, E. (1983). Hazard functions and life distributions in discrete time. Commun. Statist. Theory \& Methods 12 2503-2509.

[^0]: Received September 15, 1994; revised March 18, 1997.

