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a b s t r a c t

Love waves are dispersive interfacial waves that are a mode of response for anti-plane motions of an elas-
tic layer bonded to an elastic half-space. Similarly, Stoneley waves are interfacial waves in bonded con-
tact of dissimilar elastic half-spaces, when the displacements are in the plane of the solids. It is shown
that in slow sliding, long-wavelength Love and Stoneley waves are destabilized by friction. Friction is
assumed to have a positive instantaneous logarithmic dependence on slip rate and a logarithmic rate
weakening behavior at steady-state.

Long-wavelength instabilities occur generically in sliding with rate- and state-dependent friction, even
when an interfacial wave does not exist. For slip at low rates, such instabilities are quasi-static in nature,
i.e., the phase velocity is negligibly small in comparison to a shear wave speed. The existence of an inter-
facial wave in bonded contact permits an instability to propagate with a speed of the order of a shear
wave speed even in slow sliding, indicating that the quasi-static approximation is not valid in such
problems.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Destabilization of interfacial elastic waves due to friction has
been a topic of some recent investigations (Adams, 1995; Ranjith
and Rice, 2001). For in-plane elasticity problems, where displace-
ments are confined to the plane of the solids, two well-known
interfacial waves are the Stoneley wave (Stoneley, 1924) and the
slip wave (Achenbach and Epstein, 1967). The Stoneley wave
occurs in bonded contact of dissimilar elastic half-spaces while
the slip wave, also called the generalized Rayleigh wave, is for a
freely slipping interface between two half-spaces. There are no
analogues of the Stoneley wave and the slip wave in anti-plane
elasticity, where the displacement is normal to the plane of the sol-
ids. However, an interface wave solution does exist in the bonded
contact of a finite layer on a half-space. This is the Love wave (Love,
1911). The Love wave differs from the Stoneley and slip waves in
that (a) it always exists if the shear wave speed of the layer is
greater than that of the half-space whereas the other two interfa-
cial waves exist only when the shear wave speeds of the solids are
not very different (b) its speed along the interface is greater than
the shear wave speed of the layer but less than that of the sub-
strate, while the other two waves are subsonic (c) it is dispersive
and the dispersion relations are multi-valued.

In this paper, two problems are studied involving dissimilar
materials that permit interfacial waves in bonded contact. Anti-
plane sliding of a finite layer on an elastic half-space is first stud-
ll rights reserved.
ied. In slow frictional sliding, it is shown that the Love wave is
destabilized at long wavelengths. In-plane sliding of dissimilar
elastic half-spaces is subsequently analyzed. It is shown that
long-wavelength Stoneley waves are also destabilized in slow
sliding.

2. The anti-plane problem

In this section, the equation governing the stability of steady
sliding of an elastic layer on an elastic half-space is derived. The
perturbations from steady sliding are assumed to be transverse
to the direction of slip (i.e., anti-plane sliding). The elastodynamic
relation between slip and shear stress perturbations is first de-
rived. A friction law which also relates the slip and shear stress
perturbations is then introduced. These two relations are used to
obtained the equation governing slip stability.

Consider an isotropic elastic layer of thickness h sliding on an
isotropic elastic half-space with a steady rate Vo (Fig. 1). The steady
motion is due to an applied shear stress so which is at the friction
threshold, so = fro, where ro is the compressive normal stress on
the boundary of the layer and f is the friction coefficient at slip rate
Vo. The shear modulus, density and shear wave speed of the layer
are denoted by l, q and cs, respectively, and corresponding proper-
ties of the half-space are denoted by l

0
, q

0
and c0s.

A Cartesian coordinate system is located as shown in Fig. 1 so
that the interface between the solids is at x2 = 0 and the layer slides
in the x3 direction. The elastic fields are assumed to be independent
of the x3 coordinate. We are interested in the relation between slip
and stress perturbations at the interface when the perturbation is
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Fig. 1. Geometry for the anti-plane sliding problem.
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transverse to the direction of slip, namely in the x1 direction. If
ui(x1, x2, t), i = 1,2,3 denote the displacement field, due to isotropy
of the solid, the only displacement component is that in the direc-
tion of slip:

u1 ¼ u2 ¼ 0;
u3 ¼ u3ðx1; x2; tÞ:

ð1Þ

Let sij(x1,x2, t), i, j = 1,2,3 denote the stresses. The only non-zero
stresses corresponding to the displacement field Eq. (1) are
s13 = s31 and s23 = s32. They are given by

s13 ¼ l @u3

@x1
;

s23 ¼ l @u3

@x2
;

ð2Þ

the latter being the traction component on planes normal to the x2

direction.
For the layer, the equation of motion in terms of the stresses is

@s13

@x1
þ @s23

@x2
¼ q

@2u3

@t2 : ð3Þ

Substituting for the stresses from Eq. (2), one gets

@2u3

@x2
1

þ @
2u3

@x2
2

¼ 1
c2

s

@2u3

@t2 ; ð4Þ

where cs ¼
ffiffiffiffiffiffiffiffiffi
l=q

p
. Similarly, the equation of motion of the elastic

half-space in the region x2 < 0 is

@2u3

@x2
1

þ @
2u3

@x2
2

¼ 1
c02s

@2u3

@t2 : ð5Þ

where c0s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
is the shear wave speed of the half-space.

Slip at rate Vo and a perturbation from it in a single Fourier
mode of wavenumber k can be represented by a displacement field
of the form

u3ðx1; x2; tÞ ¼ Vot þ Uþðk;pÞeikxeax2 ept; x2 > 0;

u3ðx1; x2; tÞ ¼ U�ðk;pÞeikx1 ea0x2 ept; x2 < 0:
ð6Þ

where p is a complex variable, dependent on k, which characterizes
the time response to the perturbation. a(k,p) and a0(k,p) are to be
determined so that the governing equations of motion are satisfied.
Substituting into the equation of motion for the layer, Eq. (4), gives

a2 ¼ k2 þ p2

c2
s
: ð7Þ

Defining

a ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c2

s

q
; ð8Þ
where ffiffip denotes the analytic continuation of the positive square
root function, both a and �a solve Eq. (7). A convenient choice of
branch cuts in the complex p-plane is from the branch points
p = ±i |k| cs to p =1 along the imaginary axis, away from the origin.
The general form of the displacement in the layer is therefore

u3ðx1; x2 > 0; tÞ ¼ Vot þ Uþ1 ðk;pÞe�ax2 þ Uþ2 ðk;pÞeax2
� �

eikx1 ept ð9Þ

The stress component s23 in the layer corresponding to the
above displacement field is

s23ðx1; x2 > 0; tÞ ¼ so þ l �aUþ1 ðk;pÞe�ax2 þ aUþ2 ðk; pÞeax2
� �

eikx1 ept

ð10Þ

The perturbations at the interface do not alter the applied shear
stress so on the boundary of the layer. Thus s23(x1,h, t) = so, so that

�Uþ1 e�ah þ Uþ2 eah ¼ 0: ð11Þ

An analogous development for the half-space x2 < 0 follows. The
displacement field in the half-space is of the form

u3ðx1; x2 < 0; tÞ ¼ U�ðk;pÞeikx1 ea0x2 ept : ð12Þ

Substituting into the equation of motion for the half-space gives

a02 ¼ k2 þ p2

c02s
; ð13Þ

which has the solution

a0 ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c02s

q
: ð14Þ

Branch cuts are defined as before from p ¼ �ijkjc0s to p =1 along
the imaginary axis, away from the origin. This ensures that
Re(a

0
) P 0 for any p. It is noted that �a

0
is not a valid solution to

Eq. (13) since it gives rise to an unbounded displacement field as
x2 ? �1.

The stress component s23 in the half-space is then

s23ðx1; x2 < 0; tÞ ¼ so þ l0a0U�ðk; pÞea0x2 eikx1 ept: ð15Þ

The slip at the interface is

dðx1; tÞ ¼ u3ðx1; x2 ¼ 0þ; tÞ � u3ðx1; x2 ¼ 0�; tÞ
¼ Vot þ ½Uþ1 þ Uþ2 � U��eikx1 ept: ð16Þ

Denoting

Dðk; pÞ � Uþ1 ðk; pÞ þ Uþ2 ðk;pÞ � U�ðk; pÞ; ð17Þ

the slip can be written as

dðx1; tÞ ¼ Vot þ Dðk;pÞeikx1 ept: ð18Þ

The traction component of stress at the interface

sðx1; tÞ ¼ s23ðx1; 0; tÞ � so þ Tðk;pÞeikx1 ept ð19Þ

is continuous. From Eqs. (10) and (15), this requires

�laUþ1 þ laUþ2 ¼ l0a0U�: ð20Þ

Eqs. (11), (17) and (20) constitute a system of linear algebraic equa-
tions for Uþ1 ;U

þ
2 and U� in terms of D. Solving that system,

U� ¼ � la
laþ l0a0 coth ah

D: ð21Þ

The shear stress at the interface is then

sðx1; tÞ ¼ so �
l0a0la

laþ l0a0 coth ah
Dðk;pÞeikx1 ept: ð22Þ

The amplitudes of the shear stress and slip perturbations at the
interface thus satisfy
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Tðk; pÞ ¼ � l0a0la
laþ l0a0 coth ah

Dðk;pÞ: ð23Þ

When h ?1, corresponding to the anti-plane sliding of two dissim-
ilar half-spaces,

Tðk; pÞ ¼ � l0a0la
l0a0 þ la

Dðk; pÞ; ð24Þ

in agreement with the result of Ranjith (2008) for that geometry.
Writing

Fðk;pÞ¼
2l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2=k2c2

s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2=k2c02s

q
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2=k2c2

s

q
þl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2=k2c02s

q
coth jkjh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2=k2c2

s

q� � ;
ð25Þ

Eq. (23) takes the form

Tðk; pÞ ¼ �ljkj
2

Fðk;pÞDðk;pÞ: ð26Þ

For a given k, a pole of F(k,p) indicates a stress perturbation with no
associated slip perturbation. The only poles of F(k,p) are zeros of the
function

Mðk;pÞ ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c2

s

q
þ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c02s

q
� coth jkjh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=k2c2

s

q� �
; ð27Þ

which is the equation for the Love wave in bonded contact of the
layer and the half-space. Using the notation c = �ip/k for the phase
velocity, we focus on the properties of F(k,c) and M(k,c) when c is
real, corresponding to steady-state wave propagation. Also it is as-
sumed without loss of generality that c > 0 – similar results apply
for c < 0. The Love function M(k,p) can then be written in terms of
c as

Mðk; cÞ ¼ i l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=c2

s � 1
q

� l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=c02s

q
cot jkjh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=c2

s � 1
q� �� �

:

ð28Þ

It is readily seen that M(k,c) has zeros only when cs < c < c0s,
corresponding to Love waves. The Love wave speed co depends
on the wavenumber k. The wave always exists for any k and l/l

0

as long as cs < c0s. In the long-wavelength limit, |k| ? 0, it is clear
by inspection of Eq. (28) that co ! c0s. In the short-wavelength lim-
it, |k| ?1, there are multiple zeros of the Love function due to the
periodicity of the cotangent function. When |k| ?1, the cotangent
term in Eq. (28) has a limit only if c ? cs. Since the first term in Eq.
(28) also approaches zero as c ? cs, the zeros, cn,n = 0,1, . . .,N(k), in
the short-wavelength limit occur close to the roots of the equation

jkjh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=c2

s � 1
q

¼ ð2nþ 1Þp=2; jkj ! 1: ð29Þ

A zero of F(k,c) indicates a slip perturbation with no associated
stress perturbation. It is obvious that F(k,c) = 0 when c = cs and
c ¼ c0s. However, these are branch points of F(k,c), not zeros, and
represent 1-D body waves in either solid. For example, from Eq.
(21) it is clear that when c = cs,U� = 0 and the displacement field is

u3ðx1; x2 > 0; tÞ ¼ Vot þ Dðk;pÞeikðx1þcstÞ

u3ðx1; x2 < 0; tÞ ¼ 0
ð30Þ

The only zeros of F(k,c) are poles of the Love function M(k,c). For
generic k, poles occur only when cs < c < c0s and they are deter-
mined by the condition that

jkjh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=c2

s � 1
q

¼ np ð31Þ
for an integer n P 1. From Eqs. (29) and (31), it is clear that the
zeros and poles of F(k,c) alternate as |k| ?1 with the first pole
being closer to the branch point c = cs than the first zero.

Friction is now introduced at the interface and its effect on slip
stability is studied. A friction law dependent on the slip rate V(x1, t)
and a fading memory of its history, characterized by a state vari-
able h(x1, t), is adopted. This is motivated by the experiments of
Dieterich (1979) and Ruina (1983). At constant normal stress ro,
the frictional shear stress is of the form

s ¼ f ðV ; hÞro: ð32Þ

The above mentioned experiments involve application of step
changes in slip velocity from steady sliding and observing the
instantaneous as well as the gradual change of the frictional shear
stress. A positive logarithmic instantaneous dependence of shear
stress on the slip velocity is observed, i.e.,

s � a lnðVÞro; a > 0: ð33Þ

A logarithmic weakening with slip velocity at steady-state is
also seen in the experiments, so that at a steady slip velocity V,
the shear stress is

s ¼ so � ðb� aÞ lnðV=VoÞro; b� a > 0: ð34Þ

It is observed that b � a is of the same order as a. The gradual
change of the shear stress during an imposed step change in slip
velocity, as seen in the experiments, is modeled empirically by
the state variable h(x1, t). Ruina (1983) proposed a friction law of
the form

s ¼ so þ a lnðV=VoÞro þ bhro;

@h
@t
¼ �ðV=LÞðhþ lnðV=VoÞÞ

for the shear stress in terms of its value so at the steady slip rate Vo.
The constant L is a characteristic length for evolution of the shear
stress from so to the steady value given by Eq. (34) in the veloc-
ity-stepping experiments. Linearizing the above friction law about
the steady-state and eliminating the state variable we obtain

@s
@t
¼ aro

Vo

@V
@t
� Vo

L
s� so þ

ðb� aÞro

Vo
ðV � VoÞ

� �
: ð35Þ

Noting that s � s0 = T(k,p)exp(ikx1 + pt) and V � Vo = pD(k,p)exp
(ikx1 + pt), the linearized friction law Eq. (35) reduces to

pþ Vo

L

� �
Tðk; pÞ ¼ ro

Vo
ap� ðb� aÞVo

L

� �
pDðk; pÞ: ð36Þ

Suppose now that the steady sliding state is perturbed at t = 0.
The perturbation is such that if the interface were to continue to
slip at rate Vo, it would cause a shear stress change s � so = Q(k,p)
exp(ikx1 + pt) at the interface, where Q(k,p) is a given function.
Since a generic perturbation will also cause a slip perturbation of
the form d(x1, t)–Vot = D(k,p)exp(ikx1 + pt), the total shear stress
change at the interface is s � so = T(k,p)exp(ikx1 + pt), where, using
Eq. (26),

Tðk;pÞ ¼ �ljkj
2

Fðk;pÞDðk; pÞ þ Qðk; pÞ:

Using this relation in Eq. (36) above, we get for the slip response

Dðk; pÞ ¼ Qðk;pÞ
ljkj

2 pþ Vo
L

� �
Fðk; pÞ þ ro

Vo
ap� ðb� aÞ Vo

L

� �
p

Therefore, the equation governing slip stability is

ljkj
2

pþ Vo

L

� �
Fðk; pÞ þ ro

Vo
ap� ðb� aÞVo

L

� �
p ¼ 0: ð37Þ
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For a given wavenumber k, a root of the above equation at
p = p1 + ip2 indicates a slip response of the form

dðx1; tÞ � Vot � eikx1 eðp1þip2Þt ¼ eikðx1þp2t=kÞep1t:

Thus, a root with a positive real part, p1 > 0, indicates unstable
slip. The phase velocity is clearly c = �p2/k. We say that the slip re-
sponse is quasi-static if the phase velocity magnitude is negligibly
small in comparison to a shear wave speed, |c|/cs� 1.

The following non-dimensional parameters and variables

K ¼ ljkjL
2aro

;

S ¼ p=jkjcs;

H ¼ 2aroh
lL

;

e ¼ lVo

2arocs
;

ð38Þ

are now introduced. K is a non-dimensional wavenumber and H, a
non-dimensional layer thickness. The non-dimensional S used
above is particularly convenient since its imaginary part gives the
phase velocity in comparison to the shear wave speed of the layer.
The non-dimensional slip velocity e can be thought of as a measure
of the elastodynamic stress change in relation to the frictional stress
change accompanying a small slip velocity change DV from steady
sliding at rate Vo. The former is (l/2cs)DV while the latter is (aro/
Vo)DV. When e� 1, i.e., slip velocity is sufficiently low, the elasto-
dynamic stress change is small and it may be naively expected that
elastodynamic effects would be negligible. However, as shown in
the following, that is not generally the case.

Using the non-dimensional quantities in Eq. (38), the governing
equation for stability can be written as

1þ SK
e

� � 2l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2 c2

s
c02s

r

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p
þ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2 c2

s
c02s

r
coth KH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p	 


þ S
e

SK
e
� b� a

a

� �
¼ 0 ð39Þ

or

1þ SK
e

� �
FðK; SÞ þ S

e
SK
e
� b� a

a

� �
¼ 0: ð40Þ
3. Stability analysis

In this section, slip stability in slow anti-plane sliding, e� 1, is
investigated for short- and long-wavelength perturbations. It is
shown that the response to short-wavelength perturbations is sta-
ble, thus ensuring that the stability problem is well-posed. The re-
sponse to long-wavelength perturbations is however shown to be
generically unstable. In particular, long-wavelength Love waves
are shown to be destabilized in slow sliding.

The short-wavelength limit is given by e� 1� K while the
long-wavelength limit is K� e� 1. First, short wavelength stabil-
ity is studied. Eq. (40) can be written as

SK
e

FðK; SÞ þ S
e

� �� �
þ FðK; SÞ � S

e
ðb� aÞ

a

� �
¼ 0 ð41Þ

and we look for solutions S that are successively O(e/K),O(e), and
O(1). When S = O(e/K), F(K,S) = O(1) and it is easily verified that
there are no solutions of that order.

When S = O(e), F(S,K) = O(1) again and the balance of terms
becomes
FðK; SÞ þ S
e
¼ 0: ð42Þ

The root of the above equation is

S ¼ �eFðK !1;0Þ ¼ �2e
l0

lþ l0
: ð43Þ

Clearly Re(S) < 0 and the root is stable. Next we look for roots
S = O(1). The balance of terms in Eq. (41) again leads to Eq. (42).
As discussed in the previous section, when S = O(1), F(K,S) has poles
that correspond to Love waves. It was seen that in the large K limit,
F(K,S) has multiple poles along the imaginary S-axis, S = ±iCn = ±icn/
cs,n = 0,1,2, . . .,N(K), close to the roots of

KH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p
¼ ð2nþ 1Þp=2; K !1: ð44Þ

Close to S = iCn, F(K,S) has the structure

FðK; SÞ ¼ iAn

S� iCn
; ð45Þ

where, by inspection of F(K, S), An = An(K,Cn) is a real constant. (For
the pole at S = �iCn, the sign of An changes). Therefore, Eq. (42) is of
the form

iAn

S� iCn
þ S

e
¼ 0: ð46Þ

The roots are therefore

S ¼ �iCn �
An

Cn
e: ð47Þ

To ensure stability at short wavelengths, we need to show that
each An > 0. It was noted earlier that the poles and zeros of
F(K ?1,S) alternate. Therefore, An is of the same sign for every
S = iCn corresponding to a given, large K and it suffices to show that
the coefficient corresponding to the fundamental mode Ao > 0.
Observing that very close to S = ±i, the cotangent term in Eq. (28)
dominates, the singular structure has to be such that Ao > 0. Thus
stability of short-wavelength perturbations is ensured.

In the long-wavelength limit, K� e� 1, so that e� 1� e/K.
We look for solutions S that are O(e), O(1) and O(e/K) as before.
At O(e), the dominant terms give

FðK; SÞ � ðb� aÞ
a

S
e
¼ 0; ð48Þ

which has the solution

S ¼ a
b� a

eFðK ! 0; 0Þ: ð49Þ

But F(K ? 0,0) = O(K) and therefore there are no roots that are
O(e). When S = O(1), we again get Eq. (48). It has been pointed
out that when K ? 0, F(K,S) has a pole at S = ±iCo = ±ico/cs, with co

being close to c0s, corresponding to the Love wave. As discussed ear-
lier, the singular structure close to the pole is

FðK; SÞ ¼ iAo

S� iCo
: ð50Þ

The roots of Eq. (48) are therefore

S ¼ �iCo þ
aAo

ðb� aÞCo
e: ð51Þ

The argument previously made for Ao being positive still holds
and therefore long-wavelength perturbations are unstable with
velocity weakening friction, b � a > 0. The speed of propagation
of the wave is precisely that of the Love wave.

When S = O(e/K), the balance of terms gives

SK
e
� b� a

a
¼ 0 ð52Þ
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so that the root is

S ¼ b� a
a

e
K
; ð53Þ

indicating instability. However, the phase velocity is zero to leading
order, indicating the quasi-static nature of the instability. It must be
noted that unstable roots at O(e) and O(e/K) generically occur in fric-
tional stability problems. For the simple case of anti-plane sliding of
identical elastic half-spaces, Eq. (40) becomes

1þ SK
e

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

q
þ S

e
SK
e
� b� a

a

� �
¼ 0: ð54Þ

When K� e� 1, this equation has the solutions

S ¼ a
b� a

e;

S ¼ b� a
a

e
K
:

ð55Þ
4. The in-plane problem

In this section, the stability of slow sliding of dissimilar elastic
half-spaces is studied when the perturbations are in the direction
of slip (i.e., in-plane sliding). The elastodynamic relations for this
problem have been derived by Ranjith and Rice (2001) and slow
slip stability for short-wavelength perturbations has been studied
by Rice et al. (2001). Here, attention is focused on the long-wave-
length limit. It is shown that long-wavelength Stoneley waves are
destabilized in slow sliding.

As shown in Fig. 2, a Cartesian coordinate system is located so
that the interface is at x2 = 0 and steady sliding with rate Vo occurs
in the x1 direction. The elastic fields are assumed to be independent
of the x3 coordinate. The far-field applied stresses are s21 = so and
s22 = �ro such that they are at the friction threshold, so = fro. At
steady-state, the shear and normal stresses at the interface equal
the far-field values.

Interfacial slip representing steady sliding with rate Vo and a
perturbation from it in a single Fourier mode of wavenumber k is
of the form

dðx1; tÞ ¼ Vot þ Dðk; pÞeikx1 ept: ð56Þ

The corresponding elastic shear and compressive normal stres-
ses on the interface are given by

s ¼ so þ Tðk;pÞeikx1 ept ;

r ¼ ro � Rðk;pÞeikx1 ept
ð57Þ
x2

x1

Fig. 2. Geometry for the in-plane sliding problem.
where

Tðk;pÞ ¼ �ljkj
2

Y11ðk;pÞDðk;pÞ;

Rðk;pÞ ¼ �ljkj
2

Y21ðk; pÞDðk;pÞ:
ð58Þ

The explicit forms of Y11(k,p) and Y21(k,p) in terms of the
elastic properties and wave speeds of the solids are given in
Ranjith and Rice (2001). It is noted that due to the difference
in material properties across the interface, the slip perturbation
induces a normal stress change at the interface in addition to
a shear stress change.

Since slip couples with normal stress, a friction law including
the dynamic response to normal stress changes is needed. Rice
et al. (2001) proposed a general linear friction law of the form

@s
@t
¼ ðf � aÞ @r

@t
þ aro

Vo

@V
@t

� Vo

L
s� so � f ðr� roÞ þ

ðb� aÞro

Vo
ðV � VoÞ

� �
: ð59Þ

Here f and a are constants. (The a above is not to be confused with
the a defined in Eq. (8), which is not used in the following.) The first
term on the right hand side above is the Coulomb-type instanta-
neous response to a normal stress change and the last term incorpo-
rates a memory of normal stress history. Using this friction law, Rice
et al. (2001) showed that the equation governing slip stability is

1þ SK
e

� �
Y11ðSÞ þ f þ ðf � aÞ SK

e

� �
Y21ðSÞ þ

S
e

SK
e
� b� a

a

� �
¼ 0:

ð60Þ

The function Y11(S) has zeros corresponding to the slip wave,
when it exists, and both Y11(S) and Y21(S) have poles, correspond-
ing to the Stoneley wave, when it exists.

For slow sliding, the short-wavelength limit of Eq. (60) was
studied in Rice et al. (2001). When e� 1� K, the roots of Eq.
(60) were shown to occur at O(e) and O(1). At O(e), the balance
of terms gives

Y11ðSÞ þ ðf � aÞY21ðSÞ þ
S
e
¼ 0; ð61Þ

which has the root

S ¼ �eðY11ð0Þ þ ðf � aÞY21ð0ÞÞ: ð62Þ

Rice et al. (2001) showed that the real part of this root is nega-
tive. Hence it is stable. The roots at O(1) occur close to the Stoneley
poles. The dominant terms are again those in Eq. (61). The singular
structure close to the Stoneley pole at S = iCSt can be written as

Y11ðSÞ ¼
iA

S� iCSt
;

Y21ðSÞ ¼
B

S� iCSt
;

ð63Þ

where A and B are real constants. (For the Stoneley pole at S = �iCSt,
the signs of A and B change.) The roots close to the Stoneley poles
are then

S ¼ �iCSt � e
A

CSt
� i
ðf � aÞB

CSt

� �
: ð64Þ

Rice et al. (2001) showed, using general arguments, that when-
ever the Stoneley pole exists, A > 0. Therefore the roots at O(1) are
also stable.

The long-wavelength limit of Eq. (60), K� e� 1, is now stud-
ied. We look for solutions S that are O(e), O(1) and O(e/K). At
O(e), the governing equation is
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Y11ðSÞ þ fY21ðSÞ �
S
e

b� a
a
¼ 0; ð65Þ

which has the solution

S ¼ e
b� a

a
ðY11ð0Þ þ fY21ð0ÞÞ: ð66Þ

Comparing to Eq. (62), which was shown to have a negative real
part, we conclude that the above root has a positive real part for
velocity weakening friction, b � a > 0. Hence the root is unstable.
At O(1), the governing equation remains Eq. (65) and we expect
roots close to the Stoneley poles. Assuming the singular structure
as in Eq. (63), the roots can be shown to be

S ¼ �iCSt þ e
a

b� a
A

CSt
� i
ðf � aÞB

CSt

� �
: ð67Þ

As mentioned, Rice et al. (2001) showed that A > 0. Hence the
Stoneley wave is destabilized at long wavelengths. Finally at O(e/
K), the root can be shown to be

S ¼ b� a
a

e
K

ð68Þ

which is also unstable when b � a > 0. In summary, it has been
shown that slip response at long wavelengths is always unstable.
The roots given by Eqs. (66) and (68) have zero imaginary parts
(to their respective orders). When a Stoneley wave exists, it is
destabilized at long wavelengths.
5. Discussion

Solid mechanics problems involving slowly moving boundaries
are often studied using the quasi-static approximation – stress
transfers are assumed to be instantaneous and not wave-mediated.
However, this is not always valid. An example is the slow growth of
cracks, as in fatigue, which is generally assumed to be a quasi-sta-
tic process. A recently discovered instability of crack fronts (Rama-
nathan and Fisher, 1997; Morrissey and Rice, 1998) shows that
elastodynamic effects can be important even in slow crack growth.
The present study has an analogous implication for sliding, i.e.,
slow sliding cannot in general be equated with quasi-static sliding.

It is instructive to explicitly analyze the stability of slow sliding
in the quasi-static approximation. The governing equation for qua-
si-static anti-plane deformation is the Laplace equation,

@2u3

@x2
1

þ @
2u3

@x2
2

¼ 0: ð69Þ

Consider the problem geometry as in Fig. 1. For anti-plane slid-
ing of an elastic layer on a dissimilar elastic half-space, the quasi-
static elastic relation between shear stress and slip perturbations
from steady-state, analogous to Eq. (23) for the dynamic case,
can be shown to be

Tðk; pÞ ¼ �ljkj
2

2l0

lþ l0 cothðjkjhÞDðk;pÞ: ð70Þ

The governing equation for slip stability becomes, following the
steps leading to Eq. (37),

ljkj
2

pþ Vo

L

� �
2l0

lþ l0 cothðjkjhÞ

� �
þ ro

Vo
ap� ðb� aÞVo

L

� �
p ¼ 0:

ð71Þ

In the long-wavelength limit, |k| ? 0, this yields a quadratic
equation for p in terms of |k| as

ap2 þ lVojkj2h
ro

� ðb� aÞVo

L

 !
pþ lV2

o jkj
2h

Lro
¼ 0 ð72Þ
For sufficiently long wavelengths, it is clear that the roots of the
above equation are

p ¼ ðb� aÞ
a

Vo

L
þ Oðjkj2Þ and

p ¼ Oðjkj2Þ;
ð73Þ

both being real and positive. Thus the response at long wavelengths
is unstable with the phase velocity of the instability being zero to
leading order. It has been shown in this paper that the above qua-
si-static behavior does not emerge as a limit of the full elastody-
namic equations when the slip velocity is low. An additional
unstable root occurs when elastodynamic effects, representing
wave-mediated stress transfers, are included. From Eq. (51), this
root is

p ¼ AolcsVo

2ðb� aÞroco
jkj � icokþ Oðjkj2Þ; ð74Þ

where co is the Love wave speed in the long-wavelength limit
(approximately c0s, the shear wave speed of the substrate) and Ao

is a positive constant. A similar discussion applies for the in-plane
sliding problem of Section 4, with the Stoneley wave playing a role
analogous to that of the Love wave above. It must be noted that in
the sliding of identical half-spaces, a quasi-static limit for slow slid-
ing does exist, as shown in Rice et al. (2001). In that case, the exis-
tence of Love and Stoneley waves is precluded and the results of the
present analysis do not carry over.

Physically, the results obtained here have the surprising impli-
cation that even surfaces that are slowly slid can produce acoustic
emissions. Prior work, summarized by Rice et al. (2001), had sug-
gested that such would not be the case. As mentioned, those stud-
ies assumed geometries and material properties which precluded
the existence of interfacial waves in bonded contact. In the context
of the earth, the instability identified here could be a possible ori-
gin of the observed global seismic background radiation. It is well
known that large earthquakes excite the free oscillations of the
earth. However, Nawa et al. (1998) have reported that the funda-
mental long-period spheroidal modes of the earth’s oscillations
are continuously excited, even when large earthquakes do not oc-
cur. Similar continuous excitation of the fundamental toroidal
modes has recently been observed by Kurrle and Widmer-Schnid-
rig (2008). The present analysis suggests that destabilization of
Love and Stoneley waves in the slow sliding of tectonic plates,
away from large earthquakes, could be a possible mechanism for
the continuous excitation of the earth’s oscillations. The spheroidal
modes involve vertical motions of the surface, consistent with the
displacements caused by Stoneley waves, and horizontal motions
accompany the toroidal modes as is characteristic of Love waves.
6. Conclusions

It has been shown that long-wavelength Love and Stoneley
waves are destabilized in slow frictional sliding. Essential to the
analysis is the assumption that friction has a logarithmic depen-
dence on slip rate, both instantaneously and in the steady-state,
the former being positive and the latter being negative, but both
effects being of the same order. Thus, the quasi-static approxima-
tion is not valid for slow sliding if the geometry of the problem
and material properties are such that an interfacial wave exists
in bonded contact of the solids.
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