Transformation from Arbitrary Matchings
to Stable Matchings

AKIHISA TAMURA

Department of Information Sciences, Tokyo Institute of Technology,
2-12-1 Oh-okayama, Meguro-ku, Tokyo 152, Japan

Received September 7, 1990

D. E. Knuth (1976, "Mariages stables," Presses Univ. Montréal, Montreal) conjectured that any matching can be transformed to some stable matching by a sequence of b-interchanges. Given a matching M and a blocking pair (m, w) for M, a b-interchange for M by (m, w) is defined as a transformation from M to a matching obtained by replacing two pairs $(m, p_M(m))$ and $(p_M(w), w)$ in M with (m, w) and $(p_M(w), p_M(m))$. In this paper, we give a counter-example in which some matching cannot be transformed to any stable matching by b-interchanges. However, any matching can be transformed to some stable matching by using b-interchanges and identifying special cycling. We also give an algorithm to find either such cycling or a stable matching. © 1993 Academic Press, Inc.

1. INTRODUCTION

In an instance of the stable marriage problem of size n, each of n men and n women has a list of all members, called a preference list, of the opposite sex in the order of preference. Person p prefers q to r if and only if q precedes r on p’s preference list, which we write as $q <_p r$. If either $q = r$ or $q <_p r$ then we write $q \preceq_p r$. A matching is a set of n disjoint couples of men and women. If man m and woman w are coupled in a matching M, then m and w are called partners in M, which we write as either $m = p_M(w)$, $w = p_M(m)$, or $(m, w) \in M$ according to convenience. Man m and woman w are said to be a blocking pair for a matching M if $w <_m p_M(m)$ and $m <_w p_M(w)$. If there is no blocking pair for M then the matching M is called stable. For a given stable marriage instance of size n, the divorce digraph is defined as follows. The node set of this digraph is the set of $n!$ matchings. The digraph has a directed edge from a matching M to a matching M' if and only if there is a blocking pair (m, w) for M such that M' is obtained from M by replacing $(m, p_M(m))$ and $(p_M(w), w)$ with

* Supported by Grant-in-Aids for Co-operative Research (63490010) of the Ministry of Education, Science and Culture.
TRANSFORMATION TO STABLE MATCHINGS

We call such a replacement arising from a blocking pair \((m, w)\) a \(b\)-interchange by \((m, w)\), and we denote \(M'\) by \(binter(M, m, w)\).

Gale and Shapley [1] proved that there exists at least one stable matching for any stable marriage instance. From the result, there is at least one sink in any divorce digraph. In a book of Knuth [3] it is conjectured that there is a path from each node to a sink in the divorce digraph, in other words, any matching can be transformed to some stable matching by a sequence of \(b\)-interchanges (see also Gusfield and Irving [2]). In Section 2, we provide a counter-example in which some matching cannot be transformed to any stable matching by \(b\)-interchanges. In fact if size \(n \geq 4\), one can always find such an instance. However, any matching can be transformed to some stable matching by using \(b\)-interchanges and identifying a special cycle in the divorce digraph. In Section 3, we give an algorithm to find either such a cycle or a stable matching.

2. COUNTER-EXAMPLE

Let \({m_0, ..., m_{n-1}}\) and \({w_0, ..., w_{n-1}}\) denote the sets of \(n\) men and \(n\) women. For each person \(p\), \(1(p), 2(p), ..., n(p)\) denote the first, second, ..., \(n\)th person on \(p\)'s preference list, respectively.

In order to deny Knuth's conjecture, we consider a stable marriage instance of size \(n \geq 4\) in which for each man \(m_i\) and each woman \(w_i\),

\[
\begin{align*}
1(m_i) &= w_i, & 2(m_i) &= w_{i-2}, \\
3(m_i) &= w_{i+1}, & 4(m_i) &= w_{i-1}, & 5(m_i), ... & \text{: arbitrary,} \\
1(w_i) &= m_{i+1}, & 2(w_i) &= m_{i-1}, \\
3(w_i) &= m_i, & 4(w_i) &= m_{i+2}, & 5(w_i), ... & \text{: arbitrary}
\end{align*}
\]

(see Fig. 1). In this section indices \(i-2, i-1, i+1, i+2,\) etc., are taken modulo \(n\). Let \(\mathscr{S}(n)\) denote such an instance of size \(n\). We will prove that \(\mathscr{S}(n)\) is a counter-example for Knuth's conjecture.

In the section we consider matchings \(M\) such that \(p_M(m_i) = k(m_i)\) for some \(k = 1, 2, 3, 4\), for each man \(m_i\). Let \(\text{shift}(M)\) denote the set of \(n\) couples in which \(m_{i+1}\)'s partner is \(w_{j+1}\) if \(p_M(m_i) = w_j\) for \(i = 0, 1, ..., n-1\). Obviously \(\text{shift}(M)\) is a matching, i.e., \((m_{i+1}, w_{j+1}) \in \text{shift}(M)\) if and only if \((m_i, w_j) \in M\). From the definition of \(\mathscr{S}(n)\), the matching \(\text{shift}(M)\) is obtained from \(M\) by cyclically shifting women among men on men's lists, i.e., \(\text{shift}(M)\) is equal to the matching in which \(m_{i+1}\)'s partner is \(k(m_{i+1})\) if \(p_M(m_i) = k(m_i)\) for \(i = 0, 1, ..., n-1\) (see Figs. 2 and 3). In the figures, the underlined person in each person's list is his or her partner in the
FIG. 1. Stable marriage instance $J(n)$.

<table>
<thead>
<tr>
<th>Men's Preference Lists</th>
<th>Women's Preference Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_0)</td>
<td>(w_0) w({n-2}) (w_1) (w{n-1}) (\ldots)</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(w_1) (w_{n-1}) (w_2) (w_0) (\ldots)</td>
</tr>
<tr>
<td>[\vdots]</td>
<td>[\vdots]</td>
</tr>
<tr>
<td>(m_{n-3})</td>
<td>(w_{n-3}) (w_{n-5}) (w_{n-2}) (w_{n-4}) (\ldots)</td>
</tr>
<tr>
<td>(m_{n-2})</td>
<td>(w_{n-2}) (w_{n-4}) (w_{n-1}) (w_{n-3}) (\ldots)</td>
</tr>
<tr>
<td>(m_{n-1})</td>
<td>(w_{n-1}) (w_{n-3}) (w_0) (w_{n-2}) (\ldots)</td>
</tr>
</tbody>
</table>

FIG. 2. $M = \{(m_0, w_0), \ldots, (m_{n-1}, w_{n-2})\}$.

<table>
<thead>
<tr>
<th>Men's Preference Lists</th>
<th>Women's Preference Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_0)</td>
<td>(w_0) w({n-2}) (w_1) (w{n-1}) (\ldots)</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(w_1) (w_{n-1}) (w_2) (w_0) (\ldots)</td>
</tr>
<tr>
<td>[\vdots]</td>
<td>[\vdots]</td>
</tr>
<tr>
<td>(m_{n-4})</td>
<td>(w_{n-4}) (w_{n-6}) (w_{n-3}) (w_{n-5}) (\ldots)</td>
</tr>
<tr>
<td>(m_{n-3})</td>
<td>(w_{n-3}) (w_{n-5}) (w_{n-2}) (w_{n-4}) (\ldots)</td>
</tr>
<tr>
<td>(m_{n-2})</td>
<td>(w_{n-2}) (w_{n-4}) (w_{n-1}) (w_{n-3}) (\ldots)</td>
</tr>
<tr>
<td>(m_{n-1})</td>
<td>(w_{n-1}) (w_{n-3}) (w_0) (w_{n-2}) (\ldots)</td>
</tr>
</tbody>
</table>

FIG. 3. $\text{shift}(M) = \{(m_0, w_{n-1}), \ldots, (m_{n-1}, w_0)\}$.
corresponding matchings. The matching \(\text{shift}(M) \) is also equivalent to the matching obtained from \(M \) by cyclically shifting men among women on women's lists, in which \(w_{i+1} \)'s partner is \(k(w_{i+1}) \) if \(p_M(w_i) = k(w_i) \) for \(i = 0, 1, ..., n - 1 \). One may infer the following lemmas from Figs. 2 and 3.

Lemma 2.1. In a stable marriage instance \(J(n) \), a pair \((m_i, w_j)\) is a blocking pair for a matching \(M \) if and only if \((m_{i+1}, w_{j+1})\) is a blocking pair for \(\text{shift}(M) \).

Proof. Let \(p_M(m_i) = w_h \) and let \(p_M(w_j) = m_k \). Then \(p_{\text{shift}(M)}(m_{i+1}) = w_{h+1} \) and \(p_{\text{shift}(M)}(w_{j+1}) = m_{k+1} \). The following equivalence relations hold:

\[
(m_i, w_j) \text{ is a blocking pair for } M \iff
\]

\[
w_j < m_i w_h = p_M(m_i) \text{ and } m_i < w_j m_k = p_M(w_j)
\]

\[
w_{j+1} < m_{i+1} w_{h+1} \text{ and } m_{i+1} < w_{j+1} m_{k+1}
\]

\[
(m_{i+1}, w_{j+1}) \text{ is a blocking pair for } \text{shift}(M).
\]

[from the definition of \(J(n) \)]

This completes the proof. \(\square \)

Lemma 2.2. In a stable marriage instance \(J(n) \), for a matching \(M \) and a blocking pair \((m_i, w_j)\) for \(M \),

\[
\text{shift}(\text{binter}(M, m_i, w_j)) = \text{binter}(\text{shift}(M), m_{i+1}, w_{j+1}).
\]

Proof. For a woman \(w \), we suppose that \(\text{shift}(w) \) denotes the woman \(w_{g+1} \) if \(w = w_g \). Let \(p_M(m_i) = w_h \) and let \(p_M(w_j) = m_k \). Since \((m_i, w_j), (m_k, w_h) \in \text{binter}(M, m_i, w_j), m_{i+1} \)'s partner in \(\text{shift}(\text{binter}(M, m_i, w_j)) \) is

\[
w_{j+1} \quad \text{if } l = i
\]

\[
w_{h+1} \quad \text{if } l = k
\]

\[
\text{shift}(p_M(m_i)) \quad \text{otherwise},
\]

for \(l = 0, ..., n - 1 \). On the other hand, from Lemma 2.1, \((m_{i+1}, w_{j+1})\) is a blocking pair for \(\text{shift}(M) \) and \((m_{i+1}, w_{h+1}), (m_{k+1}, w_{j+1}) \in \text{shift}(M)\).
Then m_{i+1}'s partner in $binter(shift(M), m_{i+1}, w_{j+1})$ is defined as above. Hence the equality holds. □

Theorem 2.3. For any size $n \geq 4$, in a stable marriage instance $J(n)$, there is a matching which cannot be transformed to any stable matching by b-interchanges.

Proof. We consider a matching

$$M_0 = \{(m_0, w_0), (m_1, w_1), \ldots, (m_{n-3}, w_{n-3}), (m_{n-2}, w_{n-1}), (m_{n-1}, w_{n-2})\}.$$

From men's preferences, candidates of blocking pairs for M_0 are (m_{n-2}, w_{n-2}), (m_{n-2}, w_{n-4}), (m_{n-1}, w_{n-1}), (m_{n-1}, w_{n-3}) and (m_{n-1}, w_0). See Fig. 2. The pair (m_{n-1}, w_0), however, is the only blocking pair for M_0 since women w_{n-2} and w_{n-4} prefer their partners in M_0 to man m_{n-2}, women w_{n-1} and w_{n-3} prefer their partners in M_0 to man m_{n-1}, and w_0 prefers m_{n-1} to m_0. Let M'_0 be the matching $binter(M_0, m_{n-1}, w_0)$, i.e.,

$$M'_0 = \{(m_0, w_{n-2}), (m_1, w_1), \ldots, (m_{n-3}, w_{n-3}), (m_{n-2}, w_{n-1}), (m_{n-1}, w_0)\}.$$

From the preferences, there is also only one blocking pair (m_{n-2}, w_{n-2}) for M'_0. Let M_1 denote the matching $binter(M'_0, m_{n-2}, w_{n-2})$, i.e.,

$$M_1 = \{(m_0, w_{n-1}), (m_1, w_1), \ldots, (m_{n-3}, w_{n-3}), (m_{n-2}, w_{n-2}), (m_{n-1}, w_0)\}.$$

The matching M_1 is uniquely determined from M_0 by two b-interchanges. On the other hand, $M'_1 = shift(M_0)$ (see Figs. 2 and 3). From Lemma 2.1, there is only one blocking pair (m_0, w_1) for M_1. Lemma 2.2 implies that the matching $M'_1 = binter(M_1, m_0, w_1)$ identifies with $shift(M'_0)$. From the above facts, we can show that the sequence $M_0, M'_0, M_1, M'_1, \ldots$ of matchings is uniquely determined from M_0 by b-interchanges and $M_n = M_0$ holds. Therefore matchings M_i and M'_i for $i = 0, 1, \ldots, n-1$ cannot be transformed to any stable matching by b-interchanges. □

Counter-example when $n = 4$. The instance $J(4)$ is described in Fig. 4. This instance has 24 matchings and 5 stable matchings. We represent all matchings and blocking pairs for each matching in Fig. 5. The divorce digraph for $J(4)$ is drawn in Fig. 6. Matchings M_1, M_8, M_{10}, M_{19} and M_{24} are stable. There are paths from three matchings M_6, M_{15}, M_{17} to the stable matching M_1. However, there is no path from any other unstable matchings to any one of the five stable matchings. For example, cycle $\{M_2, M_{16}, M_{22}, M_{12}, M_7, M_9, M_3, M_4\}$ of length 8 is obtained in the proof of Theorem 2.3 when size $n = 4$.

TRANSFORMATION TO STABLE MATCHINGS

Men's Preference Lists

m₀	w₀	w₂	w₁	w₃
m₁	w₁	w₃	w₀	w₂
m₂	w₂	w₀	w₃	w₁
m₃	w₃	w₁	w₀	w₂

Women's Preference Lists

w₀	m₁	m₃	m₀	m₂
w₁	m₀	m₂	m₁	m₃
w₂	m₃	m₁	m₂	m₀
w₃	m₀	m₂	m₃	m₁

Fig. 4. Stable marriage instance \(\mathcal{S}(4) \).

<table>
<thead>
<tr>
<th>Matchings</th>
<th>Blocking Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₀ m₁ m₂ m₃</td>
<td>m₀ m₁ m₂ m₃</td>
</tr>
<tr>
<td>(M₁) (w₀ w₁ w₂ w₃)</td>
<td>(M₉) (m₃, w₀) (\rightarrow M₁₆)</td>
</tr>
<tr>
<td>(M₂) (w₀ w₁ w₃ w₂)</td>
<td>(M₃) (m₃, w₀) (\rightarrow M₁₆)</td>
</tr>
<tr>
<td>(M₃) (w₀ w₂ w₁ w₃)</td>
<td>(M₆) (m₂, w₀) (\rightarrow M₈)</td>
</tr>
<tr>
<td>(M₄) (w₀ w₂ w₃ w₁)</td>
<td>(M₈) (m₁, w₁) (\rightarrow M₁)</td>
</tr>
<tr>
<td>(M₅) (w₀ w₃ w₁ w₂)</td>
<td>(M₉) (m₁, w₂) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₆) (w₀ w₃ w₂ w₁)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₇) (w₁ w₀ w₂ w₃)</td>
<td>(M₉) (m₁, w₂) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₈) (w₁ w₀ w₃ w₂)</td>
<td>(M₉) (m₁, w₀) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₉) (w₁ w₂ w₀ w₃)</td>
<td>(M₉) (w₀, m₀) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₀) (w₁ w₂ w₃ w₀)</td>
<td>(M₉) (m₉, w₉) (\rightarrow M₇)</td>
</tr>
<tr>
<td>(M₁₁) (w₁ w₃ w₀ w₂)</td>
<td>(M₉) (m₉, w₉) (\rightarrow M₇)</td>
</tr>
<tr>
<td>(M₁₂) (w₁ w₃ w₂ w₀)</td>
<td>(M₉) (m₉, w₉) (\rightarrow M₇)</td>
</tr>
<tr>
<td>(M₁₃) (w₂ w₀ w₁ w₃)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₄) (w₂ w₃ w₁ w₀)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₅) (w₂ w₁ w₀ w₃)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₆) (w₂ w₁ w₃ w₀)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₇) (w₂ w₃ w₀ w₁)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₈) (w₂ w₃ w₁ w₀)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₁₉) (w₃ w₀ w₁ w₂)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₂₀) (w₃ w₀ w₂ w₁)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₂₁) (w₃ w₀ w₁ w₂)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₂₂) (w₃ w₁ w₀ w₂)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₂₃) (w₃ w₁ w₂ w₀)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
<tr>
<td>(M₂₄) (w₃ w₂ w₁ w₀)</td>
<td>(M₉) (m₁, w₁) (\rightarrow M₉)</td>
</tr>
</tbody>
</table>

Fig. 5. Matchings and blocking pairs in \(\mathcal{S}(4) \).
3. Algorithm for Finding a Stable Matching from a Matching

This section provides an algorithm which we call a \textit{b-interchange algorithm}, for finding either a directed path from a given matching M_0 to some stable matching or a cycle in the divorce digraph. A cycle is defined as a sequence of 3-tuples $(M_1, m_1, w_1), ..., (M_n, m_n, w_n)$ consisting of matchings M_i and blocking pairs (m_i, w_i) for M_i such that $(M_1, m_1, w_1) = (M_n, m_n, w_n)$ and $M_{i+1} = \text{binter}(M_i, m_i, w_i)$ for $i = 1, ..., n - 1$. If a directed cycle C is output by the algorithm, we can construct a matching M from C such that $bp(M)$ is a proper subset of $bp(M_0)$, where $bp(M)$ denotes the set of all blocking pairs for M. Hence, by iteratively using the algorithm, one can always arrive at some stable matching from an arbitrary matching.

For person q, let $bbp_M(q)$ denote the best person for q among the set $\{p | (p, q) \text{ or } (q, p) \text{ is a blocking pair for } M\}$ if the set is nonempty; otherwise $bbp_M(q) = \text{nil}$. Then the b-interchange algorithm can be expressed as follows.
Algorithm 3.1 (b-interchange algorithm)

\[\text{(input, output): (a matching } M, \text{ some stable matching or cycle)}\]

\text{Step 0: } M_1 := M, i := 1;

\text{Step 1: if } M_i \text{ is stable then output } M_i \text{ and stop;}

\text{Step 2: while } \text{bbp}_M(M_i) \neq \text{nil} \text{ or } \text{bbp}_M(M_i) \neq \text{nil} \text{ do begin}

\text{Step 1: if } M_i \text{ is stable then output } M_i \text{ and stop;}

\begin{align*}
\text{Step 2: while } & \text{bbp}_M(M_i) \neq \text{nil} \text{ or } \text{bbp}_M(M_i) \neq \text{nil} \text{ do begin} \\
& p := \text{bbp}_M(M_i) \text{ such that } \text{bbp}_M(p) \neq \text{nil}; \\
& \text{if } p = \text{bbp}_M(M_i) \text{ then} \\
& \quad m_i := \text{bbp}_M(M_i); \quad w_i := \text{bbp}_M(M_i); \\
& \quad \text{marries happily in } M_{i+1} \\
& \quad \text{marries unhappily in } M_{i+1} \\
& \quad \text{else } \{ p = \text{bbp}_M(M_i) \} \\
& \quad \quad w_i := \text{bbp}_M(M_i); \\
& \quad \quad m_i := \text{bbp}_M(M_i); \\
& \quad \quad \text{marries happily in } M_{i+1} \\
& \quad \quad \text{marries unhappily in } M_{i+1} \\
& \quad \text{endif;}
\end{align*}

\text{if } (M_i, m_i, w_i) = (M_j, m_j, w_j) \text{ for some } j = 1, \ldots, i - 1 \text{ then}

\text{output the cycle } (M_j, m_j, w_j), \ldots, (M_i, m_i, w_i) \text{ and stop;}

\text{endif;}

\text{i := i + 1;}

\text{end \{while\};}

\text{goto Step 1;}

Given a matching } M \text{ and a blocking pair } (m, w) \text{ for } M, \text{ we say that pairs } (m, w) \text{ and } (p_M(m), p_M(w)) \text{ are happy and unhappy in the matching } binter(M, m, w), \text{ respectively, in the sense that unhappy persons were deserted by their partners and happy persons get better partners. It is also possible that an unhappy person gets a better partner. We call the pair defined in Step 1 unhappy for convenience. Informally, the b-interchange algorithm may be expressed as a sequence of b-interchanges determined by unhappy persons. At any point during the execution of Step 2, either an unhappy man } m_i \text{ or woman } w_i \text{ in a current matching } M_i \text{ determines the next blocking pair } (m_i, \text{bbp}_M(m_i)) \text{ or } (\text{bbp}_M(w_i), w_i). \text{ If } \text{bbp}_M(m_i) \neq \text{nil} \text{ and } \text{bbp}_M(w_i) \neq \text{nil}, \text{ then the algorithm has a flexible choice between } (m_i, \text{bbp}_M(m_i)) \text{ and } (\text{bbp}_M(w_i), w_i); \text{ however, there is no problem either way. We say that such blocking pairs determined by an unhappy man and woman are man-oriented and woman-oriented, respectively, if they exist. If such a blocking pair exists then a new matching } M_{i+1} \text{ is obtained by the b-interchange with the blocking pair. We call a b-interchange determined by a man-oriented (woman-oriented) blocking pair a man-oriented (woman-oriented) b-interchange. We note when the matching } M_{i+1} \text{ is obtained by a man-oriented b-interchange, the happy man is satisfied with the matching in the sense that there is no blocking pair containing him. Although the happy woman has a better partner, she may not be satisfied with the matching in the above sense. The same holds when } M_{i+1} \text{ is obtained by a}
woman-oriented b-interchange. The execution of Step 2 terminates when either a cycle is found or $bbp_{M_r}(\tilde{m}_i) = bbp_{M_r}(\tilde{w}_i) = \text{nil}$.

We first prove that Step 2 of the b-interchange algorithm reduces the number of blocking pairs if it find no cycle in the divorce digraph. Let M_s be a matching just before the execution of the while statement in Step 2 and let M_t be a matching just after the execution. For a matching M_k ($k = s$, ..., t) at any point during the execution, the following lemma holds.

Lemma 3.1. Let (m, w) be a pair satisfying at least one of the following conditions:

1. m or w is unhappy,
2. (m, w) is not a blocking pair, i.e., $p_{M_k}(m) \preceq_m w$ or $p_{M_k}(w) \preceq_w m$ for M_s.

Then for any $k = s + 1$, ..., t, (m, w) satisfies (1) or (2) for M_k.

Proof. We will prove the assertion by induction on k. Assume that condition (1) holds for M_k. If (m, w) is an unhappy pair in M_k then either m or w is clearly unhappy in M_{k+1}. Since men and women are symmetric, we consider the case when m is unhappy and w is not unhappy in M_k. If M_{k+1} is obtained by the woman-oriented b-interchange then m is also unhappy in M_{k+1}. So we suppose that M_{k+1} is obtained by the man-oriented b-interchange determined by man m, below. If (m, w) is a blocking pair for M_k, then m has the partner $bbp_{M_k}(m)$ in M_{k+1} with $bbp_{M_k}(m) \preceq_m w$, and hence, condition (2) holds for M_{k+1}. Suppose that (m, w) is not a blocking pair for M_k, i.e., conditions (1) and (2) hold for M_k. If $p_{M_k}(m) \preceq_m w$ then m has the partner $bbp_{M_k}(m)$ in M_{k+1} with $bbp_{M_k}(m) \preceq_m p_{M_k}(m) \preceq_m w$; otherwise $p_{M_{k+1}}(w) = p_{M_k}(w) \preceq_w m$ since M_{k+1} is obtained by the man-oriented b-interchange and since (m, w) does not block M_k. Therefore condition (2) holds for M_{k+1}.

To complete the proof we consider the case when condition (2) holds for M_k but (1) does not. Without loss of generality, we suppose that $p_{M_k}(m) \preceq_m w$. We can consider three possibilities: m becomes unhappy in M_{k+1}, m becomes happy in M_{k+1} and the remaining case. In the first case, condition (1) holds for M_{k+1}. The second case implies that $p_{M_{k+1}}(m) \preceq_m p_{M_k}(m) \preceq_m w$, i.e., condition (2). In the third case, $p_{M_{k+1}}(m) = p_{M_k}(m) \preceq_m w$ holds.

Lemma 3.2. If no cycle is found in Step 2 then the set $bp(M_t)$ is a proper subset of $bp(M_s)$, i.e., $bp(M_s) \subset \not= bp(M_t)$.

Proof. From Lemma 3.1, if (m, w) is not a blocking pair for M_s, then at least one of m or w is unhappy in M_t, or (m, w) is not a blocking pair.
for M_t. If m or w is unhappy in M_t then (m, w) does not block M_t since $bp_{M_t}(\tilde{m}_t) = bp_{M_t}(\tilde{w}_t) = nil$. Then $bp(M_t) \subseteq bp(M_s)$ holds.

Let (m_s, w_s) be the initial blocking pair for M_s. Then either m_s or w_s is unhappy in M_s (we recall that (m_s, \tilde{w}_s) is an unhappy pair in M_s). In particular, from Lemma 3.1 and the fact that $bp_{M_t}(\tilde{m}_t) = bp_{M_t}(\tilde{w}_t) = nil$, as above, (m_s, w_s) in $bp(M_s)$ does not block M_t. Hence $bp(M_t) \subseteq bp(M_s)$.

Lemma 3.2 says that the set of blocking pairs shrinks after Step 2 when no cycle is found.

We next consider the case when the b-interchange algorithm outputs a cycle C. In the rest of this section, we suppose that the cycle is defined as

$$C = \{(M_l, m_l, w_l), ..., (M_{n-1}, m_{n-1}, w_{n-1}), (M_n, m_n, w_n)\}.$$

We will show that one can obtain a matching M such that $bp(M) \subseteq bp(M_s)$ by using the cycle C. Since men and women are symmetric, we will only prove assertions for men in the lemmas below.

Let C_m and C_w denote the sets of men and women whose partners are interchanged during the cycle C, respectively. Then the following lemma holds.

Lemma 3.3. If the b-interchange algorithm outputs a cycle C, then $C_m = \{m_l, ..., m_{n-1}\}$ and $C_w = \{w_l, ..., w_{n-1}\}$.

Proof. Obviously, $C_m \supseteq \{m_l, ..., m_{n-1}\}$. Assume on the contrary that there exists a man $m \in C_m \setminus \{m_l, ..., m_{n-1}\}$. Then, m becomes unhappy at some point during C. After this point, there is no man-oriented b-interchange by m, because $m \notin \{m_l, ..., m_{n-1}\}$, which means that after this point the only unhappy man is m. So if any man ($\neq m$) changes his partner, he obtains a new partner whom he prefers to his old one. Because cycling means not only $M_i = M_n$ but also that the unhappy couple in the matching is the same, no cycle can occur under the assumption. Hence $C_m = \{m_l, ..., m_{n-1}\}$.

For each man $m \in C_m$, let $bbp_C(m)$ denote the best woman for m among the set of women with whom m causes b-interchanges during the cycle C, i.e., among the set $\{w_i | (m, w_i) = (m_l, w_l), i = l, ..., n-1\}$. From Lemma 3.3, $bbp_C(m)$ is well-defined. We define $bbp_C(w)$ for each woman $w \in C_w$ in the same way.

Lemma 3.4. If man $m \in C_m$ has a partner in some matching M_i ($i = l, ..., n-1$) whom he prefers to $bbp_C(m)$ then m is unhappy in M_i. The same also holds for women in C_w.

Proof. Man m changes his partner if and only if he becomes either happy or unhappy. From the definition of $bbp_c(m)$, if he becomes happy then his partner is $bbp_c(m)$ or below. Thus the assertion holds.

LEMMA 3.5. For $m_1, m_2 \in C_m$ and $w_1, w_2 \in C_w$,

$$m_1 \neq m_2 \Rightarrow bbp_c(m_1) \neq bbp_c(m_2),$$

$$w_1 \neq w_2 \Rightarrow bbp_c(w_1) \neq bbp_c(w_2).$$

Proof. Assume on the contrary that there exist two men $m_1, m_2 \in C_m$ with $bbp_c(m_1) = bbp_c(m_2) = w$. In addition, we suppose the following:

1. Let the cycle C consist of matchings $M_1, ..., M_k$;
2. $m_1 < w m_2$ (w likes m_1 better than m_2);
3. $j = \min\{i \in [1, k-1] \mid M_i$ is obtained by a b-interchange with $(m_2, w)\}$;
4. $(m_1, w) \in M_i$ and $(m_1, w) \notin M_i$ for $i = 2, ..., j - 1$.

From assumption (4), w is happy or unhappy in M_2. Since $bbp_c(m_1) = w$, w must marry happily. Then w has a partner in M_2 whom she prefers to m_1 and hence to m_2 also from assumption (2). Since w and m_2 marry happily in M_j, she must be unhappy in some matching M_i ($i = 3, ..., j - 1$). Let h be the maximum in $\{3, ..., j - 1\}$ such that w is unhappy in M_h. Since $(m_1, w) \notin M_h$, m_1 is not unhappy in M_h. From Lemma 3.4, $w < m_1 \rho M_h(m_1)$ holds. Then w has a partner in M_{h+1} whom she prefers to m_1 since M_{h+1} is initiated by w from the maximality of h. From the definitions of h and j, w prefers her partner in M_j, namely m_2, to m_1. This is a contradiction.

For a cycle C found by the b-interchange algorithm, let M'^m_C be the set of man–woman pairs defined by

$$(m, bbp_c(m)) \in M'^m_C \quad \text{if} \quad m \in C_m$$

$$(m, \rho M(m)) \in M'^m_C \quad \text{if} \quad m \notin C_m \text{ for } M \in C.$$

The set M'^m_C of man–woman pairs can be defined similarly. Lemmas 3.3 and 3.5 guarantee that each of the sets M'^m_C and M'^w_C form a matching. Matchings M'^m_C and M'^w_C may not be obtained from the initial matching M_s by a sequence of b-interchanges. By considering M'^m_C or M'^w_C, we can reduce the set of blocking pairs. We will prove that $bp(M'^m_C), bp(M'^w_C) \subseteq bp(M_s)$, below.

LEMMA 3.6. For any $m \in C_m$, let M_{i+1} be a matching obtained by a b-interchange determined by $(m, bbp_c(m))$. Then $w = bbp_c(m)$ is unhappy in
TRANSFORMATION TO STABLE MATCHINGS

M_i, so (m, w) is a woman-oriented blocking pair. Similarly, for any $\bar{w} \in C_w$, $(bbp_C(\bar{w}), \bar{w})$ is a man-oriented blocking pair for M_j if M_{j+1} is obtained by a b-interchange with $(bbp_C(\bar{w}), \bar{w})$.

Proof. First we show that if w is not unhappy in a matching then her partner in the matching is either m or a man whom she prefers to m. Assume that w is unhappy in a matching M_M and marries happily in M_{k+1}. If m is also unhappy in M_k, then w has a partner in M_{k+1} whom she prefers to m. Suppose that m is not unhappy in the matching M_k. From Lemma 3.4, m prefers $w = bbp_C(m)$ to $p_{M_k}(m)$. Then w's partner in M_{k+1} is either m or a man whom she prefers to m. After $k + 1$, whenever w is not unhappy, her partner is either m or a man whom she prefers to m.

From the above fact, w must be unhappy in M_i because otherwise (m, w) does not block M_i.

We remark, from the proof of Lemma 3.6, that $m \in C_m$ is the worst partner for $bbp_C(m)$ among the set $\{m | (m_i, bbp_C(m)) \}$ is a man- or woman-oriented blocking pair during the cycle C and that $w \in C_w$ is the worst for $bbp_C(w)$.

Lemma 3.7. Suppose that the b-interchange algorithm outputs a cycle C. Then, if (m, w) is a blocking pair for M_C^m, then $m \notin C_m$ and $w \notin C_w$. The same is true for M_C^w.

Proof. Assume on the contrary that $w \in C_w$ holds. Let \bar{m} be the man such that $bbp_C(\bar{m}) = w$. Since (m, w) blocks M_C^m, $m \neq \bar{m}$ holds. We suppose that a matching M_{i+1} is obtained from M_i by a b-interchange determined by (\bar{m}, w) during the cycle C. Then $\bar{m} <_w p_{M_i}(w)$. If m was unhappy in M_i then w would prefer \bar{m} to m, i.e., (m, w) could not be a blocking pair for M_C^m, because w is unhappy in M_i from Lemma 3.6. Assume that m is not unhappy in M_i. If $m \notin C_m$ then $p_{M_i}(m) = m$'s partner in M_C^m and $w <_m p_{M_i}(m)$. If $m \in C_m$ then by Lemma 3.4 (which applies because $m \in C_m$), $p_{M_i}(m)$ is $bbp_C(m)$ or below, and hence, $w <_m p_{M_i}(m)$ since (m, w) blocks M_C^m. Hence (m, w) is a blocking pair for M_i because $m <_w \bar{m} <_w p_{M_i}(w)$. But then m should have been selected over \bar{m} by w, a contradiction. Thus $w \notin C_w$ holds.

Assume on the contrary that $m \in C_m$ holds. From the above proof, $w \notin C_w$ holds. Let M_{i+1} be a matching such that m is happy in M_{i+1} and unhappy in M_i. Then $bbp_C(m) \leq_m p_{M_{i+1}}(m) <_m p_{M_i}(m)$. Since (m, w) is a blocking pair for M_C^m, $w <_m bbbp_C(m)$. On the other hand, $m <_w p_{M_i}(w) = p_{M_{i+1}}(w)$ because $w \notin C_w$. Then (m, w) blocks M_i. But m should have selected w or a woman whom he prefers to w as a partner in M_{i+1}. This is a contradiction.

Hence $m \notin C_m$ and $w \notin C_w$.

Lemma 3.7 immediately implies that $bp(M'^*), bp(M^w) \subseteq bp(M)$ for any matching M during the cycle C. One can prove a stronger result from Lemmas 3.1 and 3.7.

LEMMA 3.8. If the b-interchange outputs a cycle C, then

$$bp(M'^*), bp(M^w) \subseteq bp(M_s),$$

where M_s is a matching just before the execution of Step 2.

Proof. Let M be a matching during the cycle C and let (m, w) be a pair not blocking M_s. By Lemma 3.1, m or w is unhappy in M, or (m, w) is not a blocking pair for M. In the first case, $m \in C_m$ or $w \in C_w$. From Lemma 3.7, (m, w) is not a blocking pair for M'^*. If $m \notin C_m$, $w \notin C_w$, and (m, w) does not block M then (m, w) is not a blocking pair for M'^* since $p_M(m) = p_{M'^*}(m)$ and $p_M(w) = p_{M'^*}(w)$. Then $bp(M'^*) \subseteq bp(M_s)$.

Let (m_s, w_s) be the initial blocking pair for M_s. That is, m_s or w_s is unhappy in M_s. We can show that $(m_s, w_s) \notin bp(M'^*)$ by using Lemmas 3.1 and 3.7, as above. Hence $bp(M'^*)$ is a proper subset of $bp(M_s)$. □

From Lemmas 3.2 and 3.8, one can obtain a matching M with $bp(M) \subseteq bp(M_s)$ when the execution of Step 2 terminates. Therefore, by iteratively using the b-interchange algorithm, one can always arrive at some stable matching from an arbitrary matching.

THEOREM 3.9. Combining the b-interchange algorithm with transformations to $M'^*_{C_m}$ and $M'^*_{C_w}$, we can obtain some stable matching from an arbitrary matching.

EXAMPLE. We apply the b-interchange algorithm to the instance $J(4)$ in Fig. 4. Let $M_2 = \{(m_0, w_0), (m_1, w_1), (m_2, w_3), (m_3, w_2)\}$ be an input matching and let (m_3, w_0) be the initial blocking pair. Then the algorithm outputs a cycle

$$C = \{(M_2, m_3, w_0), (M_{16}, m_2, w_2), (M_{22}, m_0, w_1), (M_{12}, m_3, w_3),
(M_7, m_1, w_2), (M_9, m_0, w_0), (M_3, m_2, w_3), (M_4, m_1, w_1), (M_2, m_3, w_0)\}.$$

Any matching in this cycle cannot be transformed to any one of the five stable matchings (see Fig. 6). However, from the cycle C, one can construct two matchings

$$M'^*_{C_m} = \{(m_0, w_0), (m_1, w_1), (m_2, w_2), (m_3, w_3)\}$$

$$M'^*_{C_w} = \{(m_0, w_1), (m_1, w_2), (m_2, w_3), (m_3, w_0)\}.$$

From Fig. 5, these are stable.
Remarks. It is not certain whether our algorithm for transforming a given matching to some stable matching terminates in polynomial time. From Lemma 3.3, the length \(k - 1 \) of a cycle \(C = (M_1, m_1, w_1), \ldots, (M_k, m_k, w_k) \) is at least \(2 \times |C_m| = 2 \times |C_w| \). However, there is an indication that the length equals \(2 \times |C_m| \) by our experiments for small stable marriage instances.

Acknowledgments

I thank Professor Donald E. Knuth and the referees for their valuable comments, which greatly improved the presentation of this paper.

References