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SUMMARY

Elucidating how and to what extent lipid metabolism
is remodeled under changing conditions is essential
for understanding cellular physiology. Here, we
analyzed proteome and lipidome dynamics to inves-
tigate how regulation of lipid metabolism at the
global scale supports remodeling of cellular architec-
ture and processes during physiological adaptations
in yeast. Our results reveal that activation of cardioli-
pin synthesis and remodeling supports mitochon-
drial biogenesis in the transition from fermentative
to respiratory metabolism, that down-regulation of
de novo sterol synthesis machinery prompts differ-
ential turnover of lipid droplet-associated triacylgly-
cerols and sterol esters during respiratory growth,
that sphingolipid metabolism is regulated in a pre-
viously unrecognized growth stage-specific man-
ner, and that endogenous synthesis of unsaturated
fatty acids constitutes an in vivo upstream activator
of peroxisomal biogenesis, via the heterodimeric
Oaf1/Pip2 transcription factor. Our work demon-
strates the pivotal role of lipidmetabolism in adaptive
processes and provides a resource to investigate its
regulation at the cellular level.

INTRODUCTION

Lipids are essential constituents of all living organisms with

crucial roles in membrane structure and dynamics, energy ho-

meostasis, and signal transduction (Shevchenko and Simons,

2010). The full lipid complement (i.e., lipidome) of eukaryotic cells

comprises several hundred molecular lipid species produced by

a metabolic network that interconnects the metabolism of fatty

acids, glycerophospholipids, glycerolipids, sphingolipids, and

sterol lipids (Ejsing et al., 2009; Gaspar et al., 2011; Rajakumari

et al., 2010). This network enables modulation of the lipidome

to support remodeling of cellular processes and architecture
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during physiological adaptations. Previous research has charac-

terized most components of the lipid metabolic network but has

provided little insight into the physiological regulation of lipid

metabolism on the global scale. Dysfunctional regulation of lipid

metabolism and homeostasis causes cellular lipotoxicity, im-

pairs cellular processes and contributes to the pathogenesis

of disorders such as obesity, atherosclerosis, and neurodegen-

eration (Wymann and Schneiter, 2008). Understanding the phys-

iological regulation of global lipid metabolism warrants quantita-

tive data that capture the dynamics of both lipid species and the

proteins that operate the lipid metabolic network and cellular

processes undergoing adaptation.

Insights into the dynamic regulation of metabolism have been

provided by time series analysis combining proteomics, metab-

olomics, and other ‘‘omics’’ technologies (Buescher et al., 2012;

Zampar et al., 2013). The functional analysis of global lipid meta-

bolism and its regulation is supported by recent advances in lip-

idomics technology (Carvalho et al., 2012; Dennis et al., 2010;

Ejsing et al., 2009). So far, studies combining lipidomics and pro-

teomics are scarce and have been restricted to either analyzing

steady-state conditions (Grillitsch et al., 2011; Thibault et al.,

2012) or monitoring the dynamics of a single lipid metabolic

pathway (Sabido et al., 2012), thus precluding assessment of

the dynamic regulation of global lipid metabolism and its physi-

ological impact at the system level.

Targeted proteomics based on selected reaction monitoring

(SRM) has been successfully applied to quantify the changes

in abundance of a set of enzymes operating in central carbon

metabolism (Picotti et al., 2009; Zampar et al., 2013). This strat-

egy, however, is of limited efficacy for deciphering the interplay

between metabolic regulation and coordinated restructuring of

cellular architecture and processes. Recent advances in shotgun

(i.e., non-targeted) proteomics have maximized the scope of

proteomic approaches enabling the quantification of virtually

complete proteomes in tractable model organisms such as yeast

(Mann et al., 2013). Stable isotope labeling by amino acids in cell

culture (SILAC) has been applied for comprehensive quantifica-

tion of the yeast proteome (de Godoy et al., 2008) but this

approach uses a defined nutrient composition that can adversely

affect the dynamics of metabolism (Hanscho et al., 2012). By

contrast, label-free quantification methods are suitable for any
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Figure 1. Strategy for Quantitative Proteomic and Lipidomic Analysis along the Growth Profile of S. cerevisiae

(A) Cell density (OD/ml), and extracellular glucose and ethanol concentrations. The results are expressed as the mean ± SD of five biological replicates. Time

points for proteomic and lipidomic analysis are indicated with arrows and open blue circles, respectively. Growth stages are indicated at the top. Shaded areas

correspond to phases of proliferation. See also Table S4 and File S3.

(B) Outline of the proteolipidomic platform. Samples were processed in parallel for quantitative proteomic and lipidomic analysis. 2D-LC, two-dimensional liquid

chromatography; MS, mass spectrometry; RP, reversed phase.
experimental condition (Neilson et al., 2011) and have been suc-

cessfully employed to quantify proteins on a global scale (Mar-

guerat et al., 2012).

Here, we combine comprehensive quantitative proteomics

and lipidomics (which we term proteolipidomics) to analyze

how global lipid metabolism and cellular processes are

dynamically co-regulated during physiological adaptations.

For this, we performed a time-resolved proteomic and lipido-

mic analysis of the Saccharomyces cerevisiae growth profile

covering conserved metabolic programs and physiological ad-

aptations. This experimental framework enables the compari-

son between fermentative and respiratory metabolism as well

as between proliferating and quiescent cells in a physiological

context. In higher eukaryotes, the ability to alternate between

quiescence and proliferation regulates development and tissue

homeostasis (Coller, 2011), whereas the switch between meta-

bolic programs impinges on cell growth and is central to pro-

liferative diseases such as cancer (Locasale and Cantley,

2011).

Our results reveal system-wide remodeling of the cell prote-

ome and lipidome that interlink the regulation of global lipid

metabolism with the functional restructuring of cellular architec-

ture and processes. In particular, we demonstrate that the lipid

enzymatic machinery is reprogrammed to support cardiolipin

(CL) synthesis and remodeling for mitochondrial function, that

lipid droplet-associated triacylglycerol (TG) and sterol ester

(SE) undergo distinct cycles of storage and mobilization, that

sphingolipid composition is dynamically adjusted in a growth

stage-specific manner, and that modulation of endogenous fatty

acid unsaturation participates in the control of peroxisomal

biogenesis in vivo. This study provides a quantitative resource

for future work toward a systems-level understanding of the

regulation and function of global lipid metabolism.
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RESULTS AND DISCUSSION

Experimental Framework for Monitoring Physiological
Regulation of Metabolism
To uncover the regulation of global lipid metabolism during

physiological adaptations, we quantified the proteome and lipi-

dome dynamics along the growth profile of yeast (Figure 1). For

this, S. cerevisiae cells were sampled throughout 48 hr of

growth in batch culture in glucose-based rich medium (YPD),

covering a series of growth stages with distinct metabolic hall-

marks and physiological adaptations. We monitored cell density

and the extracellular concentration of glucose and ethanol to

define the temporal boundaries between these growth stages

(Figure 1A). Initially, cells adjust their metabolism during a tem-

porary lag phase to meet the demands of the subsequent pro-

liferative exponential phase, when growth is fueled by fermenta-

tion of glucose to ethanol. Upon glucose depletion, cells enter a

transient quiescent phase, the diauxic shift, where metabolism

is reprogrammed to support growth in the post-diauxic phase

by using cellular respiration of ethanol and other substrates

(e.g., fatty acids, see Supplemental Discussion). Finally, cells

enter the quiescent stationary phase as growth ceases upon

depletion of a limiting nutrient (not carbon) (Werner-Washburne

et al., 1993). The range of distinct growth stages makes this

experimental framework well suited for studying the regulation

of metabolic networks in the context of physiological

adaptations.

Proteome Quantification at Different Growth Stages
To characterize the remodeling of cellular processes and path-

ways during the transition from fermentation to respiration, we

quantified the proteome in the exponential phase (6 hr), the di-

auxic shift (12 hr), and the post-diauxic phase (20 hr) in five
12–425, March 19, 2015 ª2015 Elsevier Ltd All rights reserved 413



Figure 2. Benchmarking the Quantitative Proteomics Strategy for Metabolic Studies

(A) Fold changes of 45 enzymes in central carbon metabolism compared with a similar study using SRM (Picotti et al., 2009). The comparison uses time points

selected from the SRM study (ratio 19.8 hr/6.5 hr) that best match our time points (ratio 20 hr/6 hr). Data represent the mean fold change of three (SRM study) or

five (this study) biological replicates. Discordant proteins are highlighted in green (see Figure S2 for comparison with other reference data). Proteins highlighted in

yellow were quantified in the SRM study using noise as the abundance at time point 6.5 hr, and are therefore less suitable for fold change comparison.

(B) Reprogramming of the central carbon metabolic network. Fold changes (ratio 20 hr/6 hr) of proteins quantified in this study are indicated by color. Proteins

quantified in this study but not in the SRM study are framed.

See also Figures S1, S2, and Table S1.
biological replicates (Figure 1A). We quantified 3,673 proteins

(Table S1) with an average coefficient of variation of 15%,

placing this dataset among the most comprehensive and repro-

ducible yeast proteomes reported in a comparative study (Fig-

ure S1). To benchmark the proteomic strategy, we first

compared our results with a similar study where only 45 en-

zymes in the central carbon metabolism were monitored by

SRM (Picotti et al., 2009), the gold-standard method in quanti-

tative proteomics (Domon and Aebersold, 2010). Our data for

these 45 proteins closely mirror that of the previous study (Fig-

ure 2A). A few discordant proteins between both datasets

showed a better concordance between our results and other
414 Chemistry & Biology 22, 412–425, March 19, 2015 ª2015 Elsevie
reference data (Figure S2), demonstrating the accuracy of our

proteome dataset.

Next, we assessed the efficacy of the proteomic analysis for

pinpointing regulated proteins in metabolic pathways. To this

end, we compared the abundance of enzymes in the central

carbon metabolism between fermentative (6 hr) and respiratory

(20 hr) growth (Figure 2B). Our proteomic strategy afforded the

monitoring of an additional 35 enzymes in the central carbon

metabolism compared with the SRM study (Picotti et al.,

2009). Our results show that the exhaustion of glucose prompts

(i) degradation of ethanol to acetyl-coenzyme A (acetyl-CoA)

via increased levels of Adh2, Ald2, Ald4, Ach1, and Acs1;
r Ltd All rights reserved



Figure 3. Metabolic Transitioning Mediates Remodeling of Cellular Architecture and Processes

(A) Mean fold change of proteins associated with indicated cellular components.

(B) Proportion of proteins up-regulated R2-fold (green), down-regulated R2-fold (red), and changing <2-fold (gray) within each cellular component.

(C) Fold changes of peroxisomal proteins (mean of five biological replicates) are shown as a representative example. Fold changes of individual proteins within

each category can be accessed in File S1.

(D) Mean fold change of proteins associated with indicated biochemical pathways.

(E) Proportion of proteins up-regulated R2-fold (green), down-regulated R2-fold (red), and changing <2-fold (gray) within each biochemical pathway.

See also Table S1.
(ii) induction of enzymes in the tricarboxylic acid (TCA) cycle and

the glyoxylate cycle; (iii) up-regulation of the gluconeogenic en-

zymes Pck1 and Fbp1; and (iv) up-regulation of the enzymatic

machinery for synthesis of storage carbohydrates. These data

are consistent with current knowledge and provide a more

extensive characterization of protein expression and the reprog-

ramming of central carbon metabolism compared with previous

proteomic studies (Picotti et al., 2009). We conclude that the

proteome dataset is comprehensive, accurate, and reproduc-

ible, and that it affords interrogating the dynamics of metabolic

networks at the molecular level. We note that although our pro-

teomic strategy determines changes in protein abundance, it

does not allow monitoring other levels of regulation of protein

function such as post-translational modifications and subcellu-

lar localization, which can also affect the regulation of

metabolism.
Chemistry & Biology 22, 4
Proteome Remodeling Modulates Organelle Dynamics
and Cellular Metabolism
The transition from fermentation to respiration entails extensive

remodeling of the yeast proteome with 3,105 proteins showing

significant differences in abundance (ANOVA f value and t

test p value <0.05). To assess which physiological processes

are modulated, we sorted proteins based on gene ontology

(GO) categories for cellular components and biochemical

pathway annotation, and determined the mean fold change

within each structural or functional category (Figure 3; File

S1). Changes related to cellular components (Figures 3A–3C)

show (i) increased levels of mitochondrial proteins consistent

with the increase of mitochondrial content when cells are

transferred from a fermentable to a non-fermentable carbon

source (Egner et al., 2002); (ii) an increase in levels of peroxi-

somal proteins consistent with peroxisome proliferation in the
12–425, March 19, 2015 ª2015 Elsevier Ltd All rights reserved 415



post-diauxic phase (Lefevre et al., 2013); and (iii) a decrease in

nucleolar and ribosomal proteins showing a down-regulation of

protein synthesis, with the exception of mitochondrial ribo-

somal proteins which are up-regulated in the post-diauxic

phase (Figure 3B). Assessing co-regulated biochemical path-

ways (Figures 3D and 3E) confirms the aforementioned induc-

tion of ethanol degradation, the TCA cycle, the glyoxylate cycle,

and gluconeogenesis, and uncovered other processes acti-

vated in the post-diauxic phase including (i) the oxidation of

fatty acids, (ii) the related carnitine shuttle and removal of su-

peroxide radicals, (iii) the degradation of glycerol, and (iv) the

synthesis of the lipid precursor inositol. Conversely, the protein

machinery implicated in sterol metabolism, sphingolipid meta-

bolism, and the synthesis of oleic acid (C18:1) was down-regu-

lated (Figure 3D). These results demonstrate that the diauxic

shift and post-diauxic phase have wide-ranging implications

for cellular metabolism beyond the well-known remodeling of

central carbon metabolism, and illustrate the efficacy of the

non-targeted proteomic strategy for mapping co-regulated

processes and pathways. In particular, the results indicate co-

ordinated regulation of lipid metabolic processes and organelle

biogenesis during the diauxic shift.

Physiological Adaptation Mediates Reprogramming of
the Lipid Metabolic Network
To study the changes in lipid metabolism at the cellular level, we

constructed a map of the yeast lipid metabolic network that

comprises 138 proteins and depicts the interdependent path-

ways of fatty acid, glycerophospholipid, glycerolipid, sphingoli-

pid, and sterol lipid metabolism (Figure 4). We projected the

changes in protein abundance onto the network to evaluate

the reprogramming of lipid metabolism (Figure 4). Overall, 85%

of the proteins in the lipid metabolic network were quantified,

yielding a coverage similar to that of other yeast metabolic net-

works analyzed by targeted proteomics (Costenoble et al.,

2011). This analysis shows that 96 proteins in the lipid metabolic

network change significantly, and that most changes occur dur-

ing the diauxic shift and persist in the post-diauxic phase (Fig-

ure S3). In particular, the physiological adaptation entails (i) a

decrease in expression of the fatty acid desaturase Ole1 and

the fatty acid elongase Sur4 (Figure 4-A1); (ii) differential expres-

sion of the fatty acyl-CoA synthetases Faa1, Faa2, Faa3, and

Faa4 (Figure 4-A1) indicating distinct roles of these enzymes in

the adaptive processes; (iii) down-regulation of several ergos-

terol biosynthetic enzymes (Figure 4-C1); (iv) changes in the

levels of glycerophospholipid enzymes (e.g., increase in Opi3

and Cki1 levels; Figure 4-C3); (v) reduced levels of the sphingo-

lipid enzymes Lcb1 and Tsc10 (Figure 4-A3), and a concomitant

increase of the ceramidase Ydc1 (Figure 4-B3); and (vi) differen-

tial expression of isoenzymes involved in the synthesis and turn-

over of the storage lipids TG (Figure 4-C3) and SE (Figures 4-B1

and 4-B2). We conclude that the switch from fermentative to res-

piratory metabolism entails extensive reprogramming of the lipid

metabolic network.

Lipidome Dynamics during Physiological Adaptation of
Cellular Metabolism
For a comprehensive assessment of the changes in cellular lipid

composition accompanying the proteome changes, we
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executed a quantitative lipidomic analysis across 22 time points

covering all growth stages (Figure 1A). We quantified 223 lipid

species (annotated by sum composition, see Experimental Pro-

cedures) encompassing 21 lipid classes. The levels of 19 lipid

classes (Figure 5) and the relative abundance of 221 lipid species

(Figure 6; Figure S5) change significantly along the growth profile

(ANOVA f value and t test p value <0.05, Tables S2 and S3). This

result demonstrates extensive modulation of the lipidome at a

scale beyond what can be discerned analyzing only the protein

complement of the cell. In particular, the ratio between storage

and membrane lipids fluctuates markedly across all growth

stages, showing accumulation of TG and SE lipids when cells

enter quiescent phases and mobilization during proliferation

when membrane lipids are required for secretory traffic and

expansion of the plasma membrane (Figure 5A). Specific glycer-

ophospholipid classes (i.e., CL and phosphatidylcholine [PC]) in-

crease after the diauxic shift (Figures 5B and 5C) corroborating

the observed up-regulation of the corresponding enzymatic ma-

chinery (Figures 4-B2 and 4-C3). Interestingly, the total levels of

sphingolipids (Figure S4) and sterols (Figure 5F) remain stable

across all growth stages despite the down-regulation of their

de novo biosynthetic machinery (Figure 4-C1), indicating that

additional mechanisms control their abundance. Taken together,

these findings highlight the complementarity of the lipidomics

and proteomics data and show their utility as a resource for

exploring the functional reprogramming of global lipid meta-

bolism and its co-regulation with adaptive cellular processes.

Synthesis and Functional Remodeling of CL during
Mitochondrial Biogenesis
Mitochondrial biogenesis is induced to support cellular respira-

tion (Egner et al., 2002). CL is a mitochondrial lipid class required

for mitochondrial morphogenesis and optimal function of the

electron transport chain and ATP synthase (Paradies et al.,

2014). Higher CL levels and CL synthase activity have been

shown when cells are grown on a non-fermentable carbon

source compared with a fermentable carbon source (Tuller

et al., 1998). Accordingly, during the diauxic shift and the post-

diauxic phase, CL levels increase (Figure 5B) providing addi-

tional evidence for the biogenesis of mitochondria as deduced

from the proteomic data (Figure 3A). Previous analysis under

steady-state conditions have shown that the four acyl chains

of CL species comprise mainly palmitoleoyl (C16:1) and oleoyl

(C18:1) moieties incorporated primarily by post-synthetic acyl

chain remodeling (Schlame, 2013). CL remodeling occurs

through the coordinated action of the phospholipase Cld1, which

removes an acyl chain producing monolysocardiolipin (MLCL),

and the transacylase Taz1, which incorporates C16:1 and

C18:1 yielding CL species with up to four monounsaturated fatty

acid (MUFA) moieties. Up-regulation of Taz1 (Figure 4-B2) during

the diauxic shift and the post-diauxic phase implies activation of

CL remodeling. Accordingly, as cells transit from the exponential

to the post-diauxic phase, the pool of CL species undergoes a

systematic increase in the proportion of MUFA chains reaching

a plateau where �90% of all species comprise four MUFAs (Fig-

ures 6A, 6E, and S6). Consistent with the activation of CL remod-

eling,MLCL levels are also increased after the exponential phase

(Figure 5B) and MLCL species show an increase in the propor-

tion of MUFA chains parallel to that of CL species (Figures 6B,
r Ltd All rights reserved



Figure 4. Functional Reprogramming of the Lipid Metabolic Network during the Diauxic Shift and the Post-Diauxic Phase
The yeast lipidmetabolic network was compiled from theSaccharomycesGenomeDatabase and references therein. Fold changes of proteins quantified (relative

to time point 6 hr) are indicated by color (mean of five biological replicates). Lipids monitored are highlighted in blue. Background colors indicate different lipid

metabolic pathways. A coordinate system is used to reference proteins discussed in the text. See also Figure S3 and Table S1.
6F, and S6). These results demonstrate in vivo CL remodeling

during physiological induction of mitochondrial biogenesis. The

importance of CL remodeling is underscored by the fact that mu-

tations in the taffazzin gene, the human ortholog of TAZ1 (Gu

et al., 2004), cause Barth syndrome (Bione et al., 1996). Our re-

sults show that the experimental framework applied in our study

can serve as a new testing ground for mechanistic studies of CL

acyl chain remodeling and its physiological regulation.
Chemistry & Biology 22, 4
Lipidome Dynamics Reveal Extensive Reprogramming
of Glycerophospholipid Metabolism
Glycerophospholipids are major constituents of cellular mem-

branes with pivotal roles in secretory trafficking, organelle iden-

tity, and anchoring of membrane proteins (van Meer et al.,

2008). Assessment of glycerophospholipid composition

demonstrated extensive dynamics across all growth phases

(Figures 5C and 5D). Glycerophospholipid levels increase
12–425, March 19, 2015 ª2015 Elsevier Ltd All rights reserved 417



Figure 5. Modulation of Lipid Class

Composition along the Growth Profile of

S. cerevisiae

(A) Temporal dynamics of storage (TG and SE) and

membrane lipids. The results are expressed as the

mean ± SD of five biological replicates. Statistical

comparisons by repeated measures ANOVA and

post hoc paired t test (see Table S2). Vertical lines

indicate the time points selected for proteomic

analysis. Shaded areas correspond to phases of

proliferation.

(B–G) Temporal profiles of 21 lipid classes. The

results are expressed as the mean ± SD of five

biological replicates. Statistical comparisons as

in (A) (see Table S2). Fold changes (12 hr/6 hr and

20 hr/6 hr) of proteins discussed in the text

are indicatedbycolor (as inFigure4) at the topof the

related panels. Vertical lines and shaded areas

as in (A). Cer, ceramide; CL, cardiolipin; DG,

diacylglycerol; IPC, inositolphosphoceramide;

LPA, lysophosphatidic acid; LPC, lysophosphati-

dylcholine; LPE, lysophosphatidylethanolamine;

LPI, lysophosphatidylinositol; LPS, lysophospha-

tidylserine; M(IP)2C, mannosyl-diinositolphos-

phoceramide; MIPC, mannosyl-inositolphos-

phoceramide; MLCL, monolysocardiolipin; PA,

phosphatidic acid; PC, phosphatidylcholine; PE,

phosphatidylethanolamine; PG, phosphatidylgly-

cerol; PI, phosphatidylinositol; PS, phosphati-

dylserine; SE, sterol ester; TG, triacylglycerol.

See also Figure S4, Table S2, and File S2.
during cell proliferation as secretory traffic drives membrane

expansion and cell division (Figure S4). This increase in glycer-

ophospholipid levels during the exponential phase is primarily

caused by an increase in phosphatidylinositol (PI) and phos-

phatidylethanolamine (PE) levels (Figure 5C). Notably, the

glycerophospholipid composition of exponential phase cells is

consistent with previous studies using shotgun lipidomics (Fairn

et al., 2011; Klose et al., 2012) but contrasts with other studies

using classical approaches (i.e., thin-layer chromatography)

(Le Guedard et al., 2009). Following the diauxic shift, there is a

gradual elevation in PC levels. This increase in PC is supported

by up-regulation of enzymes synthesizing PC via the CDP-

choline pathway (Cki1) and the PE methylation pathway (Opi3)
418 Chemistry & Biology 22, 412–425, March 19, 2015 ª2015 Elsevier Ltd All rights reserved
(Figure 4-C3).Moreover, theup-regulation

of the phosphatidylserine (PS) synthase

Cho1 (Figure 4-B2) and the concomitant

decrease in PS and PE levels (Figure 5C),

suggest that the increase in PC is derived

in part from sequential conversion of PS.

In addition, the level of phospholipase

Plb1, which participates in the remodeling

of PC species, is also increased in the

diauxic shift and the post-diauxic phase

(Figure 4-C3), and coincides with system-

atic changes in the composition of

PC and lysophosphatidylcholine species

(Figures 6K and 6L) demonstrating acti-

vation of PC remodeling.
Moreover, our results provide a new perspective on trans-

criptional regulation of glycerophospholipid metabolism. The ex-

pression of a subset of enzymes involved in glycerophospholipid

synthesis is controlled by the transcriptional regulators Ino2,

Ino4, and Opi1 (Henry et al., 2012). The regulated genes include

the above-mentioned OPI3, CKI1 and CHO1, and INO1 encod-

ing inositol-3-phosphate synthase (Figure 4-A2). These enzymes

show increased expression during the post-diauxic phase. The

current model of the transcriptional regulation posits that high

phosphatidic acid (PA) levels sequester Opi1 in the ER mem-

brane allowing the heterodimeric Ino2-Ino4 transcription factor

to activate gene expression (Henry et al., 2012). Conversely,

upon reduction in PA levels, Opi1 is released from the ER, enters



Figure 6. Modulation of Lipid Species Composition along the Growth Profile of S. cerevisiae

223 lipid species were quantified.

(A–P) Temporal profiles of lipid species within each lipid class for selected lipid classes. Lipid species are annotated by sum composition (see Experimental

Procedures). The total number of carbon atoms, double bonds, and hydroxyl groups in the lipid molecule are depicted using distinct color and line format. The

most abundant lipid species are annotated. Low abundant lipid species are omitted for clarity. The results are expressed as the mean ± SD of five biological

replicates. Statistical comparisons by repeated measures ANOVA and post hoc paired t test (see Table S3). Vertical lines indicate the time points selected for

proteomic analysis. Shaded areas correspond to phases of proliferation. Fold changes (12 hr/6 hr and 20 hr/6 hr) of proteins discussed in the text are indicated by

color (as in Figure 4) at the top of the related panels. (A) CL species with 4 double bonds; (B) MLCL species with 3 double bonds; (C) Cer species; (D) TG species;

(E) CL species with%3 double bonds; (F) MLCL species with%2 double bonds; (G) IPC species; (H) selected TG species with 3 double bonds; (I) MIPC species;

(J) selected TG species with 2 double bonds and a carbon indexR58; (K) PC species; (L) LPC species; (M) M(IP)2C species; (N) PA species; (O) LPA species; (P)

ergosterol ester (EE) species.

See also Figures S5 and S6, Table S3, and File S2.
the nucleus, binds Ino2, and attenuates gene expression. Our re-

sults show that high PA levels occur primarily during the expo-

nential phase when PI synthesis is elevated (Figure 5C). This

finding contrasts the model of transcriptional regulation which

predicts increased PC synthesis, attributed to the high PA levels

and, hence, expected expression of PC biosynthetic enzymes.
Chemistry & Biology 22, 4
Notably, our results support the model for transcriptional regula-

tion during the post-diauxic phase when the majority of the

expected enzymes are up-regulated, although only a minor in-

crease in PA levels is observed (Figure 5C). Instead a pro-

nounced alteration of the PA species profile occurs (Figure 6N)

suggesting that distinct molecular PA species play different roles
12–425, March 19, 2015 ª2015 Elsevier Ltd All rights reserved 419



in the transcriptional program of glycerophospholipid meta-

bolism. Furthermore, our data indicate that a more extensive

regulatory network fine-tunes the expression level of lipid meta-

bolic enzymes and that this network is intertwined with the pro-

cesses orchestrating physiological adaptations.

Growth Stage-Specific Modulation of Sphingolipid
Metabolism
Sphingolipids have essential roles in membrane trafficking and

cell signaling (Dickson, 2008). Inspection of the sphingolipidome

shows that the total sphingolipid content remains relatively sta-

ble across all growth phases (Figure S4) while levels of sphingo-

lipid classes and species show distinct temporal profiles. Specif-

ically, increase of ceramide (Cer) and inositolphosphoceramide

(IPC) levels demonstrates activation of sphingolipid biosynthesis

during the exponential phase (Figure 5G). Moreover, sphingoli-

pid species with three hydroxyl groups are increased in the early

exponential phase and progressively converted to more com-

mon species featuring four hydroxyl groups (Figures 6C, 6G,

6I, and 6M). The sphingolipid biosynthesis is attenuated in the

late exponential phase and diauxic shift coinciding with an

elevated conversion of IPC to mannosyl-inositolphosphocera-

mide (MIPC). This metabolic transition is likely driven by the

down-regulation of sphingolipid biosynthetic enzymes including

Lcb1 and the reductase Tsc10 (Figure 4-A3) and up-regulation of

the ceramidase Ydc1 (Figure 4-B3), which collectively can

mediate the reduction of Cer levels in the lipidome (Figure 5G).

In addition, up-regulation of the catalytic subunit of the MIPC

synthase Sur1 (Figure 4-B3) supports the observed increase in

MIPC levels. Notably, M(IP)2C levels remain stable across all

growth stages indicating tight control of its abundance (Fig-

ure 5G). Interestingly, the recently discovered negative regula-

tors of sphingolipid synthesis Orm1 and Orm2 (Breslow et al.,

2010) are differentially regulated (Figure 4-A3), suggesting

growth stage-specific functions for each Orm protein. Our find-

ings demonstrate modulation of the sphingolipidome according

to the physiological program of the cell, and provide a new

experimental framework for investigating the regulation of sphin-

golipid metabolism and the influence of the related TORC2

signaling machinery, Rom2, Ypk1, the Orm proteins, and the pu-

tative sensor Slm1 (Aguilar et al., 2010; Berchtold et al., 2012;

Roelants et al., 2011).

Lipid Droplets Undergo Distinct Cycles of Storage Lipid
Accumulation and Mobilization
TG and SE are storage lipids deposited in and mobilized from

lipid droplets dependent on physiological requirements (Kohl-

wein et al., 2013). Lipid droplets buffer lipid substrates for mem-

brane synthesis and energy production via b-oxidation. The tem-

poral profiles of TG and SE lipids demonstrate high plasticity of

lipid droplets in vivo (Figure 5E). Interestingly, storage lipids un-

dergo two distinct cycles of mobilization and accumulation

prompted by active growth and quiescence, respectively (Fig-

ure 5A). Accumulated TG and SE lipids are initially mobilized

as cells enter the lag phase and re-synthesized as cells transit

into the diauxic shift. Under these conditions, TG and SE lipids

are present in similar amounts as previously reported (Kohlwein

et al., 2013) and exhibit parallel temporal profiles. Conversely, as

cells enter the post-diauxic growth phase, TG and SE are mobi-
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lized but exhibit distinct dynamics. Assessing the enzyme ma-

chinery directing the mobilization shows high expression of the

lipases Tgl3, Tgl4 (Figure 4-C3), and Tgl1 (Figure 4-B2) during

the post-diauxic phase, suggesting that these enzymes mediate

the hydrolysis of TG and SE. Similarly, the lipase Yju3, which

converts monoacylglycerol to fatty acid and glycerol, is also

up-regulated (Figure 4-B3), indicating that at least part of the

TG pool can be fully hydrolyzed to direct fatty acids into energy

production. Accordingly, the main machinery for peroxisomal

b-oxidation, comprising Pox1, Fox2, Pot1, and the acyl-CoA

synthetase Faa2, is also up-regulated (Figures 4-A1 and 4-B1).

The activation of b-oxidation coinciding with the mobilization of

storage lipids was further substantiated by flux balance analysis,

which shows that growth upon exit from the diauxic shift is sup-

ported by channeling of fatty acids toward b-oxidation (see Sup-

plemental Discussion, Table S4, and File S3).

As cells approach the stationary phase, TG is re-synthesized,

whereas the SE pool is kept relatively stable (Figure 5E). The

increased expression of the acyltransferase Are2 in the post-di-

auxic phase (Figures 4-B1 and 4-C3) indicates a functional role,

together with Dga1 (not detected) (Kohlwein et al., 2013), in syn-

thesizing TG. The unexpected observation that the SE level is

relatively constant upon entry to the stationary phase (Figure 5E)

coincides with a general down-regulation of the de novo sterol

biosynthesis pathway initiated in the diauxic shift (Figure 4-C1).

This finding suggests that SEs are the main source of membrane

sterols as cells resume growth in the post-diauxic phase, and ex-

plains why the SE pool, unlike the TG pool, is not replenished

when cells approach the stationary phase. These results are

consistent with a recent study showing that the ER-associated

protein degradation (ERAD) pathway down-regulates sterol

biosynthesis machinery and, when defective, sustains sterol

synthesis in early stationary phase cells (Foresti et al., 2013).

The above findings show independent regulation and meta-

bolic fate of TG and SE lipids. However, not only the bulk

amounts of TG and SE but also the levels of distinct TG and

SE species are subject to dynamic modulation (Figures 6D and

6P). For instance, the synchronous mobilization and synthesis

of abundant TG species with three MUFA moieties suggest sub-

strate selectivity of lipases and acyltransferases in vivo (Fig-

ure 6H). In addition, the synthesis of TG species with very long

chain fatty acid (VLCFA) moieties (e.g., C26:0) (Ejsing et al.,

2009) is increased during the post-diauxic phase and the station-

ary phase (Figure 6J). As VLCFAs are typically used for ceramide

synthesis, this finding suggests that lipid droplets also partici-

pate in the coordination of sphingolipid metabolism by salvaging

VLCFAs that can be channeled into sphingolipid biosynthesis

upon physiological demand (e.g., upon growth resumption

from the stationary phase). The mobilization of TG species with

VLCFA moieties has been ascribed to the lipase Tgl5 (Athe-

nstaedt and Daum, 2005) (not detected).

Dynamics of Fatty Acid Unsaturation Correlate Protein
Expression and Peroxisomal Biogenesis
We performed fuzzy c-means clustering analysis of all lipid spe-

cies to delineate coordinated dynamics throughout the lipidome.

This analysis revealed five clusters of lipids with distinct temporal

profiles and structural signatures (Figure 7A; Table S5). Specif-

ically, lipid species increased during the early exponential phase
r Ltd All rights reserved



Figure 7. Modulation of Endogenous MUFA Levels Constitutes a Physiological Mechanism for Transcriptional Regulation of Protein

Expression
(A) Fuzzy c-means clustering analysis of lipid species. See also Table S5.

(B) Median averaged double bond index (i.e., number of double bonds/number of fatty acid moieties in a lipid molecule) for each cluster. Statistical comparison

between clusters by Wilcoxon rank-sum test. *p < 0.01; **p < 0.001. See also Table S5.

(C) Temporal profile of SFA and MUFA moieties in the lipidome. The relative abundance of SFA and MUFA is calculated as described in the Supplemental

Experimental Procedures. The results are expressed as the mean ± SD of five biological replicates. Statistical comparisons by repeated measures ANOVA and

post hoc paired t test (see Table S3). Fold changes (12 hr/6 hr and 20 hr/6 hr) in Ole1 levels are indicated by color (as in Figure 4) at the top. OLE1 transcript

abundance is curated from DeRisi et al. (1997) (see Supplemental Experimental Procedures). Vertical lines indicate the time points selected for proteomic

analysis. Shaded areas correspond to phases of proliferation. Symbols relate to processes depicted in (D).

(legend continued on next page)
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(cluster II) comprise a high proportion of saturated fatty acid

(SFA) moieties, whereas lipid species increased in the late expo-

nential phase and the diauxic shift (cluster IV) feature a high pro-

portion of MUFAmoieties (Figure 7B; Table S5). This finding was

substantiated by an in silico analysis of the total complement of

SFA andMUFAmoieties in the lipidome, which uncovered a sys-

tematic increase in the total level of SFA moieties until the mid-

exponential phase followed by an increase in the total level of

MUFA moieties until the post-diauxic phase (Figure 7C).

To gain further insight into the modulation of MUFA levels, we

assessed the expression level of Ole1, the only fatty acid desa-

turase in S. cerevisiae. Ole1 abundance is comparatively high

at the mid-exponential phase (Figure 4-A1), coinciding with the

apex of total SFA levels and the onset of the increase in MUFA

levels (Figure 7C). Subsequently, Ole1 levels decrease as the

levels of MUFA are restored. In addition, curated OLE1 mRNA

levels from a transcriptomic study of the diauxic shift (DeRisi

et al., 1997) match these observations showing a transient in-

crease in OLE1 mRNA abundance as the total SFA levels reach

their apex (Figure 7C).OLE1 expression is regulated by two tran-

scription regulators, Mga2 and Spt23, which are integral ER

proteins proteolytically activated via an ubiquitin/proteasome-

dependent process mediated by Ubx2 (Surma et al., 2013) and

Cdc48 (Hoppe et al., 2000; Rape et al., 2001). Interestingly,

Ole1 expression and activity are up-regulated by supplementa-

tion with SFAs and conversely down-regulated by MUFAs (Bos-

sie and Martin, 1989; Choi et al., 1996), which suggests that per-

mutations of membrane lipid composition elicit a regulatory cue

via the ERAD pathway to modulate fatty acid desaturase activity

(Surma et al., 2013). Our results indicate that the increased levels

of endogenous SFAs can be the physiological cue for up-regula-

tion of Ole1 expression and the increase in MUFA synthesis

(Figures 7C and 7D). Interestingly, we found a non-uniform distri-

bution of SFA and MUFA moieties throughout the lipidome, with

distinct membrane lipid classes that selectively incorporate

SFAs during the early exponential phase and likely contribute

to the changes in membrane composition that trigger Ole1

expression (Figure 7E).

Similarly, the expression of peroxisomal proteins including the

b-oxidation enzymes is induced by exogenous supplementation

with MUFAs via the heterodimeric transcription factor Oaf1/Pip2

(Karpichev and Small, 1998; Phelps et al., 2006). Binding of

MUFA to Oaf1 induces its translocation to the nucleus and

activation of gene expression (Phelps et al., 2006). We per-

formed a transcription factor over-representation analysis to

test whether the increase in the endogenous MUFA levels (Fig-

ure 7C) participates in the transcriptional program of peroxi-

somal protein expression. This analysis identified transcription

factors reported to be involved in the diauxic shift including the

Hap2/3/4/5 complex, Msn2 and Msn4, Cat8, and Adr1 (DeRisi

et al., 1997; Haurie et al., 2004) (Table S6). Moreover, Oaf1 and

Pip2 are over-represented demonstrating that the Oaf1/Pip2-

dependent peroxisomal protein expression occurs in vivo

when MUFA levels are high. Interestingly, recent studies have
(D) Temporal reconstruction of processes related to modulation of endogenous S

data (DeRisi et al., 1997), and biochemical studies (Karpichev and Small, 1998; S

(E) Lipid class-specific changes in SFA and MUFA content. The relative abundan

mental Procedures. The results are expressed as the mean ± SD of five biologic
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shown that Oaf1 translocates to the nucleus under low glucose

conditions (Karpichev et al., 2008) and that Oaf1 can regulate

gene expression in the diauxic shift (Zampar et al., 2013). Our

results extend these findings and indicate that modulation of

endogenous MUFA levels constitutes a physiological upstream

activator that regulates Oaf1/Pip2-dependent protein expres-

sion and peroxisomal biogenesis in vivo (Figure 7D).

SIGNIFICANCE

Our work presents a proteolipidomics platform for a com-

prehensive and quantitative time-resolved analysis of the

yeast proteome and lipidome. We applied this platform to

investigate to what extent lipid metabolism is regulated un-

der changing conditions and its impact at the cellular level.

Our results reveal regulation of lipid metabolism at the

global scale during physiological adaptations, which chal-

lenges the traditional view and research focus on specific

lipids and their individual metabolic conversions and func-

tions. In particular, we uncover coordinated regulation of

(i) glycerophospholipid metabolism to support mitochon-

drial function and membrane dynamics, (ii) sphingolipid

metabolism in a previously unrecognized growth stage-spe-

cific manner, and (iii) mobilization and storage of lipid

droplet-associated TG and SE species to sustain membrane

and energy homeostasis. In addition, fluctuations of lipid

species across the entire lipidome revealed that endoge-

nous synthesis of unsaturated fatty acids constitutes an

in vivo upstream activator of peroxisomal biogenesis via

the heterodimeric Oaf1/Pip2 transcription factor. These

findings demonstrate the central role of lipid metabolism

in adaptive processes and underscore the need to investi-

gate its regulation at the global scale to understand cell

physiology. We note that the proteolipidomics platform

can in future be complementedwith cell fractionation strate-

gies and quantitative assessment of post-translational mod-

ifications (e.g., protein phosphorylation) to interrogate in

further detail how protein localization and signaling net-

works govern global lipid metabolism and cell physiology.

In conclusion, ourwork provides a comprehensive reference

of lipid and protein dynamics as a quantitative resource

for future studies, and defines time-resolved quantitative

systems-level analysis of lipid and protein dynamics as a

new paradigm for studying the regulation and function of

lipid metabolism.

EXPERIMENTAL PROCEDURES

Full methods are available in the Supplemental Experimental Procedures.

Yeast Culture Conditions and Sampling

The yeast S. cerevisiae (strain BY4742) was used in this study. A frozen stock

was streaked on a YPD plate (1% w/v yeast extract, 2% w/v peptone, 2% w/v

glucose, 2%w/v agar) and grown at 30�C for 36 hr. Yeasts were precultured at

30�C for 24 hr in YPDmedium (1%w/v yeast extract, 2%w/v peptone, 2%w/v
FA and MUFA levels; based on the results of this study (bold), transcriptomic

urma et al., 2013). See also Table S6.

ce of SFA and MUFA is calculated as described in the Supplemental Experi-

al replicates. Vertical lines and shaded areas as in (C).
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glucose). Precultured yeast cells were batch cultured in five biological repli-

cates for 48 hr in YPD medium inoculated at a starting OD600 of 0.2. Growth

was monitored by measuring the optical density of the cultures at 600 nm.

Cells were harvested for proteomic and lipidomic analysis, frozen in liquid ni-

trogen and stored at�80�C. One milliliter of culture broth was also withdrawn,

centrifuged, and the supernatant was stored at�80�C for glucose and ethanol

determination in the medium.

Quantitative Proteomics

Yeast lysates were digested with trypsin (León et al., 2013) and 5 mg of pep-

tides were analyzed by 2D liquid chromatography (high pH reversed phase/

low pH reversed phase)-tandem mass spectrometry (high reversed phase/

low reversed phase pH) using a nanoAcquity UPLC (Waters) coupled with an

LTQ Orbitrap XL (Thermo Scientific) equipped with a nanoelectrospray source

(Proxeon, now Thermo Scientific). Peptides were identified using MASCOT

and quantified with Progenesis LC-MS (Nonlinear Dynamics Limited).

Quantitative Lipidomics

Yeast lysates were spiked with a cocktail of 20 internal lipid standards and

subjected to two-step lipid extraction (Ejsing et al., 2009). Lipid extracts

were dried, re-dissolved in chloroform/methanol 1:2 (v/v) and analyzed us-

ing an LTQ Orbitrap XL equipped with a robotic nanoelectrospray ioniza-

tion source TriVersa NanoMate (Advion Biosciences) (Ejsing et al., 2009).

Sterols were analyzed after chemical sulfation (Carvalho et al., 2012). Lip-

idomic data analysis was performed using ALEX software (Husen et al.,

2013).

Lipid Nomenclature

Lipid species are annotated according to their sum composition (Husen et al.,

2013). Glycerolipid and glycerophospholipid species are annotated as <lipid

class> <sum of carbon atoms in the fatty acid moieties>:<sum of double

bonds in the fatty acid moieties> (e.g., PC 32:1). Sphingolipids species are an-

notated as <lipid class> <sum of carbon atoms in the long chain base (LCB)

and the fatty acid moiety>:<sum of double bonds in the LCB and the fatty

acid moiety>;<sum of hydroxyl groups in the LCB and the fatty acid moiety>

(e.g., IPC 44:0;4).

Functional Annotation of Proteins

The curated GO slim and biochemical pathway annotation of individual pro-

teins were retrieved from the SaccharomycesGenomeDatabase. The average

fold change of proteins within each category was calculated to identify up- or

down-regulated structural components and functional processes.

Transcription Factor Over-Representation Analysis

Transcription factors associated with the regulated proteins were determined

as described by Zampar et al. (2013). A protein was considered to be regulated

when the ANOVA f value and t test p valuewere <0.01. The transcription factor-

target gene associations (based on direct evidence) were retrieved from the

Yeastract database (Teixeira et al., 2006). The resulting p value indicates, for

each transcription factor, the probability that the observed number of associ-

ations with the set of regulated proteins would occur by chance.

Clustering of Lipidomic Data

Fuzzy c-means clustering analysis was used to identify common trends in the

abundance profile of all lipid species quantified (calculated as mol% of lipid

species per lipid class). Prior to calculation of mol%, missing values were

substituted by half of the minimum picomole value detected for the lipid spe-

cies in the dataset. The parameters of the clustering analysis, fuzzifier and

number of clusters, were set as described (Schwämmle and Jensen, 2010).

Each clustered lipid species has a membership value that indicates the likeli-

hood with which it belongs to the cluster. The averaged double bond index

(i.e., no. of double bonds/no. of fatty acid moieties in a lipid molecule) was

calculated to identify common structural features in lipid clusters. The Wil-

coxon rank-sum test was used for statistical comparisons between clusters.

Statistical Analysis

The results are expressed as the mean ± SD of five biological replicates. The

statistical analysis was carried out on ln-transformed values by repeated mea-
Chemistry & Biology 22, 4
sures ANOVA followed by post hoc paired t test to compare the protein or lipid

species levels between the analyzed time points, and corrected for multiple

hypothesis testing by calculating q values (false discovery rate adjusted p

values). Differences were considered significant when the ANOVA f value

and t test p value were <0.05 (corresponding to a q value <0.05).

SUPPLEMENTAL INFORMATION
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