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Antibiotic resistance is one of the most significant challenges to the health care sector in the 21st century.
Amyriad of resistancemechanisms have emerged over the past decades and arewidely disseminatedworld-
wide through bacterial populations. At the same time there have been ever fewer new antibiotics brought to
market, and the pharmaceutical industry increasingly sees antibiotics as a poor investment. Paradoxically,
we are in a Golden Age of understanding how antibiotics work andwhere resistance comes from. This knowl-
edge is fueling a renaissance of interest and innovation in antibiotic discovery, synthesis, and mechanism
that is poised to inform drug discovery to address pressing clinical needs.
A Critical Need for New Antibiotics
The Infectious Diseases Society of America, representing the

infectious disease specialists, who are in the front line of anti-

biotic use, has called for the delivery of ten new antibiotic drugs

by the year 2020 (Infectious Diseases Society of America, 2010).

This ‘‘10 x ‘20 initiative’’ is in response to the growing threat of

antibiotic resistant pathogens that are increasingly causes of

death and debilitating disease, not to mention a massive finan-

cial and logistical burden on health care sectors across the globe

(Choffnes et al., 2010). Once confined to health care institutions,

antibiotic resistant pathogens are now frequently found in the

community, making containment and treatment highly chal-

lenging. Drug resistance in the so-called ESKAPE pathogens

(Enterococcus faecium, Staphylococcus aureus, Klebsiella

pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-

nosa, and Enterobacter species) has been highlighted as espe-

cially concerning (Boucher et al., 2009), but to this list we can

add foodborne diseases caused by, for example, Escherichia

coli and Salmonella (DuPont, 2007), Clostridium difficile (Clem-

ents et al., 2010), Mycobacterium tuberculosis (Cegielski,

2010), and increasingly Neisseria gonorrhea (Allen et al., 2011).

This is a problem that is increasing in scope, with new concerns

emerging regularly.

Multidrug resistance (MDR) in these pathogens is now the

norm. Pathogenic strains are accumulating large numbers of

resistance elements, greatly limiting therapeutic options. The

genome of an epidemic MDR strain of A. baumannii revealed

a large 86 kb resistance island that included 45 genes able to

confer resistance to a broad spectrum of antibiotics (Fournier

et al., 2006). The recent outbreak of hemolytic uremic syndrome

in Europe in 2011 caused by E. coli O104:H4 is also instructive

(Bielaszewska et al., 2011). The reference strain had been previ-

ously identified as a rare b-lactam antibiotic sensitive isolate in

2001; when it re-emerged in a 2011 outbreak, it had acquired

a plasmid conferring resistance to a broad spectrum of b-lactam

antibiotics (so-called ESBL phenotype). Sequencing of the

genome of this strain identified a 90 kb plasmid that includes

the extended spectrum b-lactamase CTX-M15, as well as the

TEM-1 b-lactamase (Mellmann et al., 2011). In order to avoid

induction of virulence toxins, antibiotics are not generally used

to treat enterohemorrhagic E. coli infection, nevertheless this
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example demonstrates the ability of strains to rapidly acquire

resistance genes and is a testimony to their movement through

bacterial populations by horizontal gene transfer. Similarly, the

recent, highly publicized emergence of isolates of Enterobacter-

iaceae harboring the NDM carbapenemases were resistant to all

available antibiotics, with the exception of colistin, a polycationic

peptide associated with significant human toxicity (Kumarasamy

et al., 2010). Resistance is pervasive and only increasing in

scope and impact.

It is increasingly evident that the origin of the resistance

elements circulating in pathogens is the vast collection of non-

infectious microbes that populate the globe, the antibiotic re-

sistome (Wright, 2007). Antibiotic resistance genes have been

identified in bacteria from soil (D’Costa et al., 2006), water

(Zhang et al., 2009), the deep-subsurface (Brown and Balkwill,

2009) and the deep ocean (Toth et al., 2010). Some of the wide

distribution of resistance genes in environmental organisms

may be the result of human activity, for example, high-level re-

sistance is found in microbes downstream from antibiotic

production plants (Li et al., 2009, 2010); however, the majority

of resistance in the environment is naturally occurring (Allen

et al., 2010). This is supported by the discovery of a plethora of

resistance genes in permafrost dating from the Pleistocene era

30,000 years ago (D’Costa et al., 2011). These findings contrast

with the resistance profiles of pathogens that pre-date the

antibiotic era or have been collected from antibiotic naive popu-

lations, in which resistance is relatively rare but in which gene-

mobilizing elements, such as R-plasmids, are common and

poised to integrate and disseminate resistance genes in the

face of appropriate selection pressure (Davis and Anandan,

1970; Hughes and Datta, 1983; Thaller et al., 2010).

Human use of antibiotics has provided the selective pressure

for capture of resistance elements existing in the environment for

millennia by pathogens. This holds true not only for natural

product antibiotics but also for drugs of completely synthetic

origin, as evidenced by the emergence of horizontally transferred

resistance to the fluoroquinolone antibiotics, such as cipro-

floxacin (Strahilevitz et al., 2009). Here the qnr genes, likely orig-

inating in waterborne bacteria of the Shewanella genus (Poirel

et al., 2005), have been captured on plasmids that are now

widely circulating in Enterobacteriaceae. The rapid emergence
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Table 1. Recent Innovation in Antibiotics

Class Target Compound Type

Approved antibiotics

Linezolid Oxazolidinone Ribosome Synthetic

Daptomycin Lipopeptide Cell Membrane Natural product

Retapamulin Pleuromutilin Ribosome Semisynthetic

Tigecycline Tetracycline Ribosome Semisynthetic

Fidaxomicin Macrolide RNA

polymerase

Natural Product

Telavancin Glycopeptide Peptidoglycan Semisynthetic

Antibiotics in clinical trials

Omadacycline Tetracycline Ribosome Semisynthetic

ACHN-490 Aminoglycoside Ribosome Semisynthetic

Cethromycin Macrolide Ribosome Semisynthetic

AN3365 Oxaborole Leu-tRNA

synthase

Synthetic

Partial list, see Butler and Cooper (2011) for a more extensive survey.
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of resistance and its transfer among bacterial species in the anti-

biotic era is a reflection of the vast genetic diversity of microbes

on the planet after 3.5 billion years of evolution and the capacity

tomobilize genes vertically and horizontally through populations.

This is the lens through which we must try to understand and

manage antibiotic discovery and resistance in the future.

New Antibiotics: Successes and Challenges
In the face of growing drug resistance in pathogens, new antibi-

otics are required. Over the past decade several antibiotics have

been brought to market (see ref. Butler and Cooper, 2011;

Table 1). However, the vast majority represent relatively minor

alterations to well-known chemical scaffolds, in particular the

b-lactams and fluoroquinolones. Whereas these classes have

been deep wells from which to draw new drugs over the past

decades, wemay be reaching the limits of their safe and effective

chemical diversity. It is sobering to realize that only four of these

new drugs represent chemical scaffolds new to human use:

linezolid, which is a completely synthetic drug, and the natural

products daptomycin, a lipopeptide; fidaxomicin, a macrocyclic

polyketide; and the diterpene pleuromutilin, retapamulin (Fig-

ure 1). None of these four represent truly novel classes of drugs

though having been discovered in decades past and either

repurposed for human use or resurrected from failed discovery

campaigns.

Nevertheless, they all represent important successes in inno-

vative re-visiting of antimicrobial chemical matter with fresh eyes

with resulting clinical benefit. The oxazolidinone scaffold of line-

zolid was first explored by DuPont in the 1980s to treat plant

disease but was eventually elaborated by researchers, first at

Pharmacia, then at Pfizer, by classical medicinal chemistry

efforts guided by biological activity with attention to pharma-

cology into the first-in-class drug Zyvox that was FDA-approved

in 2000 (Barbachyn and Ford, 2003). Similarly, daptomycin was

first explored and then abandoned by Eli Lilly in the 1980s

because of toxicological concerns; it was then acquired in the

mid-1990s by Cubist, re-deployed with alternate dosing, and

received FDA approval in 2003 (Baltz et al., 2005). The pleuromu-
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tilins were discovered 60 years ago and used for over 30 years in

veterinary medicine but revisited by GlaxoSmithKline in the form

of the semisynthetic retapamulin for topical human use, gaining

FDA approval in 2007 (Novak and Shlaes, 2010). Fidaxomicin

has a similar history, separately identified by groups at Lepetit

in 1975 and then at Abbott again in the mid-1980s from actino-

mycetes as a poorly absorbed antibiotic. It was eventually

brought to market in 2011 by Optimer, who took advantage of

the poor solubility to selectively target infections caused by the

serious intestinal pathogen C. difficile, which is responsible for

a number of recent outbreaks of nosocomial disease (Hardesty

and Juang, 2011).

Despite these great examples of the value of revisiting the deep

antimicrobial catalogs of drug companies, none of these antibi-

otics are panaceas to the broader challenge of resistance. Indeed

all of these drugs have limited antimicrobial activity: all are

confined to Gram positive pathogens, retapamulin is available

for topical use only, and fidaxomicin is narrowly focused on

C. difficile. The only new antibiotic with significant utility to treat

infectionscausedbyGramnegativepathogens, agrowingclinical

problem approaching crisis levels (Arias andMurray, 2009; Peleg

and Hooper, 2010), is the third generation semisynthetic tetracy-

cline, tigecycline. Thisantibioticwasapprovedby theFDA in2005

following years of classical semisynthetic medicinal chemistry

effort by the infectious disease group at Wyeth (Sum, 2006).

The lessons in bringing these antibiotics to market are signifi-

cant and reveal the importance of deep experience in antibiotic

drug discovery in the pharmaceutical industry, as well as

tenacity, serendipity, and the value of ‘‘old’’ scaffolds in bringing

new antibiotics to market. This is especially important as the

track record in using target-based approaches guided by geno-

mics and using libraries of synthetic molecules, often tailored for

oral bioavailability in campaigns for a variety of clinical indica-

tions, has proven ineffective so-far in antibiotic drug discovery

(Gwynn et al., 2010; Payne et al., 2007). Lynn Silver has char-

acterized the result as a ‘‘Discovery Void’’ with no new antibiotic

scaffolds successfully identified since daptomycin in 1987

(Silver, 2011). Indeed, the selection of what constitutes the

‘‘best’’ chemical matter for antibiotic drug discovery is a signifi-

cant challenge that needs to be addressed.

Natural products produced by bacteria have been the most

successful source of antibiotic drug scaffolds over the past

decades. Most of these are from soil-derived members of the

actinomycete class. Fungal natural products include the penicil-

lins and cephalosporins (though these can also be produced by

bacteria) and the pleuromutilins. No plant sourced antibiotics

have been clinically approved and synthetic scaffolds are limited

to the quinolones, sulfonamides, the diaminopyridine trimetho-

prim, and the oxazolidinone linezolid. There has been much

discussion about whether we have picked all the ‘‘low hanging

fruit’’ and if continued investigation of actinomycetes will be prof-

itable in the search for new antibiotics (Baltz, 2008); indeed, the

lack of successful new scaffolds and the repeated rediscovery of

known molecules from this source has been cited as a major

reason for the closing of natural products divisions in many large

pharmaceutical companies. Similarly, the lack of new scaffolds

from synthetic molecules, despite 20 years of screening, has

frustrated target-based approaches for new antibacterial drug

discovery.
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Figure 1. New Antibiotics Approved for Human Use over the Past Decade
These represent new scaffolds for medical application.
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Defining good antibacterial targets has been an additional

challenge. Leonard Katz has said that ‘‘A good antibiotic target

is one which there is (or will be) a drug’’ (Katz, 2000). This state-

ment reflects the difference between identifying enzyme inhibi-

tors and antibacterial compounds in vitro, which is relatively

easy, and actually advancing molecules into the clinic and

successfully deploying a new drug, which is very hard. The anti-

biotic scaffolds in current use were discovered using cell-based
Chemistry & Bio
assays with inhibition of growth as the assay. Subsequent

biochemical identification of the molecular targets of these

antibiotics revealed a remarkably limited number that include

the ribosome, enzymes of peptidoglycan biosynthesis, enzymes

of thymidine synthesis, RNA polymerase, DNA topoisomerases,

and the bacterial membrane. Analysis of microbial genomes

suggests a much larger number of potential targets, even using

the strict criteria of essentiality for cell growth, conservation
logy 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 5
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across most important pathogens, absence of similar targets in

humans, and the ability to bind and be blocked by small mole-

cules. Nevertheless, this apparent richness in targets has failed

to generate any new drugs, despite extensive effort by the phar-

maceutical industry over 20 years.

At the same time, changing regulatory guidelines for new anti-

biotics have vexed the antibiotic drug industry (Choffnes et al.,

2010; Projan, 2003; Projan and Shlaes, 2004). Whereas the

global antibiotics market is substantial (US $42 billion in 2009;

Hamad, 2010), the cost of developing new antibacterial drugs,

in particular the high costs of clinical trials, has also risen and

negatively impacted the return on investment for antibiotics in

particular (Choffnes et al., 2010; Cooper and Shlaes, 2011).

Furthermore, since antibiotics are given for short periods of

time and clinicians are increasingly reluctant to use new agents

to preserve their long-term effectiveness, it is not surprising

that the for-profit pharmaceutical sector sees diminishing re-

turns in antibiotics.

All of these challenges have conspired to dramatically reduce

investment in antibacterial drug discovery. Many large pharma-

ceutical companies have greatly reduced or abandoned antibi-

otic discovery all together. The result is a lack of attention (and

associated innovation) and a growing unmet clinical need.

Where Will the New Antibiotics Come from?
In order to face the challenge of resistance and address the

pressing clinical need for new drugs, many approaches must

be considered. It is evident that new investment will be required
6 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved
and that creative methods to incentivize

both the academic and pharmaceutical

sectors are needed to overcome the

unique economic challenges faced by

drugs whose obsolescence is virtually

guaranteed. There are no irresistible anti-

biotics. Several important strategies from

funding public-private initiatives to ex-

tending patent life of antibiotics have

been proposed, and these efforts are

worthy of serious consideration (e.g.,

refs. Laxminarayan and Powers, 2011;

Spellberg et al., 2011). Even if such policy

changes were enacted immediately, the

scientific challenges of identifying new

antibiotics remain formidable. If we have

picked all the low hanging fruit, where

do we look for new antibiotics?

One obvious strategy is the continued

mining of known scaffolds. Elaboration

of bioactive synthetic scaffolds, such as

the oxazolidinones and diaminopyrimi-

dines, have resulted in new compounds

in late-stage clinical trials, and eight qui-

nolone and fluroquinolone derivatives

have come to market since 2000 (Butler and Cooper, 2011).

Similarly, several b-lactams have been introduced to the clinic

in the last decade or are in clinical trials. Semisynthetic modifica-

tion of natural products remains a highly viable approach. Tela-

vancin, the first semisynthetic glycopeptide antibiotic approved

for clinical use was launched in 2009 (Corey et al., 2009), and at

least two additional glycopeptides, oritavancin and dalbavancin,

are in late-stage trials. Other new semisynthetic agents in clinical

trials include the tetracycline omadacycline (PTK-796; Nat. Rev.

Drug Discov., 2009), the aminoglycoside ACHN-490 (Endimiani

et al., 2009), and the ketolide cethromycin (Rafie et al., 2010;

Figure 2). All of these have broad spectrum antimicrobial activity,

including against Gram negative pathogens, which are an

increasingly urgent clinical need. Tellingly, all of these are being

pursued not by big pharma but by small- and medium-sized

pharmaceutical firms.

We certainly have not exhausted the potential for exploiting the

natural chemical diversity of known antibiotic scaffolds. Our

understanding of the molecular mechanisms underlying natural

product biosynthesis, in particular of polyketide and nonriboso-

mal peptide synthetase assembly lines, has greatly matured

over the past decade (Walsh and Fischbach, 2010). The simulta-

neous growth of synthetic biology techniques and reagents, in

particular the plummeting cost of DNA synthesis, has moved

the in vivo manipulation of chemical scaffolds into cost-effective

reality (Keasling, 2010). The heroic pioneering work on the heter-

ologous overexpression (Pfeifer et al., 2002) and engineering

(McDaniel et al., 1999) of the 6-deoxyerythronolide B macrolide
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antibiotic scaffold demonstrates the chemical diversity acces-

sible by genetic manipulation of biosynthetic pathways and the

accessibility to gram quantities of chemically complex com-

pounds through fermentation. Antibiotics, their scaffolds or frag-

ments thereof, that otherwise would be too challenging or costly

to access on an industrial scale using total synthesis can be now

conceivably accessed using engineered heterologous hosts. By

modifying antibiotic scaffolds combinatorially using biosynthetic

modifying enzymes and semisynthesis, antimicrobial chemical

space can be increased significantly. Furthermore, chemical

expansion can be performed directly on nonpurified natural pro-

duct extracts followed by activity-guided purification, a process

that has the potential to further expand chemical space (López

et al., 2007; Ramallo et al., 2011).

Revisiting abandoned scaffolds is a proven route to new anti-

biotics as evidenced by the histories of linezolid, daptomycin,

retapamulin, and fidaxomicin. Berdy has estimated that by the

year 2,000 approximately 20,000 naturally derived antibiotics

were already known (Bérdy, 2005). This is a remarkably rich

vein to mine for new leads in clinically useful antibiotics. Most

of these are surely unsuitable for direct entry into clinical use;

however, they do represent largely untapped chemical matter

that, if revisited using a combination of synthetic biology and

semisynthesis, could be a source of a number of new antibiotics.

Furthermore, even if these do not lead to drugs themselves, they

can be very useful in identifying new targets, which can then be

pursued using target-based approaches.

Another route is to seek completely novel compounds. There

are an estimated 200,000 to 250,000 bioactive natural products

([Bérdy, 2005]; though this number is based on the rate of purifi-

cation and characterization of compounds in the literature, and

the number may be significantly higher). Even if only a small frac-

tion of these have antibiotic activity, this represents a stunning

region of untapped chemical space to explore. Synthetic chem-

icals also represent apotential valuable sourceof newantibiotics.

Here efforts to understand what constitutes suitable chemical

matter, which can penetrate and be retained by bacterial cells,

in particular the difficult Gram negative pathogens with their lipo-

polysaccharide outermembrane and panoply of efflux pumps, is

needed. There are no simple guidelines akin to Lipinski’s ‘‘Rule of

5’’ to guide drug discovers in this area, though some efforts have

beenmade to quantify the physical chemical properties of antibi-

otics (O’Shea and Moser, 2008). The results of these analyses

have been to underline that antibacterial agents occupy unique

chemical space apart from drugs directed to human targets

and that this information needs to inform library preparation for

antibacterial screens. One notable success currently in phase II

trials for treatment of infections caused by Gram negative patho-

gens is the novel oxaborole compound AN3365 (GSK2251052)

fromAnacor (Figure 2; http://www.anacor.com/). This compound

emerged from an antifungal lead that blocked Leu-tRNA synthe-

tase function. The compound is a slow-tight-biding inhibitor of

the enzyme that forms an adduct between the boron atom with

the geminal cis-2030-dihydroxy groups of the ribose from the

terminal adenine nucleotide of the tRNA, thereby trapping the

enzyme-tRNA complex in a form that is incapable of catalysis

(Rock et al., 2007). This scaffold offers the first promising new

class of synthetic anti-Gram negative drug leads since the intro-

duction of fluoroquinolones over 40 years ago.
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Another route to expand chemical space applies the knowl-

edge rising from systems biology studies over the past decade.

Here the emerging view of the cell is not one comprised of the

linear pathways familiar to biochemistry textbooks but rather

as a complex web of genetic interactions, rife with redundancy

and populated by a collection of key nodes that link cellular

networks (Costanzo et al., 2010). The result is that most genes

(>80%) in an organism are dispensable, that is, they can be

deleted or otherwise inactivated under common laboratory

settings. Thesewould typically be regarded as poor drug targets,

though they may be very ‘‘druggable’’, that is, potently inhibited

by small drug-like molecules. However, in a genetic background

in which such nonessential genes have been deleted, the

number of ‘‘essential’’ genes increases substantially (Sharom

et al., 2004). The importance of these so-called synthetic lethal

interactions to antibiotic discovery is evidenced by the dramatic

increased sensitivity to antibiotics in bacterial strains in which

nonessential genes have been inactivated (Alvarez-Ortega

et al., 2010; Breidenstein et al., 2008; Liu et al., 2010; Tamae

et al., 2008). These genes (the intrinsic resistome; Fajardo et al.,

2008) therefore offer an orthogonal set of molecular targets for

compounds that can enhance antibiotic activity: antibiotic adju-

vants (Kalan andWright, 2011). Target-based discovery of inhib-

itors of the products of these genes are predicted to discover

molecules that potentiate antibiotic action. This approach could

breathe new life into old antibiotics and discarded scaffolds. It

is worth also noting that the majority of members of our current

antibiotic arsenal either block multiple targets, for example,

the b-lactams that covalently inhibit a collection of cell-wall

metabolism enzymes, the fluoroquinolones that block multiple

type II topoisomerases, (in particular, DNA gyrase and topo IV),

or target large macromolecular machines (ribosomes) or struc-

tures (membranes) with pleiotropic downstream effects.

Such combination drugs would be familiar to infectious

disease clinicians as current anti-infective therapy makes ex-

tensive use of combinations, including the antibacterials trime-

thoprim+sulfamethoxazole (Bactrim), quinupristin+ dalfopristin

(Synercid), and the co-formulations of anti-HIV antivirals. The

use of combinations is also well established to decrease the

emergence of resistance and increase efficacy in tuberculosis

treatment and during antifungal therapy. Therefore, multicompo-

nent therapy in the form of antibiotic adjuvants offers a powerful

approach to extend the life of current antibiotics and decrease

the impact of resistance.

We recently reported the successful outcomes of screens to

identify such antibiotic adjuvants in both bacteria (Ejim et al.,

2011) and yeast (Spitzer et al., 2011). In this work, we explored

combinations of known antimicrobials (minocycline for bacteria,

fluconazole for yeast) with off patent non-antimicrobial drugs.

We reasoned that these compounds offer a privileged source

of bioactive compound space; though not themselves antibi-

otics, they may have cryptic activity towards the intrinsic resis-

tome and synergize with antibiotics at sub-MIC concentrations.

This work identified a number of candidate molecules that

synergized with known antibiotics. One pair, minocycline + the

m-opioid receptor agonist loperamide (Immodium), a well know

drug used to treat diarrhea, demonstrated broad activity versus

Gram negative pathogens and was active in a mouse model of

salmonellosis. In yeast, the fungistatic drug fluconazole was
logy 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 7
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potentiated by a variety of neuro-active compounds, including

the antidepressant sertraline (Zoloft), and here the combination

was fungicidal and active in an insect model of fungal infection.

Importantly, in many cases, genus and even species specificity

was observed formany combinations. This offers the opportunity

to use the combinations stratagem to direct therapy to specific

pathogens, thereby sparing the larger microbiome and perhaps

reducing opportunity for complications, such as antibiotic-asso-

ciated colitis, often linked to infection by virulent C. difficile.

These studies demonstrate the power of multicomponent

versus single molecular therapy. By combining bioactive com-

pounds, the cellular network can be impacted at multiple sites,

thereby dramatically increasing effective antimicrobial chemical

space and enhancing potency. Given the fact that cryptic antimi-

crobial activity may be revealed using combinations, one need

not be restricted to combining antibiotics with nonantibiotics

as described in these examples. A matrix of a thousand com-

pounds systematically assayed in pairs gives rise to the equiva-

lent of almost 106 unique combinations, higher order mixtures

(well-precedented, e.g., in tuberculosis, HIV, and cancer thera-

pies) scale accordingly, thereby greatly expanding chemical

space (Spitzer et al., 2011).

The concept of compound combinations can also be applied

to direct blockade of antibiotic resistance. Combinations of

b-lactam antibiotics and inhibitors of Ser b-lactamases have

been clinical and commercial successes for decades (Drawz

and Bonomo, 2010). These inhibitors (clavulanic acid, sulbac-

tam, and tazobactam) are b-lactams themselves that covalent

modify the active site Ser but undergo deacylation very slowly,

effectively inactivating the resistance enzyme on a clinical time-

scale. A new cyclic urea b-lactamase inhibitor, NXL-104 (avibac-

tam), has been advanced to phase 2 clinical trials by Novexel, in

combination with the cephalosporin ceftazidime demonstrating

that there remain opportunities to innovate in this area. Similarly,

inhibitors of efflux pumps have been pursued both in the

academic and pharmaceutical arenas (Lomovskaya and Bos-

tian, 2006; Nikaido and Pages, 2011; Pagès and Amaral, 2009).

A growing understanding of the molecular details of efflux

pump mechanism and structure, in particular the tripartite RND

systems of Gram negative bacteria that are leading source of

MDR, is framing this approach. The challenges are significant,

given the heterogeneity and redundancy of efflux systems in

many serious pathogens, but common molecular mechanisms

suggest that the approach is valid.

Conceptually, any resistance mechanism that requires an

active cellular response can be similarly targeted, thereby rescue

‘‘old’’ antibiotics. The challenge of this approach is the fact that in

most cases of resistance, there are many mechanisms circu-

lating in pathogens, for example, aminoglycoside resistance

can occur by a variety of drug modifications (phosphorylation,

acetylation, and adenylylation), efflux, and target modification

(methylation of rRNA). Identifying a single molecule able to block

all these activities is highly improbable. These challenges could

be mitigated through careful attention to resistance epidemi-

ology to identify prominent modes of resistance perhaps in addi-

tion to the use of molecular diagnostics to match the specificity

of inhibitors of resistance with genes circulating in specific clin-

ical settings. The success of the Ser b-lactamase inhibitors is

instructive here, as these have been very useful drugs, despite
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the heterogeneity of b-lactam resistance. Specific targets, in

which one or only a few resistance mechanisms dominate in

the clinic, are worthy of such campaigns, including the elements

responsible for resistance to vancomycin, Erm-mediated resis-

tance to macrolides, type B streptogramins and lincosamides,

Ser-based ESBL and metallo b-lactamases, and aminoglyco-

side-modifying enzymes.

Another significant opportunity is targeting the bacterial gene

products and associated physiology responsible for infection.

Such inhibitors of microbial virulence have been touted for

some time as orthogonal approaches to antibiotics (Clatworthy

et al., 2007; Stanley and Hung, 2009); however, they could also

be used in combination with these drugs, likely to great effect.

Such molecules include modulators of quorum sensing, biofilm

formation (or dispersal), type III secretion, virulence gene regula-

tion, etc. By including virulence, the target vista for antibiotics

greatly increases. The effect of these molecules though is often

not readily noticeable in changes in in vitro MIC, a standard that

drives antimicrobial drug discovery. However, high-throughput

methods to screen infection in animal models, such as Caeno-

rhabditis elegans, moves this approach into the realm of possi-

bility for more traditional drug discovery approaches (Moy

et al., 2006; Mylonakis et al., 2007).

Conclusions
The challenges before infectious disease clinicians and the anti-

biotic drug discovery communities are formidable. Faced with

a growing spread of resistance genes in pathogens in both health

care settings and in the community, the ability of drug-resistant

bacteria to be carried across the planet in a matter of hours,

and our absolute need of antibiotics to maintain modern medical

interventions from surgery to cancer chemotherapy, the neces-

sity of a well-stocked arsenal of antibiotics is increasingly critical.

The unfortunate retreat of the pharmaceutical industry from this

area at the same critical juncture, as a result of economic, regu-

latory, and scientific challenges, approaches ‘‘perfect storm’’

characterization.

Yet, there are great reasons to be optimistic. The majority of

well-validated targets for antibiotics have been characterized in

terms of both structure and function. Furthermore, crystal

structures of complexes of these targets with antibiotics,

from the ribosome to RNA polymerase to DNA gyrase, are

known and provide drug-target interaction knowledge that

was unheard of even a decade ago. Sources of new com-

pounds from natural product producing actinomycetes to

metagenomic libraries that encode the genetic diversity of

a myriad of ecological niches can be sequenced in an after-

noon yielding the sequence information underlying biosynthetic

pathways. Leveraging these to produce new molecules has

already been successful (Banik et al., 2010). Furthermore,

combining bioactive compounds can dramatically expand

antimicrobial chemical space. Knowledge of the molecular

mechanism of resistance can also inform new antibiotic design

as elegantly shown by the recent rational synthesis of a

glycopeptide analog designed to overcome vancomycin re-

sistance (Xie et al., 2011). Whereas overcoming the practical

financial and regulatory challenges of the drug discovery

process will not be easy, the scientific brain trust is poised

to deliver.
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