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We investigate the nondeterministic state complexity of several operations on finite
automata accepting star-free and unary star-free languages. It turns out that in most
cases exactly the same tight bounds as for general regular languages are reached. This
nicely complements the results recently obtained by Brzozowski and Liu (2011) [8] for the
operation problem of star-free and unary star-free languages accepted by deterministic
finite automata.
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1. Introduction

The operation problem on a language family is the question of cost (in terms of states) of operations on languages from
this family with respect to their representations. More than a decade ago, the operation problem for regular languages
represented by deterministic finite automata (DFAs) as studied in [38,39] renewed the interest in descriptional complexity
issues of finite automata in general. Although the research area of finite automata dates back to the beginning of the 1950s,
their (descriptional) complexity with respect to the operation problem had attracted surprisingly less attention in the early
days. This lack of interest may be one reason for the prevailing view on regular languages during the late seventies [38]:

Since the late seventies, many believed that everything of interest about regular languages is known except for a few
very hard problems, [· · · ]. It appeared that not much further work could be done on regular languages.

Nowadays descriptional complexity of finite automata and related structures is a vivid area of research, forwhich the (recent)
surveys on this area give evidence [17–19,38].

It is well known that nondeterministic and deterministic finite automata are computationally equivalent. More precisely,
given some n-state NFA one can always construct a language equivalent DFAwith atmost 2n states [33] and, therefore, NFAs
can offer exponential savings in space compared with DFAs. In fact, later it was shown independently in [26,30,31] that this
exponential upper bound is the best possible, that is, for every n there is an n-state NFA which cannot be simulated by any
DFA with strictly less than 2n states. Recently, in [2], it was shown that this exponential tight bound for the determinization
of NFAs also holds when restricting the NFAs to accept only subregular language families such as star languages [3], (two-
sided) comet languages [5], ordered languages [36], star-free languages [27], power-separating languages [37], prefix-closed
languages, etc. On the other hand, there are also subregular language families known, where this exponential bound is not
met. Prominent examples are the family of unary regular languages, where an asymptotic bound of eΘ(

√
n·ln n) states for

determinization has been shown in [9,10], and the family of finite languages with a tight bound of O(k
n

log2(k)+1 ), where k is
the size of the alphabet [34]. The significantly different behavior with respect to the relative succinctness of NFAs compared
to DFAs is also reflected in the operation problem for these devices. The operation problem for NFAs was first investigated
in [15] and later continued by a study on the operation problem for NFAs accepting unary languages [16]. Several more
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Table 1
Deterministic and nondeterministic state com-
plexities for the operation problem on star-free
languages summarized. The results for DFAs are
from [8].

Star-free language accepted by . . .
Operation DFA NFA

∪ mn m + n + 1
∩ mn mn
∼ 2n

· (m − 1)2n
+ 2n−1 m + n

∗ 2n−1
+ 2n−2 n + 1

R 2n
− 1 ≤ · ≤ 2n n + 1

Table 2
Deterministic and nondeterministic state complexities
for the operation problem on unary star-free languages
summarized. The results for DFAs are again from [8].

Unary star-free language accepted by . . .
Operation DFA NFA

∪ max{m, n} m + n ≤ · ≤ m + n + 1
∩ max{m, n} Θ(mn)
∼ Θ(n2)

· m + n − 1 m + n − 1 ≤ · ≤ m + n
∗ n2

− 7n + 13 n + 1
R n n

results on unary languages can be found, for example, in [28,29,32]. It turned out that in most cases when an operation is
cheap for DFAs it is costly for NFAs and vice versa. We give two examples: (i) the complementation operation applied to
a language accepted by an n-state DFA results in a DFA of exactly the same number of states, while complementing NFAs
gives an exponential tight bound of 2n states [20], and conversely (ii) for two languages accepted by m- and n-state DFAs
we have a tight bound ofm · 2n

− t · 2n−1 states for concatenation [38,39], where t is the number of accepting states of the
‘‘left’’ automaton, and m + n + 1 states when considering NFAs [15]. All these results are for general regular languages. So,
the question arises what happens to these bounds if the operation problem is restricted to subregular language families.

In fact, for some subregular language families this question was recently studied in the literature [6–8,12,13,21–23]
mostly for DFAs. To this end, the notion of quotient complexity [4], which has been studied in a series of papers [6–8],
is a useful tool for exploring the deterministic state complexity. An example for a subregular language family whose DFA
operation problemsmeet the general bounds formost operations is the family of star-free languages [8], while prefix-, infix-,
and suffix-closed languages [7], bifix-, factor-, and subword-free languages [6] show a diverse behavior mostly not reaching
the general bounds. For a few language families, in particular prefix- and suffix-free regular languages, also the operation
problem for NFAs was considered [12,13,21,23], but for the exhaustively studied family of star-free languages it is still open.

The family of star-free (or regular non-counting) languages is an important subfamily of the regular languages, which
can be obtained from the elementary languages {a}, for a ∈ Σ , and the empty set ∅ by applying the Boolean operations
union, complementation, and concatenation finitely often. They obey nice characterizations in terms of aperiodic monoids
and permutation-free DFAs [27]. Here we investigate their operation problem for NFAs and NFAs accepting unary languages
with respect to the basic operations union, intersection, complementation, concatenation, Kleene star, and reversal. It turns
out that in most cases exactly the same tight bounds as in the general case are reached. This nicely complements the results
recently obtained for the operation problem of star-free and unary star-free languages accepted by DFAs [8]. We summarize
our results in Tables 1 and 2, where we also list the results for DFAs accepting star-free and unary star-free languages [8],
for comparison reasons.

2. Preliminaries

For n ≥ 0 we write Σ≤n for the set of all words whose lengths are at most n and Σn for the set of all words of length n.
The empty word is denoted by λ. For the length of w we write |w|. Set inclusion is denoted by ⊆ and strict set inclusion by
⊂. We write 2S for the powerset and |S| for the cardinality of a set S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (S, Σ, δ, s0, F), where S is the finite set of states, Σ is the
finite set of input symbols, s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, and δ : S × Σ → 2S is the transition
function. As usual the transition function is extended to δ : S × Σ∗

→ 2S reflecting sequences of inputs: δ(s, λ) = {s} and
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δ(s, aw) =


s′∈δ(s,a) δ(s′, w), for s ∈ S, a ∈ Σ , and w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(s0, w) ∩ F ≠ ∅. The
language accepted by A is L(A) = { w ∈ Σ∗

| w is accepted by A }.
A finite automaton is deterministic (DFA) if and only if |δ(s, a)| = 1, for all s ∈ S and a ∈ Σ . In this case we simply write

δ(s, a) = s′ for δ(s, a) = {s′} assuming that the transition function is amapping δ : S×Σ → S. So, any DFA is complete, that
is, the transition function is total, whereas for NFAs it is possible that δ maps to the empty set. A finite automaton is called
unary if its set of input symbols is a singleton. In this case we use Σ = {a} throughout the paper. A state s is reachable in A if
there is an input word w with s ∈ δ(s0, w). Without loss of generality we assume that any state of a nondeterministic finite
automaton is reachable. A finite automaton is said to beminimal if there is no finite automaton of the same type with fewer
states, accepting the same language. Note that a sink state is counted for DFAs, since they are always complete, whereas it
is not counted for NFAs, since their transition function may map to the empty set.

Next, we briefly recall the so-called (extended) fooling set technique (see, for example, [1,11,17]) that is widely used for
proving lower bounds on the number of states necessary for an NFA to accept a given language.

Theorem 1 (Extended Fooling Set Technique). Let L ⊆ Σ∗ be a regular language and suppose there exists a set of pairs P =

{ (xi, yi) | 1 ≤ i ≤ n } such that (1) xiyi ∈ L, for 1 ≤ i ≤ n, and (2) i ≠ j implies xiyj ∉ L or xjyi ∉ L, for 1 ≤ i, j ≤ n. Then any
nondeterministic finite automaton accepting L has at least n states. Here P is called an (extended) fooling set for L.

Now we turn to the subregular language family of interest. A language L ⊆ Σ∗ is star-free (or regular non-counting)
if and only if it can be obtained from the elementary languages {a}, for a ∈ Σ , and the empty set ∅ by applying the
Boolean operations union, complementation, and concatenation finitely often. These languages are exhaustively studied
in, for example, [27] and [35]. Since regular languages are closed under Boolean operations and concatenation, every star-
free language is regular. On the other hand, not every regular language is star free. Here we sometimes utilize an alternative
characterization of star-free languages by so called permutation-free automata [27]: a regular language L ⊆ Σ∗ is star-free
if and only if the minimal DFA accepting L is permutation-free, that is, there is no word w ∈ Σ∗ that induces a non-trivial
permutation on any subset of the set of states. Here a trivial permutation is simply the identity permutation. Note that
word uw induces a non-trivial permutation {s1, s2, . . . , sn} ⊆ S in a DFAwith state set S and transition function δ if and only
if wu induces a non-trivial permutation {δ(s1, u), δ(s2, u), . . . , δ(sn, u)} in the same automaton. With this characterization
at hand, it is easy to see that any unary star-free language is either finite or co-finite, since a deterministic finite automaton
accepting a unary language cannot have a non-trivial cycle, because otherwise it would not be permutation free. Moreover,
any unary finite or unary co-finite language is in fact star-free. Thus, we have: a language L ⊆ {a}∗ is star-free if and only
if L is finite or co-finite.

Finally, we recall another useful fact on unary (star-free) languages, which is related to number theory: given two non-
negative integers x, y ≥ 0 which are relatively prime, that is, the greatest common divisor gcd(x, y) equals 1. Then the
biggest integer that cannot be written as a linear combination of these two integers is (x − 1)(y − 1) − 1 = xy − x − y. A
direct application is that for two relatively prime numbers x and y the unary regular language {ax, ay}∗ is in fact star free,
because it is co-finite. In the section on the operation problem on NFAs accepting unary star-free languages we will often
meet this language or a variant thereof.

3. Operations on general star-free languages

3.1. Boolean operations

We start our investigations with Boolean operations. For deterministic finite automata it was recently shown that in the
worst case the Boolean operations union, intersection, and complementation have state complexitym·n,m·n, and n not only
for general regular languages, but also for star-free languages. However, the state complexity of NFA operations for general
regular languages is essentially different [15]. Namely, union, intersection, and complementation have nondeterministic
state complexitym+n+1,m ·n, and 2n. It is worthmentioning that the exponential bound of 2n states for complementation
was shown to be tight in [20]. Here we prove that this is also the case for star-free languages. Note, that all the upper bounds
are from [15]. Thus, we only have to give star-free witness languages meeting these bounds. At first we consider the union
operation.

Theorem 2. For any integers m, n ≥ 2 let A be an m-state and B be an n-state NFA that accept star-free languages. Then
m + n + 1 states are sufficient for an NFA to accept the language L(A) ∪ L(B). The bound is tight for binary alphabets.

Proof. As already mentioned, the upper bound ofm+ n+ 1 states is that for arbitrary regular languages shown in [15]. For
the lower bound we argue as follows: consider the NFA A = (S, {a, b}, δ, s0, F) with state set S = {0, 1, . . . ,m − 1}, for
m ≥ 2 . State 0 is the initial state s0, and state m − 1 is the only final state. The transition function is given by (cf. Fig. 1):

• δ(i, a) = {i + 1}, for 0 ≤ i < m − 1, and
• δ(m − 1, b) = {0}.
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Fig. 1. Them-state NFA A, m ≥ 2, accepting a star-free language. The automaton B has n states and letters a and b are interchanged.

Fig. 2. Them-state NFA A,m ≥ 2, accepting the star-free language b∗(ab∗)m−1 . The automaton B has n states and letters a and b are interchanged.

The language accepted byA is am−1(bam−1)∗. Observe, that the automatonA is actually a partialDFA, where the sink state is
missing. The corresponding completeDFA isminimal and does not obey a non-trivial permutation on the state set. Therefore,
the language L(A) is a star-free language. Similarly, we define the automatonB by takingAwith n states and interchanging
the letters a and b. Hence, we obtain the star-free language L(B) = bn−1(abn−1)∗.

It remains to be shown thatm+ n+ 1 states are needed by any NFA to accept L(A)∪ L(B). To this end, we construct the
following set of pairs

P = { (am−1bai, am−1−ibam−1) | 0 ≤ i ≤ m − 1 } ∪ { (bn−1abi, bn−1−iabn−1) | 0 ≤ i ≤ n − 1 }.

First consider the pairs of the form (am−1bai, am−1−ibam−1) in P . Clearly, theword am−1bai ·am−1−jbam−1, for 0 ≤ i, j ≤ m−1,
is in the union of L(A) and L(B) if and only if i = j. Thus, the pair (am−1bai, am−1−ibam−1) induces a word that belongs to
the union under consideration, but any word induced by crossing different pairs of the above form results in two words not
in L(A) ∪ L(B). Symmetrically we can argue for the pairs of the form (bn−1abi, bn−1−iabn−1). Finally, we have to compare
pairs (am−1bai, am−1−ibam−1), for 0 ≤ i ≤ m− 1, with pairs (bn−1abj, bn−1−jabn−1), for 0 ≤ j ≤ n− 1. In this case we obtain
the words am−1bai · bn−1−jabn−1 and bn−1abj · am−1−ibam−1, where the start and end blocks of a’s and b’s of the words do
not correspond. Thus, both words do not belong to the union of L(A) and L(B). Hence, P is a fooling set for the language
L(A) ∪ L(B) of size m + n. To the upper bound one state is missing. We argue that the initial state of the automaton that
accepts the language L(A) ∪ L(B) is not one of the states induced by P .

Assume to the contrary that the initial state of the automaton accepting the language L(A) ∪ L(B) is one of the states
induced by P . If the initial state is equal to the state referenced by the pair (am−1bai, am−1−ibam−1), 0 ≤ i ≤ m − 1, then
the word am−1bai · bn−1 is also accepted, because bn−1 is in L(A) ∪ L(B) and must be accepted from the initial state. This
contradicts the definition of L(A) ∪ L(B). Symmetrically, we argue for the pairs (bn−1abi, bn−1−iabn−1), for 0 ≤ i ≤ n − 1.
In all cases we obtain a contradiction to our assumption. This shows that an additional state is needed, which gives the
m + n + 1 lower bound for the language L(A) ∪ L(B). �

Now we turn to the intersection of NFAs. Again, we make use of the upper bound already proven.
Theorem 3. For any integers m, n ≥ 2 let A be an m-state and B be an n-state NFA that accept star-free languages. Then m · n
states are sufficient for an NFA to accept the language L(A) ∩ L(B). This bound is tight for binary alphabets.
Proof. The upper bound of m · n states follows from the construction presented in [15] for the intersection of general
regular languages accepted by NFAs. In order to show a matching lower bound we apply the DFA used in [8] to prove the
corresponding result for deterministic finite automata. Clearly, the DFA is also an NFA. However, here we have to show that
the resulting NFA is minimal. So, let A = (S, {a, b}, δ, s0, F) with state set S = {0, 1, . . . ,m − 1}, for m ≥ 2. State 0 is the
initial state s0, and state m − 1 is the only final state. The transition function is given by (cf. Fig. 2):

• δ(i, a) = {i + 1}, for 0 ≤ i < m − 1, and
• δ(i, b) = {i}, for 0 ≤ i ≤ m − 1.

The language accepted by A is b∗(ab∗)m−1, which can easily be shown to be star free. Similarly, we define the automaton B
by taking the automaton defined above but now with n states, and interchange the letters a and b. Hence we obtain the
language L(B) = a∗(ba∗)n−1, which is star-free, too.

It is not hard to verify that
L(A) ∩ L(B) = { u ∈ {a, b}∗ | |u|a = m − 1 and |u|b = n − 1 }.

It remains to be shown that this language needs at leastmn states if accepted by an NFA. To this end, consider the following
set of pairs

P = { (aibj, am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 }.

For each pair (aibj, am−1−ibn−1−j) in S the word aibjam−1−ibn−1−j has m − 1 symbols a and n − 1 symbols b. So, it belongs
to L(A) ∩ L(B). Next, consider different pairs (aibj, am−1−ibn−1−j) and (ai

′

bj
′

, am−1−i′bn−1−j′) from P with i ≠ i′ or j ≠ j′. At
least one of the words induced by crossed pairs is not in the intersection of the languages accepted by A and B. Thus, the
set P is a fooling set for L(A) ∩ L(B) of sizem · n, which proves the stated claim. �
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Fig. 3. The n-state NFA A, n ≥ 3, used for the lower bound on the complementation problem for star-free languages. Any NFA accepting the complement
of L(A) needs at least 2n states.

Next we come to the complementation operation. Here the situation is a little bit more involved to come up with an
NFA accepting a star-free language that meets the tight exponential bound of 2n states [15,20]. The following easy example
already gives an exponential lower bound. Consider the languages Ln = {a, b}∗a{a, b}nb{a, b}∗, for n ≥ 0, accepted by
(n + 3)-state NFAs. Obviously, these languages are star free. Moreover, from [15] it is known that any NFA that accepts the
complement of Ln needs at least 2n−2 states. Thus, we have proven a tight bound in order of magnitude. The question arises,
whether one can do better. We answer the question in the affirmative by showing that the language used in [20] (accepted
by the NFA depicted in Fig. 3) is in fact star-free.

Before we can start with our investigation we need some additional notation that gives some insights on permutation-
free automata that are built by the powerset construction from NFAs [14].

Lemma 4. Let A be an NFA with state set S over alphabet Σ , and assume that A′ is the equivalent minimal DFA obtained by the
powerset construction, which is non-permutation-free. If the word w in Σ∗ induces a non-trivial permutation on the state set
{P1, P2, . . . , Pk} ⊆ 2S of A′ such that δ′(Pi, w) = Pi+1, for 1 ≤ i < k, and δ′(Pk, w) = P1, then there are no two states Pi and Pj
with i ≠ j such that Pi ⊆ Pj.

Now we are prepared for the next theorem.

Theorem 5. For any integer n ≥ 2 let A be an n-state NFA that accepts a star-free language. Then 2n states are sufficient for an
NFA to accept the complement of the language L(A). The bound is tight for binary alphabets.

Proof. It suffices to prove that the NFA A = (S, Σ, δ, 0, F), with alphabet Σ = {a, b}, state set S = {0, 1, . . . , n − 1}, set
of final states F = {n − 1}, and

δ(i, x) =


{i + 1}, if i < n − 1 and x = b
{0, i + 1}, if i < n − 1 and x = a
{1, 2, . . . , n − 1}, if i = n − 1 and x = a

that is depicted in Fig. 3 accepts a star-free language. To this end, we consider the equivalent minimal DFA A′
=

(S ′, Σ, δ′, {0}, F ′) obtained by the powerset construction where S ′
⊆ 2S .

The cardinality of the symmetric difference of two states R and T of A′ is denoted by ⟨R, T ⟩ = |R \ T | + |T \ R|. The
outline of the proof is as follows. We assume contrarily that the language accepted by A′ is not star free. Then there exists
a word w ∈ {a, b}∗ that induces a non-trivial permutation on a subset P = {P1, P2 . . . , Pk} of the states of A′ such that
δ′(Pi, w) = Pi+1, 1 ≤ i < k, and δ′(Pk, w) = P1. Next we consider arbitrary pairs Pi ≠ Pj and distinguish whether the state
n − 1 of A belongs to none of Pi and Pj, to both, or to exactly one of them. In all cases we will derive either a contradiction
or a decrease of the cardinality of the symmetric difference. In particular, this shows that the cardinality can never increase.
By ⟨Pi, Pj⟩ = ⟨δ′(Pi, wk), δ′(Pj, wk)⟩ = ⟨δ′(Pi, wk·m), δ′(Pj, wk·m)⟩, for m ≥ 0, this implies a contradiction also in the case of
decreasing cardinality.

We first show that w must be at least two letters long in order to induce a non-trivial permutation. If w would be equal
to a, then at most n − 1 applications of δ′ to any Pi give a state P ′

i which includes n − 1. At most two more applications of
δ′ to P ′

i give the set {0, 1, . . . , n − 1} which includes any state from P . This contradicts Lemma 4. If w would be equal to b,
then at most n − 1 applications of δ′ to any Pi give the empty set, which is a rejecting sink state that can never be part of P .

Now we turn to distinguish the three cases for the occurrence of the state n − 1. Let Pi = {i1, i2, . . . , iℓi} and Pj =

{j1, j2, . . . , jℓj} be two arbitrary but different states from P , where i1 < i2 < · · · < iℓi and j1 < j2 < · · · < jℓj .
First we consider the case that the state n − 1 belongs to exactly one of Pi or Pj. Without loss of generality we assume

n − 1 ∈ Pi \ Pj. If, in this case, the first letter of w is an awe have

δ′(Pi, a) =


{1, 2, . . . , n − 1} if Pi = {n − 1}
{0, 1, . . . , n − 1} otherwise.
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So, a contradiction to Lemma 4 follows if either Pi ≠ {n−1} or the prefixes of multiples ofw start with a and include two a’s
that are not separated by exactly n−2 letters b, because in both cases Pi is transformed into {0, 1, . . . , n − 1}which, in turn,
includes any state from P . Therefore, we conclude Pi = {n − 1} which is transformed into {1, 2, . . . , n − 1}, and in order to
avoid a contradiction, Pj must include at least one state from {0, 1, . . . , n−2}. If 0 belongs to Pj, then δ′(Pi, abn−2) = {n−1}
and δ′(Pj, abn−2) = {n − 2, n − 1}, which is a contradiction to Lemma 4. If 0 does not belong to Pj, we consider the
evolutions of Pi and Pj under input word abn−2. Then δ′({n− 1}, abn−2) = {n− 1} and δ′({j1, . . . , jℓj}, ab

n−2) = {n− 2} and
δ′({n − 2}, abn−2) = {n − 2}. So, the evolution runs into cycles, and there is no way to reach state Pj from Pi and vice versa.
Thus, they cannot be part of a non-trivial permutation.

We conclude that in the present case the first letter of w is a b and have

δ′(Pi, b) =


∅, if Pi = {n − 1}
{i1 + 1, . . . , iℓi−1 + 1} otherwise

as well as δ′(Pj, b) = {j1 + 1, . . . , jℓj + 1}. Furthermore, Pi must be different from {n − 1} since otherwise it would
be transformed into the empty set. Together, this implies ⟨δ′(Pi, b), δ′(Pj, b)⟩ = ⟨Pi, Pj⟩ − 1. Thus, the cardinality of the
symmetric difference is properly decreased. This concludes the case n − 1 ∈ Pi \ Pj.

For the next case, we assume that state n − 1 is not included in Pi and Pj, that is, n − 1 /∈ Pi ∪ Pj. If the first letter of w is
an a, we obtain δ′(Pi, a) = {0, i1+1, . . . , iℓi +1} and δ′(Pj, a) = {0, j1+1, . . . , jℓj +1}. If the first letter ofw is a b, we obtain
δ′(Pi, b) = {i1 + 1, . . . , iℓi + 1} and δ′(Pj, b) = {j1 + 1, . . . , jℓj + 1}. So, the single states belonging to Pi and Pj are ‘‘shifted’’
towards n − 1. Since Pi and Pj are different, whatever the input is, applications of δ′ evolve to a situation where one or both
of the new states include n − 1. Thus, to the case n − 1 ∈ Pi \ Pj covered before or to the following case n − 1 ∈ Pi ∩ Pj.

For the final case, we assume that state n− 1 belongs to both Pi and Pj, that is, n− 1 ∈ Pi ∩ Pj. Clearly, now Pi as well as Pj
must be different from {n− 1}. Otherwise, one of both would be a subset of the other, which is a contradiction to Lemma 4.
If, in the present case, the first letter of w is an a, then Pi and Pj are immediately transformed into {0, 1, 2, . . . , n− 1} which
causes again a contradiction to Lemma4. So, we know that the first letter ofw is a b. After consuming the letter b, that is, after
one transition we have δ′(Pi, b) = {i1 + 1, . . . , iℓi−1 + 1} and δ′(Pj, b) = {j1 + 1, . . . , jℓj−1 + 1}. If both new states δ′(Pi, b)
and δ′(Pj, b) contain n − 1, we repeat the argumentation of the present case. This means that we will be concerned with
another application of δ′ on input b, resulting in δ′(Pi, bb) = {i1 + 2, . . . , iℓi−2 + 2} and δ′(Pj, bb) = {j1 + 2, . . . , jℓj−2 + 2}.
Since Pi and Pj are different and the single states belonging to it are shifted towards n−1 during an application of δ′ on input
b, the argumentation can be repeated until we end up with either both new states do not contain n − 1, or n − 1 belongs to
exactly one of them. The latter situation has completely been covered by the case n−1 ∈ Pi \Pj before. The former situation
brings us to the case n− 1 /∈ Pi ∪ Pj which, in turn, may end up in the present case again. However, in every possible step of
this cycle between both cases, the single states are shifted towards n − 1. Moreover, only a 0 may additionally be included.
So, since Pi and Pj are different, the cycle appears finitely often only. This concludes the case n − 1 ∈ Pi ∩ Pj and, hence, the
proof. �

3.2. Catenation operations

Next we investigate the concatenation operation and its iteration, the Kleene star. In general, these operations have
deterministic state complexitym ·2n

−2n−1 and 2n−1
+2n−2 in the worst case, which is also met for star-free languages [8].

For NFAs all these operations are cheap, in the sense thatm+n and n+1 states are sufficient and necessary in theworst case.
We show that for star-free languages exactly the same bounds apply. For concatenation we find the following situation.

Theorem 6. For any integers m, n ≥ 2 let A be an m-state and B be an n-state NFA that accept star-free languages. Then m+ n
states are sufficient for an NFA to accept the language L(A) · L(B). The bound is tight for binary alphabets.

Proof. Again, the upper bound is that for general regular languages [15]. For the lower bound we use the NFAs A and B
introduced in the proof of Theorem 2. Recall that L(A) = am−1(bam−1)∗ and L(B) = bn−1(abn−1)∗. In order to show that
m + n states are necessary for any NFA to accept the language L(A) · L(B) we construct the set

P = { (ai, am−1−ibam−1bn−1) | 0 ≤ i ≤ m − 1 } ∪ { (am−1bn−1abj, bn−1−j) | 0 ≤ j ≤ n − 1 },

whose fooling set property is verified as follows: consider the word pairs of the following form (ai, am−1−ibam−1bn−1). The
word ai · am−1−jbam−1bn−1, for 0 ≤ i, j ≤ m − 1, is in L(A) · L(B) if and only if i = j. Thus, the pair (ai, am−1−ibam−1bn−1)
induces a word that belongs to the concatenation of the languages under consideration, but the crossing of different pairs
of this form gives two words that are not in L(A) · L(B). Similarly, we can argue for the pairs (am−1bn−1abj, bn−1−j), for
0 ≤ j ≤ n − 1. Finally, we have to compare pairs of the form (ai, am−1−ibam−1bn−1), for 0 ≤ i ≤ m − 1, with pairs
(am−1bn−1abj, bn−1−j), for 0 ≤ j ≤ n − 1. Since ai · bn−1−j belongs to L(A) · L(B) if and only if i = m − 1 and j = 0, for
the cases 0 ≤ i < m − 1 and 0 < j ≤ n − 1 at least one word induced by crossing the corresponding pairs is not in the
concatenation of the languages accepted by the automata A and B. For the remaining case i = m − 1 and j = 0 we find
that the other induced word am−1bn−1abj · am−1−ibam−1bn−1 does not belong to L(A) · L(B). Therefore, P is a fooling set for
the language L(A) · L(B) of sizem + n. Hence, the stated claim follows. �
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The star-free languages are not closed under Kleene star, which is seen by the finite language a2. Since the minimal DFA
accepting (a2)∗ reads asA = ({0, 1}, {a}, δ, 0, {0})with δ(0, a) = 1 and δ(1, a) = 0 and contains a non-trivial permutation
on the state set {0, 1} by reading theword a, this language is not star-free. Nevertheless, one can consider the corresponding
operation problem (leaving the family of star-free languages).

Theorem 7. For any integer n ≥ 2 let A be an n-state NFA that accepts a star-free language. Then n + 1 states are sufficient for
an NFA to accept the Kleene star of the language of A. This bound is tight for binary alphabets.

Proof. The upper bound can be found in [15]. For the lower bound we again use the automaton A introduced in the proof
of Theorem 2. Recall, that L(A) = an−1(ban−1)∗. We claim that

P = { (an−1bai, an−1−iban−1) | 0 ≤ i ≤ n − 1 } ∪ {(λ, λ)}

is a fooling set for L(A)∗. In fact, the word an−1bai · an−1−jban−1, for 0 ≤ i, j ≤ n − 1, is in L(A)∗ if and only if i = j. Hence,
the pair (an−1bai, an−1−iban−1) gives a word that belongs to L(A)∗, but for different pairs of this form none of the induced
words (by crossing) is a member of L(A)∗. Obviously, the remaining pair (λ, λ) gives the empty word that is a member of
L(A)∗ by definition. Finally, for the words an−1bai ·λ and λ · an−1−iban−1, for 0 ≤ i ≤ n−1, at least one is not in L(A)∗. Thus,
the pairs (an−1bai, an−1−iban−1) from P with the pair (λ, λ) obey the properties required for being a fooling set. Therefore,
the claim follows since P is of size n + 1. �

3.3. Reversal operation

Finally we turn our attention to the reversal operation. This operation has deterministic state complexity 2n in the worst
case, which is also met up to one state off in the case of star-free languages [8]. For NFAs this operation is cheap, leading to
a tight bound of n+ 1 states [20]. Our result on the reversal operation follows from the general case by a slight modification
of the automaton depicted in Fig. 1. This automaton also was used to show the tight bound of n + 1 states for the reversal
operation on general NFAs. The modification is simply to make all states accepting. Since this does not effect the existence
of non-trivial permutations on the state set of the equivalent minimal DFA, we may conclude that the language accepted is
star free. Thus, we obtain the following result.

Theorem 8. For any integer n ≥ 2 let A be an n-state NFA that accepts a star-free language. Then n + 1 states are sufficient for
an NFA to accept the reversal of the language L(A). This bound is tight for binary alphabets. �

4. Operations on unary star-free languages

Before we continue with the operation problem for unary star-free languages accepted by NFAs, recall the following fact,
which was already mentioned earlier. A language L ⊆ {a}∗ is star free if and only if L is finite or co-finite. We start with the
Boolean operations as in the previous section.

4.1. Boolean operations

For deterministic finite automata accepting unary star-free languages the worst case state complexities of the Boolean
operations union, intersection, and complement are max{m, n}, max{m, n}, and n [8]. These bounds do not reach the worst
state complexity of union and intersection for general unary languages [38], which is in both cases mn. The situation is
different for NFAs. The upper bound of m + n + 1 for the general unary union of NFAs has been shown in [15]. For unary
star-free languages the following lower bound misses the upper bound by one state.

Theorem 9. For any integers m, n with n ≥ 6 and 3 < m ≤ n−2 there exist an m-state NFA A and an n-state NFA B accepting
unary star-free languages, such that m + n states are necessary for any NFA to accept the union L(A) ∪ L(B).

Proof. LetB = (SB, {a}, δB, s0,B, FB) be the NFAwith state set SB = {0, 1, . . . , n − 1}, where state 0 is the initial state s0,B
and the single final state. The transition function is given by

• δB(i, a) = {i + 1}, for 0 ≤ i ≤ n − 3,
• δB(n − 2, a) = {0, n − 1}, and
• δB(n − 1, a) = {0}.

The language accepted by B is {an−1, an}∗. Since n − 1 and n are relatively prime, this language includes all words longer
than (n − 1) · n − (n − 1) − n and, thus, is co-finite and hence star free. Next, let A = (SA, {a}, δA, s0,A, FA) be an NFA
with state set SA = {0′, 1′, . . . , (m − 1)′}, for 3 < m ≤ n − 2. State 0′ is the initial state s0,A and state (m − 1)′ is the only
accepting state. The transition function is given by

• δA(i′, a) = {(i + 1)′}, for 0 ≤ i < m − 1.

The language accepted by A is {am−1
}. Since it is finite, it is star free.
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We now consider an NFA C = (S, {a}, δ, q, F) that accepts L(A) ∪ L(B). The two shortest words belonging to the union
of L(A) and L(B) are λ and am−1 since 3 < m− 1 < n− 2. To accept these two words we providem states q0, q1, . . . , qm−1.
Let q0 be the initial state accepting λ, and qm−1 be the state accepting am−1. So, we have qm−1 ∈ δ(q0, am−1).

The states q0 and qm−1 must be different since, otherwise, the words of am−1(am−1)∗ are also accepted. But these words
do not belong to the union of the languages considered as follows. For 3 < m ≤ n− 2 and k ≥ 1 we have (am−1)k = ak·m−k.
The only possibility that such a word belongs to the union L(A) ∪ L(B) is that the word can be obtained by combining
multiples of an−1 and an. Consider the word a2m−2. Since 3 < m ≤ n − 2 we have 6 ≤ 2m − 2 ≤ 2n − 6. So the word a2m−2

needs to be equal to either an or an−1. This especially means 2m − 2 = n or 2m − 2 = n − 1. The next words belonging to
{an−1, an}∗ are a2n−2, a2n−1 and a2n. Since either 2m−2 = n or 2m−2 = n−1 we obtain 4m−4 = 2n or 4m−4 = 2n−2.
Thus, the word 3m − 3 cannot belong the union of our witness languages. Therefore, states q0 and qm−1 must be different.

Assume there is a cycle on the path from q0 to qm−1. The length x of this cycle is at most m ≤ n − 2. But then the word
am−1+x is also accepted by C. However, am−1+x does not belong to either L(A) or L(B). Therefore, there cannot exist a cycle
on the path from q0 to qm−1.

So far, we need m states and am−1 and λ are accepted. Furthermore, all positive multiples of an−1 and an and all
combinations of those words have to be accepted. To accept the words of {an−1

}
∗ we need a cycle of length n − 1 between

not necessarily different states of the NFA that is reachable from the initial state q0. Assume q0 is the only accepting state
within this cycle, that is, δ(q0, ai(n−1)) ∩ F = {q0}, for i ≥ 0. Then the word an−1am−1 is also accepted but does not belong
to L(A) ∪ L(B). Therefore, q0 cannot be the only accepting state of the cycle. Similarly, we obtain a contradiction when
qm−1 is the only accepting state of that cycle. Thus, we consider the case that both accepting states (but no more) belong
to the cycle. To avoid the previous contradiction we must have {q0} ∈ δ(qm−1, an−1) and {qm−1} ∈ δ(q0, an−1). But then
the word am−1an−1 not belonging to the union is also accepted. It follows that there has to exist a new accepting state
qn−1 ∈ δ(q0, an−1) that accepts an−1 and all its multiples since none of the already existing non-accepting states can be
accepting. Otherwise, the automaton C would accept a word ax with 0 < x < n − 1 and x ≠ m − 1.

So far, we have m + 1 states from which q0, qm−1, and qn−1 are accepting. In order to accept all multiples of an−1 we
also need n − 2 non-accepting states building a path from qn−1 to qn−1 while reading an−1. We prove these states not to be
equivalent to any of the already existing states. Let q1, q2, . . . , qm−2 be the non-accepting states on the path from q0 to qm−1
while reading am−1. Let qi be a state of {q1, q2, . . . , qm−2} and let qi also be on the path from qn−1 to qn−1. For all choices of qi
it is possible to take the detour of n − 1 states from state qi to qn−1 and back to qi on a path from q0 to qm−1. Because of this
it is possible to accept the word am−1an−1 that does not belong to the union. Thus, there exists a path of length n − 1 from
state qn−1 to itself that does not include any state from {q0, q1, . . . , qm−1}. This path also cannot contain a loop of length
1 < x < n−1 since then a word a2n−2ax would be accepted that does not belong to the union. There also cannot exist a loop
of length 1 since then the word an+1 is accepted that does not belong to the union, either. Hence, there exist another n − 2
non-accepting states. So we already needm+n−1 states to accept the subset {am−1

}∪{an−1
}
∗ of the language L(A)∪L(B).

The onlywords still not accepted belong to the sets {an}∗ and {an−1, an}+. To accept all words of {an, an−1
}
∗ using asmany

existing states as possible, we need to extend the cycle from qn−1 to qn−1. We cannot add a state of the set {q0, q1, . . . , qm−1}

since otherwise the word anam−1 would be accepted. We also cannot add a cycle of length x with 3 ≤ x ≤ n − 2 on the
path from qn−1 to qn−1 while reading an−1 since then words of the form a2n−2ax would be accepted that do not belong to
the considered language. A cycle of length 2 is also impossible since then the word a2n−2a4 would be accepted. The only
possibility left is to add a single new state that allows to take a detour on the path from qn−1 to qn−1. Now the automaton
also accepts all words of {an−1, an}∗ and, thus, all words of the union L(A) and L(B). We conclude that m + n states are
necessary to accept this language. �

Next we turn to the intersection. The upper bound of mn states for unary regular languages has been shown in [15].
The following theorem shows that this bound is tight in the order of magnitude for an infinite sequence of unary star-free
languages.
Theorem 10. For any even integer n ≥ 4 there exist an n-state NFA A and an (n + 1)-state NFA B accepting unary star-free
languages, such that Ω(n2) states are necessary for any NFA to accept the intersection L(A) ∩ L(B).
Proof. Consider the NFA A introduced in the proof of Theorem 9 and recall that L(A) = {an−1, an}∗ which includes all
words longer than (n − 1) · n − (n − 1) − n. Similarly, we define the automaton B by taking A with n + 1 states. Hence,
we obtain the star-free language L(B) = {an, an+1

}
∗.

Since any three consecutive natural numbers starting with an odd number not smaller than three are pairwise relatively
prime, we have gcd(n − 1, n) = 1, gcd(n, n + 1) = 1, and gcd(n − 1, n + 1) = 1. We now show that Ω(n2) states are
necessary for any NFA to accept the intersection L(A) ∩ L(B). At first we determine which words do not belong to the
intersection under consideration. We know that all words of length greater than n(n + 1) − n − (n + 1) = n2

− n − 1
belong to the considered intersection since n(n+ 1)− n− (n+ 1) is the biggest number that cannot be obtained by a linear
combination of n and n + 1. All words having a length that is a multiple of n belong to the intersection as well. Now we are
looking for the smallest number which is not a multiple of n and which fulfills the equation

b(n − 1) + cn = dn + e(n + 1), (1)
for some b, c, d, e ≥ 0. Assuming for a moment d ≥ c , this is equivalent to the following equation:

b(n − 1) = (d − c)n + e(n + 1) ⇐⇒ x(n − 1) = yn + z(n + 1), (2)
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for some integers x, y, z ≥ 0. Since also in this equation the coefficients need to be non-negative, we can concentrate on the
smallest coefficient x to find the smallest multiple of n − 1 that belongs to the intersection. We do not need to consider the
multiples of n since all of these already belong to L(A) ∩ L(B).

It is obvious that the equation

n · (n − 1) = 0 · (n + 1) + (n − 1) · n (3)

is true for every n. We also have the relation n−1 = 2n− (n+1). For our Eqs. (2) and (3) this means to obtain (x−1)(n−1)
we need to increase y by 1 and decrease z by 2.

We now can compute some lengths ofwords that belong to the intersection of L(A) and L(B).We especially can compute
the length of the shortest non-empty word belonging to the intersection which is not a multiple of n. We get the following
equations by transforming Eq. (3) using the above relation:

n · (n − 1) = 0 · (n + 1) + (n − 1) · n
(n − 1) · (n − 1) = 1 · (n + 1) + (n − 3) · n
(n − 2) · (n − 1) = 2 · (n + 1) + (n − 5) · n

...n
2

+ 1


· (n − 1) =

n
2

− 1


· (n + 1) + 1 · n.

The last computed number n(n+1)
2 − 1 gives the length of the shortest non-empty word belonging to the intersection

that is not a multiple of n. This is due to the fact that all other possible linear combinations we obtain by continuing this
computation, will only provide a bigger number or a number for that at least one coefficient is negative. Modifications by
adding multiples of n on both sides of the last equation lead to bigger numbers, and subtracting multiples of n on both sides
lead to numbers that cannot represent lengths of words belonging to L(A).

So far we considered the case d ≥ c . However, also when c ≥ d Eq. (1) provides an appropriate equation:

b(n − 1) + (c − d)n = e(n + 1) ⇐⇒ x′(n + 1) = y′n + z ′(n − 1),

for some x′, y′, z ′
≥ 0.

The relation n+ 1 = 2n− (n− 1) gives us the possibility to do a similar calculation as above. We start with the obvious
equation

n · (n + 1) = 0 · (n − 1) + (n + 1) · n (4)

to get the equationn
2


· (n + 1) =

n
2


· (n − 1) + n

that provides the length n(n+1)
2 of another word that belongs to the intersection, which is not a multiple of n. With the

arguments from above we also cannot go on with this computation. Thus, the intersection of L(A) and L(B) contains no
words shorter than n(n+1)

2 − 1 except λ and words having a length that is a multiple of n.
We now consider a minimal NFA accepting the intersection of the languages of the chosen automata. This needs to reject

all other words shorter than n(n+1)
2 −1 except for all words whose length is a multiple of n (including λ). To accept the word

a
n(n+1)

2 −1 there needs to exist a path in the NFA of that length. This path may contain cycles. If it does not contain a cycle
there must exist at least n(n+1)

2 − 1 states in the NFA and we are done. Now we consider the case that there exist cycles on

the path that accepts a
n(n+1)

2 −1, that is, we see at least one state at least twice. First we assume that there exists only one
cycle on our path that is used only once completely. Skipping this cycle in the computation results in accepting the word
a

n(n+1)
2 −1−k, where k denotes the length of the cycle skipped. If this word is λ then the cycle length is n(n+1)

2 − 1, thus, we
have that number of states and we are done. Otherwise, its length needs to be a multiple of n. Therefore, k needs to be of the
form

i · n +
n
2

− 1 or i · n −
n
2

− 1,

for some i ≥ 1, since only in these cases the length of the word is a multiple of n. This holds because of the following
considerations: The number

n(n + 1)
2

− 1 − k


·
1
n

=
n + 1
2

−
1 + k
n

needs to be a non-negative integer. Since n+ 1 is odd we get a remainder of 1
2 in the left fraction of the right part. To let the

total sum become an integer there must be also a remainder of 1
2 in the right fraction of the right part. Thus, 1+k

n needs to
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fulfill one of the following equations:

1 + k
n

= i +
1
2

or
1 + k
n

= i −
1
2
.

By applying some simple transformations these equations provide the forms from above.
Recall that at the moment we assume that there exists only one cycle on our path which is used only once completely.

Then the computation can use at most all but one state twice. This means the NFA already has at least ( n(n+1)
2 − 1) ·

1
2 states

and we are done.
We next assume that there still exists only one cycle on the path accepting a

n(n+1)
2 −1 but this cycle is used at least twice.

Skipping this cycle in the computation once, results in accepting a
n(n+1)

2 −1−k, where k denotes the length of the cycle skipped,
similarly as above. Obviously, this word cannot be λ and is shorter than a

n(n+1)
2 −1. So, its length needs to be a multiple of

n, and k has the form as above. Next, skipping this cycle in the computation twice, results in accepting a
n(n+1)

2 −1−2k. If this
word is λ then the cycle length is at least ( n(n+1)

2 − 1) ·
1
2 , thus, we have that number of states and we are done. Otherwise,

its length needs to be a multiple of n, but this is impossible because the numbers

n + 1
2

−
1 + 2k

n
=

n + 1
2

−


1 + 2i · n +

2n
2

− 2


·
1
n

=
n
2

+
1
2

− (2i · n + n − 1)
1
n

=
n
2

+
1
2

− 2i − 1 +
1
n

and

n + 1
2

−
1 + 2k

n
=

n + 1
2

−


1 + 2i · n −

2n
2

− 2


·
1
n

=
n
2

+
1
2

− (2i · n − n − 1)
1
n

=
n
2

+
1
2

− 2i + 1 +
1
n

are no integers, since 1
n is not 1

2 for n ≥ 3. Thus, there cannot exist a cycle that is used at least twice.

Now we assume that there exist several cycles on the path accepting a
n(n+1)

2 −1. Skipping one of the cycles results in
accepting a word whose length must be a multiple of n. Thus, we can use the same reasoning as before and conclude that
every cycle has a length of the form i · n ±

n
2 − 1, for some i ≥ 1. So, skipping altogether arbitrary two of the cycles leads to

the same contradiction as in the case where one cycle has been skipped twice. This implies that the accepting computation
on a

n(n+1)
2 −1 uses at most one cycle once. Therefore, the NFA has at least ( n(n+1)

2 − 1) ·
1
2 states. This shows that Ω(n2) states

are necessary for any NFA to accept the intersection. �

Next we come to the complementation operation. For this operation on general unary NFAs a crucial role is played by
the function

F(n) = max{lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 ∧ x1 + · · · + xk = n}

which gives themaximal order of the cyclic subgroups of the symmetric group of n symbols—here lcm(x1, x2, . . . , xk) refers
to the least commonmultiple of x1, x2, . . . , xk. The function F has been investigated in [24,25] where the asymptotic growth
rate limn→∞

ln(F(n))
√
n·ln(n)

= 1 has been proven. A bound immediately derived from this result is ln(F(n)) ∈ Θ(
√
n · ln(n)). For

our purposes the implied rough estimation F(n) ∈ eΘ(
√
n·ln(n)) suffices. In [9] it has been shown that for any unary n-state

NFA there exists an equivalent O(F(n))-state deterministic finite automaton. So, O(F(n)) is an upper bound for the unary
NFA complementation. In [15] is has been proven that this bound is tight in the order of magnitude. However, the situation
is different for unary star-free languages, where the bound is much cheaper.

Theorem 11. For any integer n ≥ 3 letA be an n-state NFA accepting a unary star-free language. Then O(n2) states are sufficient
for an NFA to accept the complement of L(A). This bound is tight in the order of magnitude.

Proof. In [9] it is shown that any n-state NFA that accepts a unary language L can effectively be transformed into an
equivalent DFA, such that the initial sequence of states has a length at most of order O(n2) which is followed by a (possibly
large) single cycle. Since a star-free language is either finite or co-finite all states in the cycle are either accepting or rejecting.
So, minimizing this DFA results in a permutation-free automaton, which collapses at least the aforementioned (possibly
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large) cycle into a trivial loop at the end of the deterministic tail. Thus, the minimal DFA has at most O(n2) states. Since
complementing DFAs does not increase the number of states, the upper bound follows.

For the lower bound we use the NFA A introduced in the proof of Theorem 9. Recall that L(A) = {an−1, an}∗ and that it
includes all words longer than (n−1) ·n− (n−1)−n. The complement of L(A) is the finite language that includes all non-
empty words which cannot be obtained by concatenating the words an−1 and an finitely often. So, the longest word in the
complement is a(n−1)n−(n−1)−n. Since anNFA that accepts a finite language needs at least one statemore than the length of the
longestword of the language, anyNFA accepting the complement of L(A)needs at least (n−1)n−(n−1)−n+1 = n2

−3n+2
states. Thus, any NFA accepting the complement of L(A) needs Ω(n2) states. �

4.2. Catenation operations

Now we turn to the catenation operation and its iteration. For unary languages the deterministic state complexity of
concatenation and Kleene star reads as mn and (n − 1)2 + 1, which cannot be reached by unary star-free languages as
shown in [8]. There, a bound of m + n − 1 and n2

− 7n + 13 were deduced for concatenation and Kleene star. It is worth
mentioning that these bounds are much closer to the bound for the corresponding operation problems on DFAs accepting
unary finite languages. Again, the state bounds for NFAs accepting unary languages are different from those bounds for
DFAs [15]. The upper bound for the concatenation of general unary NFAs is m + n [15]. For unary star-free languages the
following lower bound misses this upper bound by one state.

Theorem 12. For any integers m, n ≥ 2 there exist an m-state NFAA and an n-state NFAB accepting unary star-free languages,
such that m + n − 1 states are necessary for any NFA to accept the concatenation L(A) · L(B).

Proof. Let A = (S, {a}, δ, s0, F) be an NFA with state set S = {0, 1, . . . ,m − 1}, form ≥ 2. State 0 is the initial state s0, and
statem − 1 is the single final state. The transition function is given by

• δ(i, a) = {i + 1}, for 0 ≤ i ≤ m − 2, and
• δ(m − 1, a) = {m − 1}.

The language accepted by A is am−1a∗. Since this language is co-finite it is star-free. Similarly we define the automaton
B by taking A with n states. Hence, we obtain the star-free language L(B) = an−1a∗. For the concatenation we have
L(A) · L(B) = am+n−2a∗.

It remains to be shown that this language needs at leastm+ n− 1 states if accepted by an NFA. To this end, we construct
the following set of pairs

P = { (ai, am+n−2−i) | 0 ≤ i ≤ m + n − 2 }.

For each pair (ai, am+n−2−i) in P the word aiam+n−2−i belongs to the concatenation. However, for each two different pairs
(ai, am+n−2−i) and (aj, am+n−2−j) exactly one of the words aiam+n−2−j and aiam+n−2−j does and one does not belong to
L(A) · L(B). So, the set P is a fooling set for L(A) · L(B) of sizem + n − 1. This proves the stated claim. �

The following theorem deals with the Kleene star operations and shows that the obtained bound is tight.

Theorem 13. For any integer n ≥ 3 let A be an n-state NFA that accepts a unary star-free language. Then n + 1 states are
sufficient for an NFA to accept the Kleene star of the language L(A). This bound is tight.

Proof. The upper bound of n + 1 states for general unary languages can be found in [15]. For the lower bound we use the
NFA A = (S, {a}, δ, s0, F})with state set S = {0, 1, . . . , n − 1}. State 0 is the initial state s0 and state n−1 is the single final
state. The transition function δ is given by

• δ(i, a) = {i + 1}, for 0 ≤ i ≤ n − 3,
• δ(n − 2, a) = {0, n − 1}, and
• δ(n − 1, a) = {0}.

The language accepted by A is {an−1, an}∗{an−1
}, which can be shown to be star free by using similar arguments as in the

proof of Theorem 9.
For the lower bound we argue as follows. Assume to the contrary that there is an NFA C = (SC, {a}, δC, q0, FC) with

at most n states accepting the language L(A)∗. The shortest four words belonging to L(A)∗ are λ, an−1, a2n−2, and a2n−1. It
follows q0 ∈ FC . While accepting theword an−1 automatonC passes through a sequence of states, say, q0, q1, . . . , qn−1, with
qi+1 ∈ δC(qi, a), for 0 ≤ i ≤ n − 2 and qn−1 ∈ FC . Moreover, every state qi, for 1 ≤ i ≤ n − 2, is non-accepting. Otherwise
the automaton C would accept a word that does not belong to the language under consideration. Furthermore, it is easily
seen that all states qi, with 0 ≤ i ≤ n− 2, are different. If not, a non-empty word that is strictly shorter in length than n− 1
would be accepted.

Next we exclude certain transitions between the states {q0, q1, . . . , qn−1}. First consider q0. There is no transition from q0
to q0 because the input a has to be rejected. Moreover, there cannot be any transition from q0 to qj, for 2 ≤ j ≤ n − 1.
Otherwise word an−1−(j−1) would be accepted, and since 1 ≤ n − 1 − (j − 1) ≤ n − 2, a word not belonging to L(A)∗
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is accepted. Furthermore, there is no transition from state qi to qj, for 1 ≤ i, j ≤ n − 2 except for the transitions from qi to
qj = qi+1. We consider three cases: (i) if i = j, then there is a loop on state qi and the computation on an−1 can be extended
by running through this loop once resulting in accepting the word an−1+1

= an, which is not a member of L(A)∗. (ii) If i < j,
then we have a forward transition in the state sequence q1, q2, . . . , qn−2. In this case i + 1 < j. Then automaton C accepts
the word an−1−(j−i−1), by taking this transition instead of running through the states in between. Since 1 ≤ j− i−1 ≤ n−4
none of the words an−1−(j−i−1) are in L(A)∗ and thus these transitions cannot exist. (iii) Finally, if j < i, then we have a
backward transition which can be used to accept the word an−1+(i−j+1). But since 2 ≤ i − j + 1 ≤ n − 2 one can accept a
word whose length is at least n + 1 but at most 2n − 3. Since none of these words belong to L(A)∗ automaton C cannot
contain any of these transitions.

Next we take a closer look on the number of accepting states of C. Assume for a moment that C has only one accepting
state, that is, state q0, in addition to the n−2 non-accepting states q1, q2, . . . , qn−2. Then q0 = qn−1 and since the number of
states is n there may be another state, say q′. This new state should be reachable and useful, that is, there is at least one path
from q0 via q′ to q0. Any path of this kind has clearly a length of at least n − 1. Moreover, since there are only n − 1 states
different from q′, any path of this kind without cycles cannot be longer than 2n − 2. Therefore, we derive that the length
of such a path is either exactly n − 1 or exactly 2n − 2. Similarly as above we conclude that any cycle on such a path has a
length of n−1, if it exists at all. So, any processing of the input a2n−2 drives automatonC into state q0. This implies that a2n−1

cannot be accepted. From the contradiction and the assumption |SC | ≤ n we now have |FC | = 2, that is FC = {q0, qn−1}

and q0 ≠ qn−1. Since an does not belong to L(A)∗, there is no transition from qn−1 to qn−1. Thus, since a2n−2 as well as a2n−1

have to be accepted, there must exist a transition from qn−1 to q0 (a transition from q0 to qn−1 has been excluded above).
This implies that an is accepted, which is a contradiction also for the case |FC | = 2. Together we conclude that n states are
not enough. �

4.3. Reversal operation

The reversal operation is cheap for both DFA and NFA if they accept unary languages only. Here cheap means a tight
bound of n states in both cases. This bound is also met by DFA accepting unary star-free languages [8]. We find a similar
situation when considering NFA, because applying the operation reversal on a unary (star-free) language does not affect the
language at all. Thus, the number of states of an NFA accepting the reversal of a language is the same as the one of the NFA
accepting the language. For the sake of completeness we include the following theorem.

Theorem 14. For any integer n ≥ 1 let A be an n-state NFA accepting a unary star-free language. Then n states are sufficient for
an NFA to accept the reversal of L(A). This bound is tight. �
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