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An n-dimensional random vector is said to have an :-symmetric distribution,
:>0, if its characteristic function is of the form .(( |u1 |:+ } } } +|un |:)1�:). We
study the classes 8n(:) of all admissible functions .: [0, �) � R. It is known that
members of 8n(2) and 8n(1) are scale mixtures of certain primitives 0n and
|n , respectively, and we show that |n is obtained from 02n&1 by n&1 successive
integrations. Consequently, curious relations between 1- and 2- (or spherically)
symmetric distributions arise. An analogue of Askey's criterion gives a partial
solution to a question of D. St. P. Richards: If .(0)=1, . is continuous, limt � � .(t)=0,
and .(2n&2)(t) is convex, then . # 8n(1). The paper closes with various criteria for
the unimodality of an :-symmetric distribution. � 1998 Academic Press
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1. INTRODUCTION

An n-dimensional random vector X=(X1 , ..., Xn)$ is said to have an
:-symmetric distribution, :>0, if its characteristic function is of the form

E exp(i(u1X1+ } } } +unXn))=.(( |u1 |:+ } } } +|un | :)1�:) (1)

for all u=(u1 , ..., un)$ # Rn. Whenever (1) holds, we write XtSn(:, .), and
we denote by

8n(:)

the class of all admissible functions .: [0, �) � R. Our definition of 8n(:)
and Sn(:, .) is consistent with the more recent literature but deviates from the
fundamental work of Cambanis, Keener, and Simons [8], who considered
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functions of the argument |u1 |:+ } } } +|un |:. The main advantage of
working with functions of the l: -(quasi-)norm

&u&:=(|u1 |:+ } } } +|un |:)1�:, u=(u1 , ..., un)$ # Rn,

is the natural incorporation of the maximum norm &u&�=max(|u1 |, ..., |un | )
for :=�.

Before we introduce our own contributions, a brief literature review will be
useful. An :-symmetric distribution in one dimension is simply a symmetric
distribution. Marginals of :-symmetric distributions are :-symmetric, and
for any given : the classes 8n(:) are nonincreasing in n, such that

8n(:) a 8�(:)= ,
n�1

8n(:). (2)

2-symmetric distributions are also called spherically symmetric or isotropic.
They are of particular importance in applications and have been studied
extensively (see, for example, Cambanis et al. [7] and the text by Fang
et al. [11]). A classical result due to Schoenberg [20] is that . # 8n(2) if
and only if

.(t)=|
[0, �)

0n(rt) dF (r), (3)

with F a distribution function on [0, �), admits a representation as a scale
mixture of the primitive

0n(t)=1(n�2) \2
t+

(n&2)�2

J(n&2)�2(t). (4)

Here, 0n((u2
1+ } } } +u2

n)1�2) is the characteristic function of a random
vector U=(U1 , ..., Un)$ uniformly distributed on the surface of the unit
sphere in Rn, and J denotes a Bessel function. Equivalently, spherically
symmetric random vectors have a stochastic representation of the form

X =
d RU, (5)

where R is some nonnegative random variable independent of U. The
symbol =

d
stands for equality of distributions.

The characterization of the classes 8n(1) has been achieved by Cambanis
et al. [8]: When n�2, the function . belongs to the class 8n(1) if and only
if it is of the form

.(t)=|
[0, �)

|n(rt) dF (r), (6)
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where F is some distribution function on [0, �), and |n is given by

|n(t)=
1(n�2)

- ? 1((n&1)�2) |
�

1
0n(v1�2t) v&n�2(v&1)(n&3)�2 dv. (7)

In analogy to Schoenberg's representation (3) for :=2, the members of
8n(1) are scale mixtures of a primitive |n . Expressed equivalently in terms
of random vectors, an n-dimensional random vector X has a 1-symmetric
distribution if and only if

X =
d R \ U1

D1�2
1

, ...,
Un

D1�2
n +$

, (8)

where R is a nonnegative random variable, U=(U1 , ..., Un)$ is uniformly
distributed on the surface of the unit sphere in Rn, D=(D1 , ..., Dn)$ has
Dirichlet distribution with parameters (1�2, ..., 1�2)$, and R, U, and D are
independent.

It is not known whether stochastic decompositions in analogy to (5) and
(8) generally exist for :-symmetric random vectors, and only partial results
are available. Bretagnolle, Dacunha Castelle, and Krivine [6] studied the
classes 8�(:) defined in (2). When :>2, 8�(:)=[1], that is, 8�(:) does
not contain nondegenerate members. When :�2, . belongs to 8�(:) if
and only if it admits a representation of the form

.(t)=|
[0, �)

exp(&rt:) dF(r) (9)

for F some distribution function on [0, �). Kuritsyn and Shestakov [15]
showed that 82(�)=82(1) and gave examples of nondegenerate members
of 82(:) for all :>0. Misiewicz [17] demonstrated that 8n(�)=[1] if
n�3. Both her result and that of Bretagnolle et al. for :>2 are now
covered by Zastavnyi's [23] ingenious proof that 8n(:)=[1] if n�3 and
: # (2, �].

The paper is organized as follows: In Section 2, we establish some curious
relations between 1-symmetric distributions in Rn and spherically symmetric
distributions in Euclidean spaces of odd dimension. In particular, the
primitive |n of 8n(1) is obtained from the primitive 02n&1 of 82n&1(2) by
n&1 successive integrations, which leads to closed form expressions for |n .
Theorems 2.2 and 2.3 point at close links between the Fourier transforms
of 1- and 2-symmetric functions.

Section 3 concerns the problem of easily applicable tests of whether a
given function . belongs to some class 8n(:). A beautiful result of this type
is due to R. Askey [1]: If . is continuous, .(0)=1, limt � � .(t)=0, and
.(k)(t) is convex for k=[n�2], the greatest integer less than or equal to
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n�2, then . # 8n(2). D. St. P. Richards [19] asked for ``:-analogues'' of
Askey's theorem, and we provide these for :=1 and :=�. Richards'
question naturally leads to the Richards�Askey Problem of studying the
function

2(n, :)=min[$�1 | (1&t)$
+ # 8n(:)], (n, :) # Z+_R+.

Theorem 3.6 summarizes what is presently known about 2(n, :). Many
questions remain open and make challenging problems.

With an :-symmetric distribution Sn(:, .) specified by its characteristic
function, we rely on . for a discussion of its statistical properties. A primary
issue here is unimodality, and in Section 4 we reflect on various notions of
multivariate unimodality. The paper closes with a number of simple criteria
for the unimodality of an :-symmetric distribution.

2. THE CLASSES 8n(1) AND 82n&1(2)

This section is devoted to some surprising relations between 1- and
2-symmetric distributions. We start with Theorem 2.1 which provides a
representation of the primitive (7) of 8n(1) in terms of the primitive (4) of
82n&1(2) and the operator

I;(t)= lim
x � � |

x

t
;(v) dv, t�0, (10)

defined for any function ;: [0, �) � R for which I;(0) exists and is finite.

Theorem 2.1. For the primitive |n of 8n(1) and the primitive 02n&1

of 82n&1(2),

|n(t)=
1 2(n�2)

- ? 1((2n&1)�2)
I n&102n&1(t), t�0. (11)

The proof of Theorem 2.1 will be completed in the course of two further
theorems, each of interest for its own sake. Beforehand, some comments
are due. Clearly, the operator I can be inverted by differentiation, and a
statement equivalent to (11) is that

02n&1(t)=(&1)n&1 - ? 1((2n&1)�2)
1 2(n�2)

| (n&1)
n (t), t�0. (12)

Here and in the remainder of this section, derivatives taken at the origin
are understood as right-hand limits. Equation (11) easily leads to closed
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form expressions for |n(t) in terms of powers of t, trigonometric functions,
and the sine integral function

si(t)= lim
x � � |

x

t

sin v
v

dv, t�0.

Indeed, by formula (4) and the results in Section 8.46 of Gradshteyn and
Ryzhik [13], 02n&1(t) can be expressed in terms of trigonometric functions
and inverse powers of t, and n&1 successive integrations yield closed form
expressions for |n(t). We present these in Table 1 for n=2, 3, and 4, along
with elementary expressions for the associated primitive 02n&1 of 82n&1(2).
(The expression for |3 in Table 1 differs from that given by Cambanis
et al. [8, p. 224], which has a sign error. Another typographical error is
in the expression for the Bessel function J5�2 in Gradshteyn and Ryzhik
[13, 8.464.5].)

Let us now turn to the proof of Theorem 2.1. We start by recalling some
basic facts on divided differences and Fourier transforms. For a function
;: [0, �) � R and distinct numbers y1 , ..., yn�0 we let

[ y1 , ..., yn ; ;( } )]= :
n

k=1

;( yk)
> n

j=1, j{k( yk& yj)
, (13)

the (n&1)th divided difference of ;. If ; has n&1 bounded and continuous
derivatives,

[ y1 , ..., yn ; ;( } )]=
;(n&1)(!)
(n&1)!

, min( y1 , ..., yn)�!�max( y1 , ..., yn),

(14)

and we can extend definition (13) by continuity to arbitrary arguments
y1 , ..., yn�0. See Section 6.1 of Isaacson and Keller [14] for the proof of
(14) and many other interesting facts on divided differences.

If ' is an integrable function from Rn to R, we call the function

h(x1 , ..., xn)=
1

(2?)n |
�

&�
} } } |

�

&�
e&i(u1x1+ } } } +un xn)'(u1 , ..., un) du1 } } } dun

(15)

its Fourier transform. Whenever '(u1 , ..., un)=;((u2
1+ } } } +u2

n)1�2) has
spherical symmetry, its Fourier transform is a spherically symmetric
function too. Then

h(x1 , ..., xn)=hn(r)=(2?)&n�2 r1&n�2 |
�

0
;(v) vn�2J(n&2)�2(rv) dv, (16)
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TABLE I

Closed form expressions for the primitives of 8n(1) and 82n&1(2)

n |n(t) 02n&1(t)

2 &
2
?

si(t)
sin t

t

3
1
2 \sin t

t
+cos t+t si(t)+ 3

sin t&t cos t
t3

4 &
1

2? \\1&
2
t2+ sin t 15

(3&t2) sin t&3t cos t
t5

+\t+
2
t+ cos t+(t2+4) si(t)+

b b b

� exp(&t) exp(&t2)

where r=(x2
1+ } } } +x2

n)1�2 and J denotes a Bessel function (Bochner and
Chandrasekharan [5, Section II.7]). We may therefore write the Fourier
transform of a spherically symmetric function as a radial function

hn(r), r�0,

of the nonnegative argument r. If n=1, h1 corresponds to the cosine trans-
form of the function ;( |u| ). In the case n=2m&1 is odd, we recall from
Theorem 40 of Bochner and Chandrasekharan [5] that h1 and h2m&1 are
related through

h2m&1(r)=
(&1)m&1

?m&1

d m&1

dxm&1 h1(- x) }x=r2
. (17)

We are now ready for Theorem 2.2 which relates the Fourier transforms of
1- and 2-symmetric functions in a curious way.

Theorem 2.2. Let n be a positive integer. Assume ;: [0, �) � R is a
continuous function with n&1 bounded and continuous derivatives satisfying

|
�

0
tn+k&1 |;(k)(t)| dt<�, k=0, 1, ..., n&1. (18)

Denote by g, h1 , and h2n&1 the Fourier transforms (15) and (16) of the
functions

;( |u1 |+ } } } +|un | ), ;(n&1)( |u| ), ;(n&1)((u2
1+ } } } +u2

2n&1)1�2)
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defined on Rn, R, and R2n&1. Then g, h1 , and h2n&1 are bounded and
continuous on their domains and related as follows:

g(x1 , ..., xn)=
1

?n&1 [x2
1 , ..., x2

n ; h1(- } )]=
(&1)n&1

(n&1)!
h2n&1(!),

x1 , ..., xn # R, (19)

where ! is some nonnegative number satisfying min( |x1 |, ..., |xn | )�!�
max( |x1 |, ..., |xn | ). In particular,

h2n&1(r)=
1

(2?)n&1 \&
d

r dr+
n&1

h1(r)

=(&1)n&1 (n&1)! g(r, ..., r), r�0. (20)

Proof. It is clear from assumption (18) that the Fourier transforms
g(x1 , ..., xn), h1(r), and h2n&1(r) are bounded and continuous functions on
their domains. The case n=1 is trivial, and we proceed to prove (19) and
(20) for n�2. By symmetry,

g(x1 , ..., xn)=
1
?n |

�

0
} } } |

�

0
cos(u1x1) } } } cos(un xn)

_;(u1+ } } } +un) du1 } } } dun . (21)

Literally the same arguments as in the proof of Theorem 3.1 of Cambanis
et al. [8, pp. 225�226] show that

g(x1 , ..., xn)=
1
?n [x2

1 , ..., x2
n ; Bn, ;( } )], x1 , ..., xn # R, (22)

where

Bn, ; ( } )={
(&1)(n&2)�2( } )(n&1)�2 |

�

0
sin(v - } ) ;(v) dv

(&1)(n&1)�2( } )(n&1)�2 |
�

0
cos(v - } ) ;(v) dv

n even

n odd
.

(23)

While the arguments leading from (21) to (22) are word-for-word identical
to those of Cambanis et al., we note two differences. Contrary to Cambanis
et al., we do not assume that ; is a member of 8n(1), such that g may
attain negative values. Also, our initial remarks on divided differences
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justify that we do not restrict to pairwise distinct arguments in formula (22).
In view of the assumptions (18) on ;, integration by parts gives

Bn, ;( } )={Bn&1, ;$( } )+(&1)(n&2)�2;(0)( } )(n&2)�2

Bn&1, ;$( } )
n even
n odd

. (24)

Let us continue with Bn&1, ;$( } ), ..., B2, ; (n&2)( } ) in the same fashion, and
insert the resulting expressions into (22). By formula (14), the polynomial
terms do not contribute to the divided differences, and we find that

g(x1 , ..., xn)=
1
?n [x2

1 , ..., x2
n ; Bn, ;( } )]=

1
?n [x2

1 , ..., x2
n ; Bn&1, ;$( } )]

= } } } =
1
?n [x2

1 , ..., x2
n ; B1, ; (n&1)( } )]. (25)

From (23), B1, ; (n&1)( } )=?h1(- } ), and the integrability conditions (18)
imply that h1 has n&1 derivatives. Thus (25), (14), and (17) give

g(x1 , ..., xn)=
1

?n&1 [x2
1 , ..., x2

n ; h1(- } )]

=
1

?n&1(n&1)!
d n&1

dxn&1 h1(- x) }x=! 2

=
(&1)n&1

(n&1)!
h2n&1(!) (26)

where ! is some number satisfying min(|x1 |, ..., |xn | )�!�max(|x1 |, ..., |xn | ).
We have proved (19). Finally, (20) is immediate from the passage to equal
arguments x1= } } } =xn=r�0 and a change of variables in (26). K

As an illustration of Theorem 2.2, the reader may want to check
formulas (19) and (20) for the simple example ;(t)=exp(&t).

Theorem 2.3. (a) Let . be a member of 8n(1) with n&1 bounded and
continuous derivatives and limt � � .(t)=0. Then (&1)n&1 .(n&1)(0)>0,
and the function

�(t)=
.(n&1)(t)
.(n&1)(0)

, t�0, (27)
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belongs to the class 82n&1(2). Moreover, if F and G are the distribution
functions in the canonical representations

.(t)=|
[0, �)

|n(rt) dF(r), �(t)=|
[0, �)

02n&1(rt) dG(r), t�0,

(28)

then F(0+)=G(0+)=0, and

(&1)n&1 .(n&1)(0) dG(r)=
1 2(n�2)

- ? 1((2n&1)�2)
rn&1 dF(r), r>0. (29)

(b) Let � be a member of 82n&1(2) such that I n&1� exists, with the
operator I defined by (10). Then I n&1�(0)>0, and the function

.(t)=
In&1�(t)
I n&1�(0)

, t�0, (30)

belongs to 8n(1). Moreover, if F and G are the distribution functions in (28),
then F(0+)=G(0+)=0, and

dG(r)=In&1�(0)
1 2(n�2)

- ? 1((2n&1)�2)
rn&1 dF(r), r>0. (31)

Proof. We restrict ourselves to proving part (a); the proof of part (b)
is analogous. The assumption that limt � � .(t) is zero ensures that F(0+)=0
for the distribution function F in the representation (28). To prove (27)
and (29), let us assume for the while that . # 8n(1) satisfies the assumptions
of Theorem 2.2. Then formula (20) applies, and the Fourier transform of
the function (&1)n&1 .(n&1)((u2

1+ } } } +u2
2n&1)1�2) exists and takes only

nonnegative values. Thus (&1)n&1 .(n&1)(0)>0, and � belongs to 82n&1(2).
A result on p. 226 of Cambanis et al. [8] implies that the distribution F in
(28) is absolutely continuous with density

f (r)=
2

1 2(n�2)
rn&1B (n&1)

n, . (r2),

where Bn, . is defined in (23). By (24) and the fact that higher order
derivatives of polynomials vanish,

B (n&1)
n, . (r2)=B (n&1)

n&1, .$(r2)= } } } =B (n&1)
1, . (n&1) (r2).

Let h1 and h2n&1 denote the Fourier transforms (16) of �( |u| ) and
�((u2

1+ } } } +u2
2n&1)1�2). From (23), the definition of � in (27), and (17),
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B (n&1)
1, . (n&1) (r2)=?. (n&1)(0)

d n&1

dxn&1 h1(- x) }x=r2

=(&1)n&1 ?n.(n&1)(0) h2n&1(r),

and we obtain

f (r)=(&1)n&1 2?n

1 2(n�2)
.(n&1)(0) rn&1h2n&1(r), r>0.

By Theorem 2.9 of Fang et al. [11], the distribution G in (28) is absolutely
continuous with density

g(r)=
2?(2n&1)�2

1((2n&1)�2)
r2n&2h2n&1(r), r>0.

Comparing the preceding two equalities, we see that (29) holds. This
proves part (a) of the theorem whenever . satisfies (18).

Now let . be any member of 8n(1) that has n&1 bounded and con-
tinuous derivatives. For k>0, consider .k(t)=.(t) exp(&t�k), t�0.
Clearly, .k belongs to 8n(1) and satisfies the assumptions of Theorem 2.2.
Thus

�k(t)=
. (n&1)

k (t)
. (n&1)

k (0)
, t�0,

is a member of 82n&1(2). Since �k(t) tends to �(t) as k tends to infinity,
the continuity theorem shows that � is a member of 82n&1(2) too. Also,
the relation (29) carries over from the distributions Fk and Gk correspond-
ing to .k and �k , respectively, to their weak limits F and G corresponding
to . and �, respectively, and it is easily seen that G(0+)=0. The proof is
complete. K

Proof of Theorem 2.1. The idea is to apply part (b) of Theorem 2.3 to
�=02n&1 # 82n&1(2). We start by showing that I n&102n&1 exists. When
n=2, this is evident. When n�3, note from (4) and Eq. 8.461.1 of Gradshteyn
and Ryzhik [13] that 02n&1(t) is a linear combination of trigonometric
functions multiplied by rational functions of order O(1�tn&1). By Formula
8.472.4 of the same reference and partial integration,

I02n&1(t)= lim
x � � |

x

t
02n&1(v) dv=&(2n&3) lim

x � � |
x

t

1
v

0$2n&3(v) dv

=(2n&3) \1
t

02n&3(t)& lim
x � � |

x

t

1
v2 02n&3(v) dv+ .
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This shows that I02n&1(t) is of order at most O(1�tn&1) as t tends to
infinity. Thus it allows for n&2 further applications of the operator I. In
particular, �(t)=02n&1(t) satisfies the assumptions of Theorem 2.3(b) with
the distribution G in the representation (28) concentrated at r=1. By formula
(31), the function .(t)=In&102n&1(t)�In&102n&1(0) must coincide with
the primitive |n(t) of 8n(1). Finally, the constant in (11) follows upon
equating the factor in (31) with 1. K

3. :-ANALOGUES OF ASKEY'S THEOREM

In contrast to the progress that has been made in the characterization
problem for the classes 8n(:), little is known about easily applicable suf-
ficient conditions for membership in 8n(:). The only widely known result
of this type is the beautiful Askey theorem [1]. It reduces to the celebrated
criterion of Po� lya [12, p. 509] when n=1.

Theorem 3.1 (Askey). If .: [0, �) � R is such that .(0)=1, . is
continuous, limt � � .(t)=0, and (&1)k .(k)(t) is convex for k=[n�2], the
greatest integer less than or equal to n�2, then . # 8n(2).

Note that Askey's criterion considers . a function of the argument
&u&2=(u2

1+ } } } +u2
n)1�2. The formulation with . a function of &u&2

2 in a
number of references results from an oversight in notation.

D. St. P. Richards [19] asked for ``:-analogues'' of Askey's theorem. We
present these for :=1 and :=�.

Theorem 3.2. If .: [0, �) � R is such that .(0)=1, . is continuous,
limt � � .(t)=0, and .(2n&2)(t) is convex, then . # 8n(1).

Corollary 3.3. If .: [0, �) � R is such that .(0)=1, . is continuous,
limt � � .(t)=0, and ."(t) is convex, then . # 82(�).

Generally, any proof of an :-analogue of Askey's theorem will fall into
two parts: First, find the smallest positive integer $ for which the function

(1&t)$
+={(1&t)$

0
0�t�1
t>1

(32)

belongs to 8n(:). For :=2 and $ a positive integer, it is well-known that
(1&t)$

+ # 8n(2) if and only if $�[n�2]+1 (Chanysheva [9], Zastavnyi
[22]). The analogue for :=1 is an immediate consequence of Theorem 2.3
and the result for :=2. We omit the straightforward proof.
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Proposition 3.4. Let n and $ be positive integers. Then (1&t)$
+ # 8n(1)

if and only if $�2n&1.

Once shown that (1&t)$
+ # 8n(:), the key observation is that scale

mixtures of this function belong to 8n(:), too (see, for example, Misiewicz
[18, pp. 33�34]). The following characterization of the scale mixtures of
(1&t)$

+ adapted from Le� vy [16, The� ore� me 4] then provides a powerful tool
to obtain :-analogues of Askey's theorem. Williamson [21] has almost
identical results.

Proposition 3.5 (Williamson, Le� vy). Let $ be a positive integer. The
function .: [0, �) � R has an integral representation of the form

.(t)=|
(0, �)

(1&rt)$
+ dF(r) (33)

for F some distribution function on (0, �) if and only if .(0)=1, . is
continuous, limt � � .(t)=0, and (&1)$&1 .($&1)(t) is convex.

In view of the scale mixture argument, combining Propositions 3.4 and
3.5 gives Theorem 3.2. Corollary 3.3 is then immediate from the equality of
the classes 82(1) and 82(�) (Kuritsyn and Shestakov [15]). The result
for n=2 in the corollary is the only case of interest if :=�, because
8n(�)=[1] if n�3 (Misiewicz [17]). For : different from 1, 2, or �,
:-analogues of Askey's theorem remain open.

Let us slightly generalize our considerations and introduce a challenging
problem:

The Richards�Askey Problem. Study the Richards�Askey function

2(n, :)=min[$�1 | (1&t)$
+ # 8n(:)], (n, :) # Z+_R+. (34)

Ultimately, find its values on Z+_R+.

Note that $ is no longer assumed to be an integer in (34). The restriction
$�1 is justified below: Lemma 3.7 shows that (1&|u| )$

+ is not a univariate
characteristic function if $<1. The existence of the minimum in (34)
follows from the continuity theorem, and the usual convention of setting
the minimum of the empty set to � will be employed. The connection
between the Richards�Askey function and :-analogues of Askey's theorem
is obvious: Given some explicit finite value of 2(n, :), Proposition 3.5 and
the scale mixture argument lead to an :-analogue of Askey's theorem.

Theorem 3.6 summarizes what is presently known on the Richards�Askey
problem.
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Theorem 3.6. The Richards�Askey function 2(n, :)=min[$�1|(1&t)$
+

# 8n(:)] has the following properties:

(a) Let $ be a positive number. The function (1&t)$
+ belongs to the

class 8n(:) if and only if $�2(n, :).

(b) 2(n, 2)=(n+1)�2 and 2(n, 1)=2n&1 for n�1; 2(2, �)=3.

(c) For every fixed :>0, 2(n, :) is a nondecreasing function of n.

If :<1, then 2(n, :)�1+log2 n. Moreover, there exists some finite
constant n:�2 such that 2(n, :)=� for n�n: .

If : # [1, 2], then 2(n, :)�&ln 2n�ln(1&2&1�:).

If : # (2, �] and n�3, then 2(n, :)=�.

(d) If n�2, then lim: � 0 2(n, :)=�.

The proof of the inequalities in part (c) requires the subsequent lemma.
In the univariate case, n=1, it has been given before (Boas and Kac [4],
Theorem 1), although with less transparent arguments.

Lemma 3.7. Suppose . # 8n(:) is such that .(t)=0 for t�1. Then

|.(t)|�
1

2n
, t�t:=max \1

2
,

1
21�:+ . (35)

Proof. Let t�t: and consider a regular grid in Rn with kn nodes of
form

u=(u1 t, ..., unt)$, (u1 , ..., un)$ # [1, ..., k]n.

Denote the grid by Gk , and assign its nodes alternating constants !u=
(&1)u1+ } } } +un. The positive definiteness of the function .(& }&:) implies
that

:
u, v # Gk

!u!v.(&u&v&:)= :
u, v # Gk

!u!v. \t \ :
n

i=1

|ui&vi |
:+

1�:

+�0.

As .(t)=0 for t�1, the terms on the left-hand side of the inequality
vanish except for u=v and possibly for ``nearest neighbors'' u, v satisfying
�n

i=1 |ui&vi |=1. This leads to the inequality

kn.(0)&2n(k&1) kn&1.(t)�0,

or equivalently,

.(t)�
k

2n(k&1)
.
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The passage to the limit as k tends to infinity shows that .(t)�1�(2n). The
same reasoning with identical constants !u=1 gives .(t)�&1�(2n). K

Proof of Theorem 3.6.

(a) If (1&t)$
+ # 8n(:), we must have $�2(n, :). Conversely, if

$�$0=2(n, :), Theorem 8 of Williamson [21] shows that (1&t)$
+ has a

representation as a scale mixture of (1&t)$0
+

. Thus it is a member of 8n(:).

(b) The assertion for :=2 is due to Zastavnyi [22]. The statements
for :=1 and :=� are then immediate from Theorem 2.3 and the fact that
82(�)=82(1) [15]. The result for :=1 and n=2 is also found in [22].

(c) For :>0, the classes 8n(:) are nonincreasing in n. Thus 2(n, :)
is a nondecreasing function of n. The inequality for :<1 follows from
Lemma 3.7 applied to the function (1&t)$

+. The second statement for :<1 is
proved by contradiction: Let :<1 and suppose 2(n, :) is finite for all n. As
exp(&t) is a scale mixture of (1&t)$

+ for any finite $�1, we would conclude
that exp(&t) # �n�1 8n(:)=8�(:), a contradiction to (9). The inequality
for : # [1, 2] again follows from Lemma 3.7. If n�3 and : # (2, �], then
8n(:)=[1] (Zastavnyi [23]), such that 2(n, :)=�.

(d) The proof is done by contradiction: Assume there exist some
$>0 and a sequence :k a 0, such that 2(n, :k)�$ for all k. Then (1&t)$

+

belongs to 8n(:k), and thereby to 82(:k), for all k. As positive definiteness
is preserved under limits, the function

(1&|u2 | )$
+ if u1=0

�(u1 , u2 )= lim
k � �

(1&(|u1 | :k+|u2 |:k )1�:k )$
+={(1&|u1 | )$

+ if u2=0

0 otherwise

would be positive definite in R2, which it is not. This argument is due to
J. K. Misiewicz and D. St. P. Richards [18, p. 38]. K

4. :-SYMMETRIC DISTRIBUTIONS AND
MULTIVARIATE UNIMODALITY

In this final section, we are interested in simple tests of whether an
:-symmetric distribution is unimodal. Again, a theorem of this type is due
to R. Askey [2].

Theorem 4.1 (Askey). If .: [0, �) � R is such that .(0)=1, . is
continuous, limt � � .(t)=0, and &.$(t) is convex, then .( |u| ) is the
characteristic function of a unimodal distribution.
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The resemblance of Theorems 4.1 and 3.1 is striking, and the conditions
of Theorem 4.1 coincide with those of Theorem 3.1 when n is set to 2 or 3.
Naturally, one asks for the reasons for this coincidence, and for a generaliza-
tion of Askey's univariate result to multivariate, spherically symmetric
distributions.

Before answering these questions, we need to make precise our notion of
unimodality, which will always be understood as unimodality at the origin.
Unfortunately, the generally accepted definition of a univariate, unimodal
distribution F having its distribution function F(x) convex for x<0 and
concave for x>0 does not generalize to two or more dimensions. Conse-
quently, various notions of multivariate unimodality have been developed
(Dharmadhikari and Joag-Dev [10, Section 2.2]). For spherically symmetric
distributions, however, all major notions of multivariate unimodality coincide
with the single exception of linear unimodality, which we discuss below. All
other notions can be unified by defining a spherically symmetric, unimodal
distribution in Rn as a scale mixture of (possibly degenerate) uniform distribu-
tions on n-dimensional balls (Berk and Hwang [3]). Let us introduce the
class

(n(2)

of all functions . # 8n(2) which are such that Sn(2, .) is unimodal. By a
standard calculation, a random vector uniformly distributed on the unit
ball in Rn has characteristic function 0n+2((u2

1+ } } } +u2
n)1�2), with 0 given

by formula (4). In view of Schoenberg's representation (3) for the class
8n+2(2), it is evident that

(n(2)=8n+2(2), n�1 (36)

(cf. Zolotarev [24, p. 288]). Clearly, Askey's Criterion 3.1 and the identity
(36) answer the initial questions of this section. We have the following
generalization of Theorem 4.1.

Theorem 4.2. If .: [0, �) � R is such that .(0)=1, . is continuous,
limt � � .(t)=0, and (&1)k .(k)(t) is convex for k=[n�2]+1, then . # (n(2).

Let us turn to the notion of linear unimodality, which we discuss in the
general context of :-symmetric distributions. Recall that a multivariate
distribution is said to be linear unimodal if each one-dimensional marginal
distribution is univariate unimodal (Dharmadhikari and Joag-Dev [10,
p. 42]).

Theorem 4.3. An :-symmetric distribution Sn(:, .) is linear unimodal if
and only if . # 83(2). In particular, if n�3, any 1-symmetric or spherically
symmetric distribution is linear unimodal.
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Proof. Let X=(X1 , ..., Xn)$tSn(:, .), and consider any linear combina-
tion Y=�n

i=1 aiXi , where a=(a1 , ..., an)$ # Rn. The characteristic function
E exp(iuY)=.(&a&: |u| ) of Y is, up to a scale factor, independent of a.
Thus Sn(:, .) is linear unimodal if and only if . belongs to (1(2)=83(2).
The latter equality also proves the claim for :=1 and :=2, because 8n(1)
�8n(2)�83(2) if n�3. K

The assertion for spherically symmetric distributions in Theorem 4.3 has
been known before (Berk and Hwang [3]). Even for 1-symmetric distribu-
tions, the restriction n�3 is essential. By Proposition 2.2 of Cambanis
et al. [8], the 1-symmetric distribution S2(1, |2) has marginal densities

g0(x)=
1

?2x
ln } 1+x

1&x } , x{&1, 0, 1,

that are not unimodal.
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