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a b s t r a c t

In 1956, W.T. Tutte proved that every 4-connected planar graph is hamiltonian. Moreover,
in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains
a hamiltonian cycle through any two of its edges. It is shown that Sanders’ result is best
possible by constructing 4-connected maximal planar graphs with three edges a large
distance apart such that any hamiltonian cycle misses one of them. If the maximal planar
graph is 5-connected then such a construction is impossible.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and results

We use [3] for terminology and notation not defined here and consider finite simple graphs only.
The first major result on the existence of hamiltonian cycles in graphs embeddable in surfaces was by Whitney [11] in

1931, who proved that 4-connected maximal planar graphs are hamiltonian. In 1956, Tutte [9,10] generalized Whitney’s
result frommaximal planar graphs to arbitrary 4-connected planar graphs. Actually, Tutte proved that a 4-connected planar
graph G has a hamiltonian cycle through any two edges of a given face of G. Moreover, in [6,7] it is proved that a 4-connected
planar graph G has a hamiltonian cycle through any three edges of a given face of G or that face is a 3-gon.
Improving a result of Thomassen [8], in 1997, Sanders [6] proved the following:

Theorem 1 ([6]). Every 4-connected planar graph on at least three vertices has a hamiltonian cycle through any two of its edges.
In [5] the connectivity of a subset X of the vertex set of a graph G is defined as follows. Let G be a graph, X ⊆ V (G), and

G[X] be the subgraph of G induced by X . A set V ⊂ V (G) splits X if the graph G− V obtained from G by removing V contains
at least two components each containing a vertex of X . Let κ(X) be infinity if G[X] is complete, or the minimum cardinality
of a set V ⊂ V (G) splitting X . Let us remark that G is k-connected if and only if κ(V (G)) ≥ k.
Theorem 2 is a local version of Theorem 1 and if X = V (G), Theorem 1 follows from Theorem 2. This is proven in [5].

Theorem 2 ([5]). If G is a planar graph, X ⊆ V (G), |X | ≥ 3, κ(X) ≥ 4, E ⊂ E(G[X]), and |E| ≤ 2, then G contains a cycle C
with X ⊆ V (C) and E ⊂ E(C).

The following theorem is proven in [4] and, unlike Theorem 2, it is appropriable if |E| ≥ 3.

Theorem 3 ([4], Theorem 6). If G is a graph, X ⊆ V (G), E 6= ∅ is a set of independent edges of G[X], |X | ≥ 2|E| + 1, and
κ(X) ≥ |X | − |E|, then G contains a cycle C with X ⊆ V (C) and E ⊂ E(C).
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Fig. 1.

Note that Theorem 3 holds for arbitrary graphs. Obviously |X | ≥ 2|E| since E is a set of independent edges of G[X].1 If
X = V (G), |X | − |E| ≥ 6, and G is planar then Theorem 3 cannot be used since a planar graph is at most 5-connected.
We call a maximal planar graph G a plane triangulation if G is embedded into the plane. In [1] it was shown that there

are 4-connected plane triangulations containing seven faces an arbitrary distance apart such that each hamiltonian cycle
of that graph misses at least one of these faces, i.e. seven edges cannot be guaranteed to belong to a hamiltonian cycle of a
4-connected planar graph even if their pairwise distance is large. We will show that Theorem 1 is best possible in the sense
that even three prescribed edges need not belong to a hamiltonian cycle of a 4-connected maximal planar graph. Given two
edges xy and uv of a graph G, the number of edges of a shortest path in G connecting a vertex of {x, y} and a vertex of {u, v}
is called the distance of xy and uv.

Theorem 4. There is a 4-connected plane triangulation G containing E ⊆ E(G) with 3|E| = |E(G)| such that each hamiltonian
cycle of G contains exactly two edges of E. Moreover, for given integer k ≥ 1, G and E can be chosen such that E contains three
edges of pairwise distance at least k.

The situation changes in comparison with Theorem 4, if the connectivity of G is increased and the pairwise distance of
the edges in the set E is at least 3. In this case it is even possible to forbid edges of E from belonging to a hamiltonian cycle
as described in the following Theorem 5. A proof is given in [2].

Theorem 5 ([2]). Let G be a 5-connected plane triangulation and E be a set of edges of G such that the distance between any two
edges of E is at least three. Furthermore, let E = E1 ∪ E2 with E1 ∩ E2 = ∅. Then G has a hamiltonian cycle C with E1 ⊂ E(C)
and E2 ∩ E(C) = ∅.

Theorem 5 does not hold if the 5-connected plane graph G is not a triangulation. Moreover, the existence of a cycle
satisfying the assertion of Theorem 5 cannot be guaranteed in the case |E| ≥ 5 and E2 = ∅, because for each integer k there
is a 5-connected plane graph G containing a set E ⊂ E(G)with |E| = 5 such that any two edges of E have distance at least k
and there is no cycle of G containing E. Fig. 1 shows G in the case k = 6, where E is the set of the five bold edges forming an
odd edge-cut of G.
We want to remark that, for any k ≥ 1, there is a 5-connected planar graph G containing a set E of seven edges such that

any hamiltonian cycle misses one of them, the edges of E have mutually distance at least k, and E does not contain an odd
edge-cut.2

1 The inequality |X | ≥ 2|E| + 1 is needed in the proof of Theorem 3 for technical reasons. Probably Theorem 3 also holds if |X | ≥ 2|E|. If in Theorem 3,
additionally, G is assumed to be planar, then it remains an open problem whether the inequality κ(X) ≥ |X | − |E| can be weakened.
2 For the construction of such a graph consider a perfect matchingM of the graph C of the three-dimensional cube such thatM does not form an edge-cut
of C . Let H be obtained from C by subdividing each edge ofM by a single vertex and connecting two of these four new vertices by a path on three vertices
iff they belong to a common face. The graph H is planar, has twelve vertices of degree 3, two vertices of degree 2 and eight 5-gons. Let E be a set of seven
edges of a perfect matching of H . Now consider a component F of the graph obtained by the graph of Fig. 1 by deleting the five bold edges and let VF be
the set of the five vertices of F being incident with a bold edge in the graph of Fig. 1. For each face f of H insert a copy of F into f by identifying VF with the
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For three edges of a 5-connected plane triangulation the distance condition in Theorem 5 can be omitted as follows.

Theorem 6. Let G be a 5-connected plane triangulation and E be a set of three edges of G such that E does not form a facial cycle
and there is no vertex incident with all edges of E. Then G has a hamiltonian cycle containing E.

Considering 5-connected maximal planar graphs, the following theorem is an analogue to Theorem 4.

Theorem 7. Let G be a 5-connected plane triangulation containing an independent set V of vertices such that each face of
G is incident with exactly one vertex of V and H = G − V is 3-regular. Then each hamiltonian cycle of G contains exactly
1
3 |E(H)| − 2 =

1
3 (|V (G)| − 8) edges of H.

Let ek be the smallest integer l such that there is a 5-connected plane triangulation G containing l edges of pairwise
distance at least k such that there is no hamiltonian cycle of G containing all of these l edges. If ek does not exist then we
write ek = ∞.
Theorem 5 implies that ek = ∞ if k ≥ 3.

Theorem 8. For e1 the inequalities 4 ≤ e1 ≤ 9 hold.
Moreover, there are infinitely many 5-connected maximal planar graphs G containing a set E of 13 |E(G)| independent edges

such that each hamiltonian cycle of G misses two edges of E.

It remains open whether e2 is finite or not.
Let êk be defined similarly to ek but for the class of arbitrary 5-connected planar graphs. Then, obviously, êk ≤ ek for all

k ≥ 0 and it follows ê0 = 3 and 3 ≤ êk ≤ 5 for all k ≥ 1 (see Theorem 1 and Fig. 1).

2. Proofs

Lemma 1. Let G be a plane triangulation with an independent set V ⊆ V (G) of vertices of degree 4 such that each face of G
contains a vertex of V at its boundary. Then |E(G−V )| = 2|V | and each hamiltonian cycle C of G satisfies |E(G−V )∩E(C)| = 2.
Proof. Obviously G has 4|V | faces and, therefore, 4·32 |V | = 6|V | edges. By the Euler formula, G has 2|V | + 2 vertices. Exactly
4|V | edges of G are incident with a vertex in V ; the remaining 2|V | edges are the edges of G − V . A hamiltonian cycle of G
consists of |V | internally disjoint paths; each of them connects two vertices of V and all of its inner vertices do not belong
to V . All these paths have at least two edges. Exactly two of the edges of such a path are incident with vertices of V . Hence,
C has exactly 2|V | edges incident with a vertex in V and, thus, exactly two edges in G− V . �

Let uv with u, v ∈ V (G) be an edge of a graph G. We say that uv is subdivided if a new vertex w is added to G and uv is
replaced by the new edges uw and vw.
For Lemma 2, recall that the barycentric subdivision B(G) of a plane multigraph G is obtained by first subdividing every

edge of G, and then adding a new vertex vf for every face f and joining vf with all (including the new vertices added by
subdividing) vertices at the boundary of f by an edge. Note that B(G) is a maximal planar graph.

Lemma 2. Let H be a 2-connected plane multigraph without loops and G = B(H). Let V be the set of vertices of G subdividing
the edges of H. Then G is a 4-connected maximal planar graph and V is a set of independent vertices of degree 4 such that each
face of (a plane embedding of) G contains a vertex of V at its boundary.
Proof. Obviously, G is a maximal planar graph without double edges. Hence, every minimum separating set of vertices of
G induces a cycle on at least three vertices. Furthermore, V is a set of independent vertices of degree 4 such that each face
of (a plane embedding of) G contains a vertex of V at its boundary. G− V is bipartite because each face of G− V is a 4-gon.
Hence, each cycle of length 3 in G contains a vertex of V and, therefore, forms the boundary of a face of G. Consequently, G
is 4-connected. �

Proof of Theorem 4. Let H be an arbitrary 2-connected plane triangulation without loops with three vertices v1, v2 and v3
such that any two of them have distance at least k + 2. Let G = B(H). Then G is a 4-connected maximal planar graph by
Lemma 2. Let V be the set of vertices of G subdividing the edges of H . Obviously V satisfies the assumptions of Lemma 1. Let
E = E(G − V ), and we have |E| = 2|V | by Lemma 1 and |E(G)| = 6|V | by the proof of Lemma 1. Let e1, e2 and e3 be edges
of E incident with v1, v2 and v3, respectively, and the distance condition of Theorem 4 is fulfilled. Thus, the use of Lemma 1
completes the proof. �

Proof of Theorem 6. If E contains two edges incidentwith the same vertex u, say xu and yu, then letG′ be the graph obtained
from G by deleting u and adding the edge xy if it is not in G. Since G is 5-connected and G − u spans G′, G′ is 4-connected.
Because the edges of E neither form a triangle nor are incident with the same vertex, G′ contains the third edge e3 of E
(different from xu and yu) and this edge is not identical to xy. Hence, by Theorem 1, G′ contains a hamiltonian cycle C ′
covering xy and e3. By insertion of u between x and y in C ′ we obtain a hamiltonian cycle of G containing E.

vertices of f such that the resulting graph is planar. Let G be the graph obtained from that graph by deleting all edges in E(H) \ E. It is easy to see that G is
planar and 5-connected and that the edges of E have pairwise distance 6 in G. If Gwere to have a hamiltonian cycle containing all edges of E then the graph
G′ obtained from G by subdividing each edge of E by a single vertex would also have a hamiltonian cycle. However, this is impossible because deleting the
14 vertices of H in G′ results in a graph of 15 components. This construction can be generalized for any k.
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In the remaining case the edges of E form a matching. Let E = {e1 = uv, e2, e3}. There are exactly two common
neighbours x and y of u and v since G is a triangulation with more than 3 edges. Let u′ 6∈ {x, y, v} and v′ 6∈ {x, y, u} be a
neighbour of u and v, respectively. Because the minimum degree of G is at least 5 this choice is possible. Note that x, y, u′, v′
are vertices at the boundary of a face fuv in G− {u, v}.
Let O(uv) be the following operation: Delete the vertices u and v and add a new vertex w and the new edges wx, wy,

wu′, andwv′. In [2], it is proved that the graph G′ obtained from G by applying the operation O(uv) is a 4-connected planar
graph. Because E forms a matching of G, e2 and e3 are contained in G− u− v = G′ − w.
By Theorem 1,G′ has a hamiltonian cycle C ′ through e′2 and e

′

3. Sincew is contained in C
′, it is easy to construct the desired

hamiltonian cycle of G through E. �

Proof of Theorem 7. Because H is 3-regular and plane, we obtain by the Euler formula |F(H)| = 2+ 1
3 |E(H)| and |V (H)| =

2
3 |E(H)|, where F(H) is the set of faces of H . Since V is independent, each hamiltonian cycle of G contains exactly 2|V | edges
incident with a vertex of V and exactly |V (G)| − 2|V | edges of H . Furthermore, we obtain |V | = |F(H)| = 2+ 1

3 |E(H)| and
|V (G)| = |V (H)| + |V | = |E(H)| + 2. Hence, the assertion of Theorem 7 follows. �

Lemma 3. Let H be a cubic 3-connected plane graph of girth 5. Let G be obtained from H by inserting a new vertex into each face
of H and connecting it to each vertex of that face by an edge. Then G is a 5-connected maximal planar graph.

Proof. Obviously, G is maximal planar. Let V = V (G) \ V (H). Then V is independent in G and each vertex of V has degree at
least 5 in G.
Since H has neither loops nor double edges, G is a simple plane triangulation; hence, G is at least 3-connected.
Assume there is a separating 3-cycle D of G. Because H has girth 5 there is at least one vertex of D in V , and because V is

independent there is exactly one vertex of D in V . Consider a component F of G− D. If F does not contain a vertex of H then
each vertex of F belongs to V , and because V is independent the neighbours of such a vertex of V are vertices of D; hence,
its degree is too small—a contradiction. Thus, V (D) \ V is a cut set of H contradicting the 3-connectedness of H .
Assume there is a separating 4-cycle D of G. By the same arguments D contains at least one vertex of V and each

component of G−D contains a vertex ofH . Hence, V (D)\V is a cut set ofH and becauseH is 3-connected there is exactly one
vertex of V at D. Consider the three vertices of V (D)\V . Each of them has a neighbour in each component of H− (V (D)\V );
hence, one of them has degree at least 4 in H—a contradiction. �

Proof of Theorem 8. Clearly, e1 ≥ 4 by Theorem 6.
Let H be the graph of the dodecahedron. G is obtained from H by inserting a vertex of degree 5 into each face of H . Using

Lemma 3, G is a 5-connected maximal planar graph. Let V be the set of vertices of G of degree 5. Furthermore, let E be a set
of nine edges of a perfect matching of H . Therefore, E is independent also in G. Each hamiltonian cycle of Gmisses an edge
of E by Theorem 7; therefore, e1 ≤ 9.
Now consider a cubic 3-connected plane graph H of girth 5. Furthermore, let E be a perfect matching of H; hence,

|E| = 1
3 |E(H)|.

LetG be obtained fromH as described in Lemma3 andV = V (G)\V (H). By Lemma3,G is 5-connected. By Theorem7 each
hamiltonian cycle of G contains exactly 13 |E(H)| − 2 edges of H; hence, each hamiltonian cycle misses two edges of E. �
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