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Abstract

Let k = Fq be a finite field. We enumerate k-rational n-sets of (unordered) points in a projective space PN

over k, and we compute the generating function for the numbers of PGLN+1(k)-orbits of these n-sets. For
N = 1,2 we obtain a formula for these numbers of orbits as a polynomial in q with integer coefficients.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Deep properties of geometric objects often rely on combinatorial properties of unordered
structures. For example, at the beginning of the last century Coble and others studied geometric
structures related to n-sets of points in projective spaces. A revision of this work in modern
language can be found in the book [4] of Dolgachev and Ortland.

From an arithmetic perspective we are led to consider n-sets that are rational over the ground
field k we are interested in. Let k̄ be an algebraic closure of the field k; an n-set S = {P1, . . . ,Pn}
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of a projective space PN(k̄) is rational if S is invariant under the action of the absolute Galois
group Gal(k̄/k), i.e.{

σ(P1), . . . , σ (Pn)
}= {P1, . . . ,Pn}, ∀σ ∈ Gal(k̄/k).

We denote by
(

P
N

n

)
(k) the set of all k-rational n-sets. Similarly,

((
P

N

n

))
(k) denotes the set of all

k-rational n-multisets of PN(k̄). We have a natural action of PGLN+1(k) on each of these sets.
In this paper we count the number of PGLN+1(k)-orbits of rational n-sets and multisets for k

a finite field, giving closed formulas for the numbers:

tN (n) :=
∣∣∣∣PGLN+1(k)

∖(
PN

n

)
(k)

∣∣∣∣, tN (n) :=
∣∣∣∣PGLN+1(k)

∖((
PN

n

))
(k)

∣∣∣∣.
There is an extensive literature on the enumeration of orbits of pointwise rational n-sets;

that is, n-sets S = {P1, . . . ,Pn} such that Pi ∈ PN(k) for all i. This is due to the fact that these
orbits are in bijective correspondence with isometry classes of certain linear codes [2,5,7,9,10].
However, to our knowledge, the enumeration of rational n-sets has been considered so far only
in dimension 1; for instance in [8], where the numbers t1(n) were computed.

Let us illustrate the role of global (not pointwise) rationality with an example. A hyperelliptic
curve over a field of zero or odd characteristic is a double cover of P1 determined by a Weier-
strass equation y2 = f (x), with f (x) ∈ k[x] an arbitrary separable polynomial. The ramification
locus is the rational n-set of the roots of f (x) in k̄, together with ∞ if the degree of f (x) is odd.
Through this association, pointwise rational n-sets of P1 correspond only to curves with f (x)

splitting completely over the field k. On the other hand, it is easy to check that rational n-sets in
the same PGL2(k)-orbit determine k-isomorphic curves, up to hyperelliptic twist. Thus, the num-
bers t1(n) count k-isomorphism classes of hyperelliptic curves defined over k, up to hyperelliptic
twist [8].

There are also interesting examples in higher dimension. Over any field of characteristic zero,
the PGL3-orbits of 5-sets of P2 classify nodal genus 5 planar curves; also, the PGL3-orbits of
7-sets of P2 such that no three points lie on a line and no six points lie on a conic classify non-
hyperelliptic curves of genus three with a distinguished Aronhold set of bitangents [6, Section 7].
These examples show that our enumeration results may have applications beyond the scope of
the geometry of varieties over a finite field k. They might be helpful to compute the number of
k-rational points of the variety, or scheme, or algebraic stack M⊗Z k, for the moduli spaces M
of some geometric structures. It is well known that from these computations one gains cohomo-
logical information on these moduli spaces (see [1] and the references quoted there).

Our main result is the computation of the generating function of tN (n) and tN (n) for fixed N

(Theorem 3.4). The generating function of the number of orbits of pointwise rational n-sets
of PN(k) can be expressed in terms of the cycle index of Pólya [2, 3.2.16]. This cycle index
is a multivariate polynomial that carries all information about the lengths of the cycles of all
elements of PGLN+1(k) acting as permutations of PN(k). Thus, this instrument is not able to
have full control on rational n-sets, made of points in PN(k̄). We define a multivariate polynomial
analogous to the cycle index, called the G-exponent index (G stands for “Galois”)

EG

(
PGLN+1,PN

) :=∑
α∈S

cα

∏
V ∈P(α)

zα,V ∈ Q
[{zα,V }],

where S is a partition of the set of conjugacy classes of PGLN+1(k) into a disjoint union of
subtypes, and to each subtype α ∈ S we associate a coefficient cα ∈ Q and a finite poset P(α)
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of Galois orbits of certain linear subvarieties of PN(k̄). The G-exponent index yields the gene-
rating function of the tN (n) when evaluated at series hα,V (x) corresponding to the nodes of these
posets:∑

n∈N

tN (n)xn = EG

(
PGLN+1,PN

)(
hα,V (x)

)
. (1)

There is a similar expression for the generating function of the numbers tN (n).
The paper is organized as follows. In Section 1, we compute the number aV (n) of rational

n-sets of a quasiprojective variety V over a finite field k. Viewed in a geometric way, we count
rational points on the variety

(
V
n

)
, the moduli space of n unordered points in V . The generating

function of these numbers is easily expressed in terms of the zeta function of V (Theorem 1.2).
For certain varieties V we translate this general result into explicit formulas for aV (n) as a
polynomial in q = |k| with integer coefficients. In Section 2, we prove that the quotient of PN by
a cyclic subgroup of PGLN+1(k) has the same zeta function as PN (Theorem 2.1). In Section 3
we define the subtypes, we construct the posets P(α) associated to each subtype, and we prove
the main theorem taking for granted the basic properties of P(α), whose proof is postponed to
Section 5, where we study the structure of the poset P(α) in more detail. In Section 4, we restrict
our attention to the cases N = 1,2, and we carry out an explicit computation of all the ingredients
of (1) in terms of combinatorial data independent of the group structure of PGLN+1(k) and the
action of its elements as permutations of PN(k̄). This allows one to obtain explicit expressions
for the numbers tN (n), tN (n) as polynomials in q with integer coefficients.

0.1. Conventions and notation

Throughout the paper we fix a finite field k = Fq of characteristic p, with |k| = q and with
algebraic closure k̄. For any integer d � 1, kd = Fqd denotes the unique extension of k of de-
gree d in k̄. Finally, ϕ denotes Euler’s totient function and σ ∈ Gal(k̄/k) denotes the q-Frobenius
automorphism of k̄, given by σ(x) = xq .

1. Rational n-sets of quasiprojective varieties

Let V be a quasiprojective variety defined over k. We define the variety of n-multisets of V to
be the symmetric product of V with itself n times, denoted((

V

n

))
:= (V ×· · ·×︸ ︷︷ ︸

n

V )/Sn,

where Sn is the symmetric group. We define the variety of n-sets of V to be the open subvariety(
V
n

) ⊆ (( V
n

))
formed by the unordered n-tuples of points of V without repetitions. The sets of

k-rational points of these varieties are denoted(
V

n

)
(k),

((
V

n

))
(k),

and the k-rational points are respectively called k-rational n-sets and k-rational n-multisets of V .
Thus, a rational n-set of V is just an unordered family S = {t1, . . . , tn} of n different points of
V (k̄) which is globally invariant under the Galois action, i.e. S = Sσ .
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In this section we compute the number of rational n-sets and n-multisets of V

aV (n) :=
∣∣∣∣
(

V

n

)
(k)

∣∣∣∣, āV (n) :=
∣∣∣∣
((

V

n

))
(k)

∣∣∣∣,
in terms of the zeta function of V . By convention, aV (0) = 1 = āV (0).

Definition 1.1. For any P ∈ V (k̄), we denote by Oσ (P ) the orbit of P under the action of
Gal(k̄/k). We call Oσ (P ) the σ -orbit of P , and we define the degree of P to be deg(P ) :=
|Oσ (P )|.

If we think a k-rational n-set or n-multiset of V as a disjoint union of σ -orbits of different
length we can express aV (n), āV (n) in terms of the numbers of σ -orbits of points of V (k̄) of a
given degree:

ad := ∣∣{Oσ (P )
∣∣ deg(P ) = d

}∣∣= 1

d

∣∣{P ∈ V (k̄)
∣∣ deg(P ) = d

}∣∣,
aV (n) =

∑
s1+2s2+···+nsn=n

(
a1
s1

)(
a2
s2

)
. . .

(
an

sn

)
,

āV (n) =
∑

s1+2s2+···+nsn=n

((
a1
s1

))((
a2
s2

))
. . .

((
an

sn

))
,

where si is the number of σ -orbits of degree i in each n-set or n-multiset, and we understand
that

(
ai
si

)= 0 if si > ai . These expressions yield a computation of the generating function of the
numbers aV (n), āV (n):

fV (x) := fV/k(x) :=
∑
n�0

aV (n)xn =
∏
d�1

(
1 + xd

)ad ,

f̄V (x) := f̄V/k(x) :=
∑
n�0

āV (n)xn =
∏
d�1

(
1 − xd

)−ad . (2)

We recognize in the last expression the zeta function of V over k:

Z(V , t) := Z(V/k, t) := exp

(∑
d�1

1

d

∣∣V (kd)
∣∣td)=

∏
d�1

(
1 − td

)−ad .

In fV (x), f̄V (x) and Z(V , t) we suppress the appearance of the ground field k when it is clear
from context. Hence, we deduce from (2) the main result of this section.

Theorem 1.2. Let V be a quasiprojective variety V over k. Then:

fV (x) = Z(V , x)/Z
(
V,x2), f̄V (x) = Z(V , x).

In the rest of the section, we apply this theorem to obtain explicit formulas for aV (n) for
several varieties V . We are especially interested in the open subvarieties V ⊆ P2 that are the
complement of the union of all linear subvarieties that are invariant under the action of a fixed
k-automorphism of P2. In all cases our formulas express aV (n) as a polynomial in q with integer
coefficients. These computations will be used in Section 4 to obtain explicit formulas for the
numbers t2(n) of PGL3(k)-orbits of rational n-sets of P2.
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We shall extensively use the fact that fV (x), f̄V (x) are multiplicative with respect to disjoint
unions, which is an immediate consequence of (2).

Lemma 1.3. Let V be a quasiprojective variety over k. Let W ⊆ V be any subvariety which
is also defined over k, and let U = V \ W be the complementary subvariety. Then fV (x) =
fW(x)fU (x), f̄V (x) = f̄W (x)f̄U (x).

1.1. Explicit formulas for aV (n): subvarieties of AN

Since Z(AN, t) = (1 − qN t)−1, we get immediately from Theorem 1.2:

fAN (x) = 1 − qNx2

1 − qNx
= (1 − qNx2)∑

n�0

qNnxn = 1 + qNx + (1 − q−N
)∑

n�2

qNnxn.

Proposition 1.4. For all N � 0, n � 1,

aAN (n) =
{

qN, if n = 1,

q(n−1)N (qN − 1), if n � 2.

The formula for aA1(n) is well known (it counts the number of monic separable polynomials
of degree n with coefficients in Fq ). To our knowledge, the formula for aAN (n), N > 1, is new.

If S(1) ⊆ AN is the 1-set formed by a k-rational point and L,L′ ⊆ A2 are two intersecting
lines, we get by Lemma 1.3:

fAN\S(1)(x) = fAN (x)

1 + x
, fA2\L(x) = fA2(x)

fA1(x)
, fA2\(L∪L′)(x) = fA2(x)(1 + x)

fA1(x)2
,

since fS(1)(x) = 1+x, fL(x) = fA1(x) and fL∪L′ = fA1(x)2/fS(1)(x). Expanding these rational
functions as series, we obtain the following proposition.

Proposition 1.5. For all n � 1,

aAN\S(1)(n) = (qN − 1
)qnN − (−1)n

qN + 1
, ∀N � 1.

aA2\L(n) = q − 1

q2 + q + 1

(
q2n+1 + q2n − (−1)nq	(n+1)/2
 − 1

2

(
1 + (−1)n

)
q	n/2


)
.

Moreover, for n even

aA2\(L∪L′)(n) = q4 − 1

(q2 + q + 1)2

(
q2n − qn/2

(
n

2

(q3 − 1)(q − 1)

q4 − 1
+ 1

))
,

whereas for n odd, the value of aA2\(L∪L′)(n) is:

q4 − 1

(q2 + q + 1)2

(
q2n + q(n−1)/2

(
n − 1

2

q3 − 1

q2 + 1
− (q − 1)(2q2 + q + 1)

q4 − 1

))
.
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1.2. Explicit formulas for aV (n): subvarieties of PN

By the usual stratification PN = A0 ∪ A1 ∪ · · · ∪ AN , Lemma 1.3 shows that:

fPN (x) = (1 − x2)(1 − qx2) · · · (1 − qNx2)

(1 − x)(1 − qx) · · · (1 − qNx)
. (3)

We easily deduce from this formula the following closed expressions.

Proposition 1.6. For all n � 1,

aP1(n) =
⎧⎨
⎩

q + 1, if n = 1,

q2, if n = 2,

qn−2(q2 − 1), if n � 3,

aP2(n) =

⎧⎪⎪⎨
⎪⎪⎩

q2 + q + 1, if n = 1,

q4 + q3 + q2, if n = 2,

q6 + q5 + q4 − q2 − q, if n = 3,

q2n−6(q4 − 1)(q2 + q + 1), if n � 4.

In order to obtain a general expression for aPN (n) we write (3) in the form

fPN (x) = (x2;q)N

(x;q)N
, (x;q)N := (1 − x)(1 − qx) · · · (1 − qNx

)
.

We can derive from [12, 1.3.17] the following identities:

1

(x;q)N
=
∑
n�0

(
N + n

n

)
q

xn, (x;q)N =
N∑

n=0

(−1)n
(

N + 1
n

)
q

qn(n−1)/2xn,

involving the q-binomial coefficients:(
n

m

)
q

:= (n)q

(m)q(n − m)q
, (n)q := (1 − q)

(
1 − q2) · · · (1 − qn

)
.

We get aPN (n) by multiplying the expressions for 1/(x;q)N and (x2;q)N .

Proposition 1.7. For all n � 1,

aPN (n) =
∑

2i+j=n

(−1)i
(

N + 1
i

)
q

(
N + j

j

)
q

qi(i−1)/2.

Finally, we compute aV (n) for certain open subvarieties of the type V = PN \S(d
s1
1 , . . . , d

sn
n ),

where S(d
s1
1 , . . . , d

sn
n ) denotes any rational n-set which is the disjoint union of si different σ -

orbits of points of degree di , for i = 1, . . . , n. For V = P2 \ S(3) we use the function δ : N → N
defined as

δ(n) :=
{0, if n ≡ 1,4 (mod 6),

1, if n ≡ 2,3 (mod 6),

−1, if n ≡ 0,5 (mod 6).
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Proposition 1.8. For all n � 1,

aP1\S(2)(n) = q + 1

q2 + 1

(
qn+1 − qn − (−1)	n/2
q + (−1)	(n−1)/2
).

aP2\S(1)(n) =
⎧⎨
⎩

q2 + q, if n = 1,

q4 + q3 − q, if n = 2,

q2n−4(q3 − 1)(q + 1), if n � 3.

aP2\S(3)(n) = q2 + q + 1

q4 − q2 + 1

(
q2n+2 − q2n + δ(n)q2 + δ(n + 2)

)
.

aP2\S(13)(n) = q − 1

(q2 + 1)2

[(
q3 + 2q2 + 2q + 1

)
q2n

+ (−1)n
(
(n − 1)q3 − (n + 2)q2 + (n − 2)q − (n + 1)

)]
.

aP2\S(1,2)(n) = q + 1

q4 + 1

(
q2n+3 − q2n + 1

2

(
(−1)

n−1
2 � + (−1)

n
2 �)q(q + 1)

− 1

2

(
(−1)

n+1
2 � + (−1)

n
2 �)(q3 − 1

))
.

2. Zeta function of the quotient of PNPNPN by an automorphism

For any γ ∈ PGLN+1(k), we denote by PN/γ the quotient variety of PN by the action of the
finite cyclic group generated by γ . The aim of this section is to prove the following result.

Theorem 2.1. For any γ ∈ PGLN+1(k), we have Z(PN/γ, t) = Z(PN, t).

This theorem has two important consequences (Corollaries 2.2, 2.4), that will be crucial for
the enumeration of orbits of n-sets and n-multisets:

Corollary 2.2. Let γ ∈ PGLN+1(k). Let W ⊆ V be subvarieties of PN defined over k, both
expressable as a finite union of linear irreducible γ -invariant subvarieties of PN . Let U = V \W

be the complementary variety. Then,

fV/γ (x) = fV (x), fU/γ (x) = fU(x),

f V/γ (x) = f V (x), f U/γ (x) = f U(x).

Proof. If V is a linear irreducible γ -invariant subvariety of PN , then V � PdimV and
Z(V/γ, t) = Z(V , t) by Theorem 2.1. This equality holds too for V a finite union of linear
irreducible γ -invariant subvarieties, since each irreducible component of V and the intersection
of any number of components are projective spaces. The corollary follows from Theorem 1.2
and Lemma 1.3. �
Definition 2.3. Let γ ∈ PGLN+1(k). The γ -orbit of P ∈ PN(k̄), denoted Oγ (P ), is the orbit
of P under the action of the cyclic group generated by γ .

Let V ⊆ PN be a subvariety over k. The sets of rational n-sets and n-multisets of V that are
fixed by γ as unordered families of points of PN(k̄) are denoted:
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Fixγ (V ,n) :=
{
S ∈

(
V

n

)
(k)

∣∣∣ γ (S) = S

}
,

Fixγ ((V ,n)) :=
{
S ∈

((
V

n

))
(k)

∣∣∣ γ (S) = S

}
.

Corollary 2.4. Let γ , V , W , U be as in Corollary 2.2 and suppose that all k̄-rational points of U

have γ -orbits of the same length m. Then,∣∣Fixγ (U,mn)
∣∣= ∣∣∣∣

(
U

n

)
(k)

∣∣∣∣, ∣∣Fixγ ((U,mn))
∣∣= ∣∣∣∣

((
U

n

))
(k)

∣∣∣∣.
Proof. The γ -invariant and σ -invariant mn-sets of U are in one-to-one correspondence with the
σ -invariant n-sets of U/γ ; thus, by Corollary 2.2∣∣Fixγ (U,mn)

∣∣= ∣∣∣∣
(

U/γ

n

)
(k)

∣∣∣∣=
∣∣∣∣
(

U

n

)
(k)

∣∣∣∣.
The argument for |Fixγ ((U,mn))| is analogous. �

In order to prove Theorem 2.1 we attain first a similar result for AN .

Proposition 2.5. For any γ ∈ GLN(k) we have |(AN/γ )(k)| = |AN(k)|.

Proof. Our aim is to compute the cardinality of the set(
AN/γ

)
(k) = {Oγ (P ),P ∈ AN(k̄)

∣∣ σ (Oγ (P )
)= Oγ (P )

}
.

Since γ and σ commute, for any P ∈ AN(k̄) we have:

σ
(
Oγ (P )

)= Oγ (P ) if and only if σ(P ) ∈ Oγ (P ). (4)

For any ρ ∈ GLN(k), let us denote by Cρ the set {P ∈ AN(k̄) | σ(P ) = ρ(P )}. If m is the order
of γ as an element of GLN(k) we claim that∣∣(AN/γ

)
(k)
∣∣= 1

m

∑
0�i<m

|Cγ i |. (5)

In fact, consider the formal disjoint union of all Cγ i (which are not disjoint as subsets of AN(k̄))
and the map

Oγ :
∐

0�i<m

Cγ i → (
AN/γ

)
(k), P �→ Oγ (P ).

By (4), Oγ (P ) is defined over k if and only if P ∈⋃0�i<m Cγ i , so that this map is well defined

and onto. Thus, to prove (5) we need only to check that each Oγ (P ) ∈ (AN/γ )(k) has exactly m

preimages. Let d = |Oγ (P )|; clearly d|m and P ∈ Cγ i for a unique 0 � i < d . Now, the d points
of Oγ (P ) belong to

Cγ i ,Cγ i+d ,Cγ i+2d , . . . ,C
γ

i+( m
d

−1)d ,

and none of these points belongs to any other Cγ j . Therefore, Oγ (P ) has exactly d(m/d) = m

preimages.
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Finally, the proposition will be proved if we show that |Cρ | = qN for all ρ ∈ GLN(k). Let us
check this; for any given ρ ∈ GLN(k) let β ∈ GLN(k) be such that βρβ−1 is a rational canonical
matrix: βρβ−1 = diag(A1, . . . ,Ar), each Ai being a cyclic component of the type:

A =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · −as

1 0 · · · −as−1

1
. . .

...
. . . 0 −a2

1 −a1

⎞
⎟⎟⎟⎟⎟⎠ , (6)

with xs + a1x
s−1 + · · · + as ∈ k[x] an invariant factor of the endomorphism ρ. We have |Cρ | =

|Cβρβ−1 | because the automorphism β of AN(k̄) maps one set onto the other. Hence, we need
only to check that |CA| = qs , for a matrix A as in (6). For x = (x1, . . . , xs) ∈ k̄s , the equality
σ(x) = A(x) splits into

σ(x1) = −asxs, σ (x2) = x1 − as−1xs, . . . , σ (xs) = xs−1 − a1xs. (7)

Thus, x1, . . . , xs−1 are a linear combination of xs and its Galois conjugates:

xs−i = aixs + ai−1σ(xs) + · · · + a1σ
i−1(xs) + σ i(xs), 1 � i < s,

and the first equation of (7) is equivalent to

σ s(xs) + a1σ
s−1(xs) + · · · + as−1σ(xs) + asxs = 0.

Since as �= 0, this is a separable equation in xs with qs solutions in k̄. �
We are now ready to prove Theorem 2.1, which is an immediate consequence of the following

proposition.

Proposition 2.6. For any γ ∈ PGLN+1(k) we have |(PN/γ )(k)| = |PN(k)|.
Proof. We choose a representative of γ in GLN+1(k), which we still denote by γ . We iden-
tify an affine point P ∈ AN+1(k̄) with its image P ∈ PN(k̄) under the natural morphism
π : AN+1 \ {0} → PN . However, in order to avoid confusion we shall denote by Oγ (P ) the affine
γ -orbit of P and by O

pr
γ (P ) the projective orbit. Clearly π(Oγ (P )) = O

pr
γ (P ) and π induces a

natural map

π :
(
AN+1/γ

)
(k) \ {0} → (

PN/γ
)
(k).

By Proposition 2.5, we need only to show that π is onto and each element of (PN/γ )(k) has q −1
preimages. Let O

pr
γ (P ) ∈ (PN/γ )(k) be given; for Q ∈ AN+1(k̄) the condition π(Oγ (Q)) =

O
pr
γ (P ) is equivalent to Oγ (Q) = Oγ (μP ) for some μ ∈ k̄∗. Thus, we want to see that exactly

q − 1 of the orbits Oγ (μP ), μ ∈ k̄∗, are k-rational. To check this, consider the multiplicative
subgroup ΛP := {λ ∈ k̄∗ | λOγ (P ) = Oγ (P )} ⊆ k̄∗, and let e = |ΛP |. For any μ ∈ k̄∗,

σ
(
Oγ (μP )

)= σ
(
μOγ (P )

)= σ(μ)σ
(
Oγ (P )

)= σ(μ)Oγ (P ).

Thus, Oγ (μP ) is k-rational if and only if σ(μ)μ−1Oγ (P ) = Oγ (P ), or equivalently μq−1 ∈ ΛP .
On the other hand, for any μ ∈ k̄∗ there are e values μ′ ∈ k̄∗ providing the same γ -orbit:

Oγ (μP ) = Oγ (μ′P) ⇔ μ′μ−1 ∈ ΛP ⇔ μ′ ∈ μΛP .

Hence, the e(q − 1) values of μ ∈ k̄∗ such that Oγ (μP ) is k-rational determine exactly q − 1
different γ -orbits. �
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3. G-exponent index and generating functions

Let Γ be a finite group acting on a finite set X. The number of orbits of this action can be
counted as the average number of fixed points:

|Γ \X| = 1

|Γ |
∑
γ∈Γ

∣∣Fixγ (X)
∣∣=∑

γ∈C

|Fixγ (X)|
|Γγ | , (8)

where C is a set of representatives of conjugacy classes of elements of Γ and

Fixγ (X) := {x ∈ X
∣∣ γ (x) = x

}
, Γγ := {ρ ∈ Γ

∣∣ ργρ−1 = γ
}
.

The formula (8) is usually called Burnside’s theorem, or more accurately the Cauchy–Frobenius
theorem [2, 3.1.6]. In this section we apply this formula to compute the generating function of

tN (n) :=
∣∣∣∣Γ∖

(
PN

n

)
(k)

∣∣∣∣, tN (n) :=
∣∣∣∣Γ∖

((
PN

n

))
(k)

∣∣∣∣,
for Γ := PGLN+1(k). The crucial step is the computation of |Fixγ (PN,n)|, |Fixγ ((PN,n))| (cf.
Definition 2.3), and the ingredients for this computation are Corollary 2.4 and a weighted finite
poset P(γ ) that we introduce now.

3.1. Proper linear arrangements in projective spaces

We fix throughout this paragraph an automorphism γ ∈ PGLN+1(k) of PN .
For any variety V ⊆ PN(k̄), we define the degree of V , denoted degV , to be the least expo-

nent r such that σ r(V ) = V (i.e. V is defined over kr ). This arithmetic invariant of V should not
be confused with the geometric concept of degree as an embedded subvariety of the projective
space.

Let V ⊆ PN(k̄) be a γ -invariant variety. We define the exponent of V , denoted expV , to be
the order of γ as an automorphism of V . Note that W ⊆ V implies expW | expV .

We define a G-linear arrangement to be a linear arrangement of the type

V = L ∪ σ(L) ∪ · · · ∪ σ r−1(L), r = degL,

where L ⊆ PN(k̄) is a γ -invariant irreducible linear variety. We denote by LG = LG(γ ) the set
of all G-linear arrangements. Each V ∈ LG has a 3-dimensional weight given by three invariants
dimension, exponent and G-degree:

(dimV, expV,dG V ) := (dimL, expL,degL)

where L is any of the irreducible components of V . Note that dimV and expV are the dimension
and exponent of V as a variety, but the G-degree dG V should not be confused with the degree
of V as a variety, which is degV = 1.

Definition 3.1. A G-linear arrangement V ∈ LG is said to be proper if it is maximal among all
other G-linear arrangements with the same exponent:

expV < expW, ∀W ∈ LG such that V � W.

We denote by P = P(γ ) the poset formed by the proper G-linear arrangements ordered by
inclusion.
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For instance, PN is a proper G-linear arrangement with weight (N,ord(γ ),1). For any V ∈P
we define

V 0 := V
∖( ⋃

W∈P,W<V

W

)
.

Theorem 3.2.

(1) The poset P is a finite lattice.
(2) For any V ∈P and any P ∈ V 0, the γ -orbit of P has expV elements.
(3) For any V ∈P of dimension d and dG V = r we have fV (x) = fPd/kr

(xr ).

This result summarizes the properties of the poset P that we need for the proof of the main
theorem. The proof of Theorem 3.2 is postponed to Section 5, where we shall study in more
detail the structure of the poset P .

3.2. The main theorem

Let γ ∈ PGLN+1(k) be a fixed automorphism of PN and consider the stratification PN(k̄) =∐
V ∈P V 0, determined by the proper G-linear arrangements with respect to γ . For any rational

n-set S ∈ Fixγ (PN,n) let the distribution of the n points of S among these strata be

S =
∐
V ∈P

SV , SV := S ∩ V 0.

Since S and V 0 are γ -invariant and σ -invariant, each SV is also γ -invariant and σ -invariant; in
other words, SV ∈ Fixγ (V 0, |SV |). Thus, we can count the number of possibilities for S just by
considering all possible numerical distributions of n points among the strata V 0, and then count-
ing, for each numerical distribution, the number of possibilities for SV . By (2) of Theorem 3.2,
|SV | = nV expV for some non-negative integer nV , and∣∣Fixγ

(
PN,n

)∣∣= ∑
∑

V ∈P nV expV =n

( ∏
V ∈P

∣∣Fixγ

(
V 0, nV expV

)∣∣)

=
∑

∑
V ∈P nV expV =n

( ∏
V ∈P

∣∣∣∣
(

V 0

nV

)
(k)

∣∣∣∣
)

,

the last equality by Corollary 2.4. Therefore,∑
n�0

∣∣Fixγ

(
PN,n

)∣∣xn =
∏
V ∈P

fV 0

(
xexpV

)
.

An application of the Cauchy–Frobenius formula leads to a first computation of the generating
function we are interested in:∑

n�0

tN (n)xn =
∑
γ∈C

|Γγ |−1
∏

V ∈P(γ )

fV 0

(
xexpV

)
. (9)

We can compute fV 0(x) by Möbius inversion in the poset P(γ ) [12, 3.7]:

fV 0(x) =
∏

fW(x)μ(W,V ) =
∏

fPdimW /kdG W

(
xdG W

)μ(W,V )
,

W�V W�V
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the last equality by (3) of Theorem 3.2. Hence, the term
∏

V ∈P(γ ) fV 0(xexpV ) depends only on
the structure of the weighted poset P(γ ). This allows us to refine (9) by grouping together all
elements γ ∈ C with a common value of

∏
V ∈P(γ ) fV 0(xexpV ).

Definition 3.3. Two elements γ, γ ′ ∈ C have the same subtype if there exists a poset isomorphism
P(γ )

∼−→ P(γ ′), preserving the weight (dimV, expV,dG V ) of each node V . We denote by S
the quotient set of C by this equivalence relation. For each subtype α ∈ S we denote by P(α) the
poset P(γ ) for any choice of γ in α, and we consider the weighted sum: cα :=∑γ∈α |Γγ |−1.

Our main theorem is a rewriting of (9) after grouping together all γ ∈ C in the same subtype.
We include in the theorem the similar statement for n-multisets, which is obtained by completely
analogous arguments.

Theorem 3.4. For a fixed value of N � 1, the generating functions of the numbers tN (n), t̄N (n)

are given by∑
n�0

tN (n)xn =
∑
α∈S

cα

∏
V ∈P(α)

hα,V (x),
∑
n�0

tN (n)xn =
∑
α∈S

cα

∏
V ∈P(α)

hα,V (x),

where hα,V (x) is the series

hα,V (x) := fV 0

(
xexpV

)= ∏
W�V

fPdimW /kdG W

(
xexpV dG W

)μ(W,V )

and hα,V (x) has a similar expression replacing f by f̄ .

This formula is suitable of an effective implementation. In this regard one needs only to carry
out the following tasks:

(1) Find an intrinsic description of the set S of subtypes.
(2) For each α ∈ S find an intrinsic description of the weighted poset P(α) and its Möbius

function.
(3) For each α ∈ S find an explicit formula for the universal coefficients cα .

This will be fulfilled in Section 4 for the cases N = 1,2. As a consequence, we shall obtain
explicit formulas for t2(n), t2(n) as polynomials with integer coefficients in the cardinality q of
the ground field. Similar formulas for t1(n), t1(n) had been obtained in [8].

In practice we often find problems leading to the computation of numbers, say x(n), counting
PGLN+1(k)-orbits of rational n-sets of projective spaces that satisfy certain conditions: no three
points on a line, no six points on a conic, general position, etc. In these cases it is usually difficult
to obtain a description of the generating function of the x(n) in the spirit of Theorem 3.4, but
it is still possible to apply the techniques of this paper to obtain explicit formulas for the x(n).
In fact, suppose that x(n) = |PGLN+1(k)\X|, where X ⊆ ( P

N

n

)
(k) is stable under the action of

PGLN+1(k) and, moreover, |Fixγ (X)| depends only on the subtype of γ , for any automorphism
γ of PN . Then, by the Cauchy–Frobenius formula:∣∣PGLN+1(k)\X∣∣=∑ cα

∣∣Fixγ (X)
∣∣,
α∈S
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and the computation of x(n) is reduced to the computation of |Fixγ (X)| for one representative
γ of each subtype. Often, this computation can be deduced too, from Corollary 2.4 and the
formulas of Section 1 if one is able to control the behavior of the conditions defining X under
the quotient maps PN → PN/γ . Since the constants cα do not depend on X we occasionally call
them “universal coefficients.”

For instance, this technique has been used in the papers [3] and [11] to count, for any given
value of the genus g > 1, the number of k-isomorphism classes of hyperelliptic curves, of pointed
hyperelliptic curves, and of hyperelliptic curves having a rational Weierstrass point.

4. Explicit formulas for dimension N = 1,2

The description of the subtypes of conjugacy classes of PGLN+1(k) and the computation of
the coefficients cα can be deduced from [7, Proposition 2.3, Lemma 2.4] for N = 1 and from
[9, Sections 1–2] for N = 2.

The conjugacy classes are first distributed into types according to the rational canonical form
of the matrices. Then, the conjugacy classes of each type are distributed into subtypes. For N =
1,2 two conjugacy classes are in the same subtype if and only if they have the same cycle
decomposition as a permutation of PN(k). This is not true anymore for N � 3.

4.1. Types and subtypes in dimension N = 1

The conjugacy classes of PGL2(k) are distributed into four types:
A. The identity, γ = 1, has order 1 and |Γγ | = |PGL2(k)| = q(q2 − 1).
B. The class of the translation γ0 = ( 1 1

0 1

)
. It has only one fixed point (the point at infinity),

order p and |Γγ0 | = q .
C. The classes of γ = diag(λ,1), λ ∈ k∗, λ �= 1. They have two fixed points, lying in P1(k),

and order d = ordk∗(λ) which is a divisor of q − 1.
The subtypes are parameterized by divisors d > 1 of q − 1, and for any such d

cd = ϕ(d)

2(q − 1)
.

D. The classes of those γ represented by a matrix B2 ∈ GL2(k) with irreducible characteristic
polynomial. They have two fixed points, which are quadratic conjugate in P1(k2). If α ∈ k2 \ k

is an eigenvalue of B2, the order of γ is the least positive integer d such that αd ∈ k, and it is a
divisor of q + 1.

The subtypes are parameterized by divisors d > 1 of q + 1, and for any such d

cd = ϕ(d)

2(q + 1)
.

4.2. Types and subtypes in dimension N = 2

Denote by P1 = (1,0,0), P2 = (0,1,0), P3 = (0,0,1) the three fundamental points of P2,
and by L1 = P2P3, L2 = P1P3, L3 = P1P2 the three fundamental lines. The conjugacy classes
of PGL3(k) are distributed into eight types:

A. The identity, γ = 1, has order 1 and |Γγ | = |PGL3(k)| = q3(q2 − 1)(q3 − 1).
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B. The class of the translation γ0 = diag
(( 1 1

0 1

)
,1
)
. It has order p and the γ0-invariant lines

are all lines through P1; the line L2 has exponent 1 and all other invariant lines have exponent p.
Moreover, |Γγ0 | = q3(q − 1).

C. The class of γ ′
0 =

( 1 1 0
0 1 1
0 0 1

)
. It has only one invariant line, L3, of exponent p, and only one

fixed point, P1. It has order p if p > 2, and order 4 if p = 2. Moreover, |Γγ ′
0
| = q2.

D. The classes of γ = diag
(( 1 1

0 1

)
, λ
)
, λ ∈ k∗, λ �= 1. They have order pd , with d = ordk∗(λ).

The fixed points are P1, P3 and the invariant lines are L2 (of exponent d) and L3 (of exponent p).
The subtypes are parameterized by divisors d > 1 of q − 1, and for any such d

cd = ϕ(d)

q(q − 1)
.

E. The classes of γ = diag(λ,1,1), λ ∈ k∗, λ �= 1. They have order d = ordk∗(λ). The fixed
points are P1 and the whole line L1; the invariant lines are L1 (of exponent 1) and every line
through P1 (of exponent d).

The subtypes are parameterized by divisors d > 1 of q − 1, and for any such d

cd = ϕ(d)

q(q − 1)(q2 − 1)
.

F. The classes of γ = diag(λ,μ,1), λ,μ ∈ k∗ \ {1}, λ �= μ. They have three fixed points
P1,P2,P3 and three invariant lines L1,L2,L3 of respective exponent d = ordk∗(μ), e =
ordk∗(λ), f = ordk∗(λ/μ). The order of γ is m = lcm(d, e) = lcm(d, f ) = lcm(e, f ).

The subtypes are parameterized by the set SF of triples (d, e, f ) of divisors of q −1 satisfying
d � e � f > 1 and lcm(d, e) = lcm(d, f ) = lcm(e, f ). For any such triple

c(d,e,f ) = ϕ(m)ϕ(h)ψ(H)

δd,e,f (q − 1)2
,

where m = lcm(d, e), (def )/m2 = hH is the unique decomposition of this divisor of m into a
product of positive divisors h, H satisfying respectively

v�(h) < v�(m), v�(H) = v�(m),

for any prime divisor � of (def )/m2; also, ψ is the multiplicative function determined by
ψ(�r) = (� − 2)�r−1 for any prime power and

δd,e,f =
{1, if d > e > f,

2, if d = e > f,

6, if d = e = f.

G. The classes of γ = diag(B2,1), where B2 ∈ GL2(k) has irreducible characteristic polyno-
mial. If α ∈ k2 \k is an eigenvalue of B2, the order of γ is de, where d is the least positive divisor
of q + 1 such that αd ∈ k, and e = ordk∗(αd). The fixed points are P3,P ,σ (P ), where P ∈ L3
has degP = 2. The only invariant line is L3 and it has exponent d .

The subtypes are parameterized by pairs (d, e) of respective positive divisors of q + 1 and
q − 1, with d > 1. For any such pair,

c(d,e) = δd,eϕ(d)ϕ(e)

2(q2 − 1)
, δd,e =

{1 if d odd,

0 if d even and e | (q − 1)/2,
2 if d even and e � (q − 1)/2.
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H. The classes of γ = B3, where B3 ∈ GL3(k) has irreducible characteristic polynomial. If
α ∈ k3 \ k is an eigenvalue of B3, the order of γ is the least positive integer d such that αd ∈ k,
which is a divisor of q2 + q + 1. There are three fixed points, that form a G-linear arrangement
of dimension 0, exponent 1 and G-degree 3. There are three invariant lines, that form a G-linear
arrangement of dimension 1, exponent d and G-degree 3.

The subtypes are parameterized by positive divisors d > 1 of q2 + q + 1, and for any such d

cd = ϕ(d)

3(q2 + q + 1)
.

4.3. Explicit computations

In Tables 1, 2 we display the Hasse diagram of the poset P(α) associated to each subtype.
The subtypes are determined by the different values of the exponents of the nodes of this poset,
indicated in the fourth column. The nodes of G-degree one are represented by • and labeled
with the value of expV . The nodes with greater G-degree are represented by ◦ and labeled with
expV (degV ). The value of dimV is given by the vertical level of the node (of height 0,1 or
0,1,2) inside the poset; when there is some ambiguity we write the dimension of a concrete
level in the left side of the poset.

We have carried out the tasks (1), (2), (3) mentioned in the last section, and this allows us to ap-
ply Theorem 3.4 to compute the generating function of t1(n), t2(n), t1(n), t2(n). For t1(n), t2(n)

this is achieved in Theorems 4.1 and 4.2, where we split the formula of Theorem 3.4 into partial
terms according to the different types of the elements of C.

Theorem 4.1. The numbers t1(n) split into the sum of four terms:

t1(n) = t1,A(n) + t1,B(n) + t1,C(n) + t1,D(n),

each term having the following generating function:∑
n�0

t1,A(n)xn = 1

q(q2 − 1)
fP1(x),

∑
n�0

t1,B(n)xn = 1

q
(1 + x)fA1

(
xp
)
,

Table 1
Types, subtypes and posets P(α) for γ ∈ PGL2(k)

Type γ P(α) Subtypes

A 1 dim 1 • 1

B

(
1 1
0 1

)
•
•

1

p

C diag(λ,1)
λ �= 1 •

•
•1 1

d

�� d | q − 1, d > 1

D B2
•
◦

d

1 (2)
d | q + 1, d > 1
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Table 2
Types, subtypes and posets P(α) for γ ∈ PGL3(k)

Type γ P(α) Subtypes

A 1 dim 2 • 1

B diag

((
1 1
0 1

)
,1

)
•
•

dim 1 1

p

C

⎛
⎝1 1 0

0 1 1
0 0 1

⎞
⎠

•

•

•
•
•

1

p

1

2

4

p > 2 p = 2

D diag

((
1 1
0 1

)
, λ

)
λ �= 1 •

•
•
•
•

1 1

p d

pd

��
��

d | q − 1, d > 1

E diag(λ,1,1)
λ �= 1 •

•

•
1

1

d

�� d | q − 1, d > 1

F diag(λ,μ,1)

λ,μ �= 1, λ �= μ • • •
• • •

•

1 1 1

d

e
f

m

�� ��
�

�
�
�

�
�

�
�

d > e > f

• • •
•

•

1 1 1

f

m

��

�
�

�
�
��

d = e > f

• • •

•

1 1 1

m

�
�
��

�
�
��

d = e = f

(d, e, f ) ∈ SF

m = lcm(d, e)

G diag(B2,1)
•

•

◦
•

1

d

de

1 (2)�
��

e > 1
•

•

◦1

d

1 (2)�
�
�

e = 1

d | q + 1, d > 1
e | q − 1

H B3

•

◦dim 0

d

1 (3)

d | q2 + q + 1
d > 1

∑
n�0

t1,C(n)xn = (1 + x)2

2(q − 1)

∑
d|q−1, d>1

ϕ(d)fA1\S(1)

(
xd
)
,

∑
n�0

t1,D(n)xn = 1 + x2

2(q + 1)

∑
d|q+1, d>1

ϕ(d)fP1\S(2)

(
xd
)
.

Theorem 4.2. Let L, L′ be two intersecting lines of A2. The numbers t2(n) split into the sum of
eight terms:

t2(n) = tA(n) + tB(n) + tC(n) + tD(n) + tE(n) + tF (n) + tG(n) + tH (n),

each term having the following generating function:
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∑
n�0

tA(n)xn = fP2(x)

q3(q3 − 1)(q2 − 1)
.

∑
n�0

tB(n)xn = 1

q3(q − 1)
fP1(x)fA2

(
xp
)
.

According to p > 2 or p = 2 we have respectively∑
n�0

tC(n)xn = 1 + x

q2
fP2\S(1)

(
xp
)
, or

∑
n�0

tC(n)xn = 1 + x

q2
fA1

(
x2)fA2

(
x4).

∑
n�0

tD(n)xn = (1 + x)2fA1(xp)

q(q − 1)

∑
d|q−1, d>1

ϕ(d)fA1\S(1)

(
xd
)
fA2\L

(
xpd
)
.

∑
n�0

tE(n)xn = (1 + x)fP1(x)

q(q2 − 1)(q − 1)

∑
d|q−1, d>1

ϕ(d)fA2\S(1)

(
xd
)
.

∑
n�0

tF (n)xn = (1 + x)3

(q − 1)2

( ∑
(d,e,f )∈SF , d>e>f

ϕ(m)ϕ(h)ψ(H)

· fA1\S(1)

(
xd
)
fA1\S(1)

(
xe
)
fA1\S(1)

(
xf
)
fA2\(L∪L′)

(
xm
)

+
∑

(d,e,f )∈SF , d=e>f

1

2
ϕ(m)ϕ(h)ψ(H)fA1\S(1)

(
xf
)
fA2\S(1)

(
xm
)

+
∑

(d,e,f )∈SF , d=e=f

1

6
ϕ(m)ψ(m)fP2\S(13)

(
xm
))

.

∑
n�0

tG(n)xn = (1 + x)(1 + x2)

2(q2 − 1)

( ∑
d|q+1, d>1, d odd

ϕ(d)fP2\S(1,2)

(
xd
)

+
∑

d|q+1, e|q−1, d,e>1

δd,eϕ(d)ϕ(e)fP1\S(2)

(
xd
)
fA2\S(1)

(
xde
))

.

∑
n�0

tH (n)xn = 1 + x3

3(q2 + q + 1)

∑
d|q2+q+1, d>1

ϕ(d)fP2\S(3)

(
xd
)
.

Theorems 4.1 and 4.2 yield a good general approximation to t1(n) and t2(n) as polynomials
in q .

Corollary 4.3. For n � 6 we have t1(n) = qn−3 + O(q n
2 �−1).

For n � 8 we have:

t2(n) = q2n−8 + q2n−9 + 2
(
q2n−10 + q2n−11 + · · · + qn−2)+ 3qn−3 + O

(
qn−4).

Proof. The explicit formulas of Section 1 show that t1,A(n) = qn−3, and that t1,B(n), t1,C(n),
t1,D(n) are polynomials in q of degree less than q n

2 �.
For N = 2 we have

tA(n) = aP2(n)

3 3 2
= q2n−9(q2 + 1)

.

q (q − 1)(q − 1) q − 1
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Table 3
Value of t2(n) for 4 � n � 7

n t2(n)

4 2q + 9 + [2]3|q−1 + [1]p=3 − [8]p=2

5
2q2 + 6q + 6 + [4]3|q−1 + [2]6|q−1 + [6]4|q−1 + [2]4|q+1 + [4]5|q2−1

+ [2]p=5 + [1]p=3 − [2]p=2,3|q+1

6
q4 + 2q3 + 6q2 + 8q + [3q + 5]3|q−1 + [q − 1]3|q+1 + [q + 9]4|q−1 + [2]4|q+1

+ [10]6|q−1 + [2]6|q+1 + [12]5|q−1 + [4]5|q+1 + [3]p=5 − [2q + 1]p=2 + [4]p=2,3|q−1

7

q6 + q5 + 3q4 + 6q3 + 11q2 + 3q − 5 + [2q2 + 10q + 4]3|q−1 + [2q + 16]6|q−1
+ [2]6|q+1 + [5q + 9]4|q−1 + [q + 3]4|q+1 + [4]12|q−1 + [20]5|q−1 + [4]5|q+1
+ [8]7|q−1 + [6]7|q+1 + [2]7|q2+q+1 + [2]p=7 + [3]p=5 + [q2 + 4q + 1]p=3

+ [2]p=3,4|q−1 − [3q2 + 3q − 2]p=2 + [2q + 4]p=2,3|q−1

Also, the contribution to tE(n) of the γ -invariant rational n-sets contained in the set L1 ∪ {P1}
of fixed points of any γ of type E is

1

q(q − 1)(q2 − 1)

∑
d|q−1, d>1

ϕ(d)
(
aP1(n) + aP1(n − 1)

)= qn−4(q2 − q − 2)

q − 1
.

The contributions of all other terms are expressed as polynomials in q of degree less than
n − 3. �

The formulas of Theorems 4.1 and 4.2 involve the functions fV (x) for several locally closed
subvarieties V of P1 and P2. As mentioned in the last section, one can express all these functions
in terms of fPr (x), r = 0,1,2, by using the Möbius function of a certain poset. However, in our
lower dimension cases, in order to find a concrete expression for t1(n), t2(n) it is better to use
the explicit computations of the coefficients aV (n) of fV (x) that we found in Section 1 for these
particular varieties. In Table 3 we display the exact value of t2(n) for 4 � n � 7, obtained by this
method. The computation of tF (n) requires some extra work that is left to the reader. Also, the
reader will check easily that t2(1) = 1, t2(2) = 2, t2(3) = 6. Given a condition P and an integer
x ∈ Z, the expression [x]P that we use in Table 3 means:

[x]P =
{

x, if P is true,
0, otherwise.

We end this section with a remark that might lead to further work on this topic. We showed in
[9] that the numbers of PGL3(k)-orbits of pointwise rational n-sets of the plane can be expressed
as a polynomial in q with rational coefficients. In contrast to this situation, Theorems 4.1, 4.2
and the computations of Section 1 yield formulas for t1(n), t1(n), t2(n), t2(n) as a polynomial
in q with integer coefficients. One may speculate if the numbers tN (n), tN (n) have this property
for all N,n.

5. Proper linear varieties with respect to a fixed automorphism

In this section we prove Theorem 3.2. We fix once and for all a k-automorphism of PN ,
represented by some γ ∈ PGLN+1(k).

Let L = L(γ ) be the poset of γ -invariant irreducible linear subvarieties of PN(k̄), ordered
by inclusion. This poset is not locally finite. For instance, if L is a plane of fixed points of γ
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and P ∈ L, the interval [P,L] is not finite. For the basic concepts and notations about posets we
address the reader to [12].

Definition 5.1. A node L ∈ L is said to be proper if it is maximal among all nodes with the same
exponent:

expL < expM, ∀M ∈ L such that L < M.

We denote by Lpr the subposet of L formed by the proper nodes.

Note that PN is always proper. In our example above, the points P and lines M of a plane L

of fixed points of γ are not proper, because they have the same exponent as L: expP = expM =
expL = 1.

Our first aim is to show that Lpr is a finite poset. To this end we introduce some terminology.
We fix a representative of γ in GLN+1(k), which we still denote by γ , and we use the same
notation for γ -invariant subvarieties of PN(k̄) and their affine cones, which are γ -invariant linear
subspaces of AN+1(k̄).

Let EV = {λ1, . . . , λs} be the set of eigenvalues of γ . Recall the decomposition

AN+1(k̄) = L1 ⊕ · · · ⊕ Ls, Li = Ker(γ − λi)
mi , i = 1, . . . , s,

where mi is the maximum exponent such that (x − λi)
mi divides the minimal polynomial of γ .

Each Li is γ -invariant and expLi = pδi , with δi = 	logp(mi)
.
Let DN be the poset of positive integers ordered by divisibility. Let B be the poset of non-

empty subsets of EV ordered by inclusion. For each Λ ∈ B we define two invariants, δ(Λ),
D(Λ), in the form of two morphisms of posets

δ : B → N, D : B → DN,

δ(Λ) := max
{⌈

logp(mi)
⌉ ∣∣ λi ∈ Λ

}= max{δi | λi ∈ Λ},
D
({λi1, . . . , λit }

) := ord
(
diag(λi1 , . . . , λit )

)= min
{
d
∣∣ λd

i1
= λd

i2
= · · · = λd

it

}
. (10)

Note that D(Λ) is always prime to p.

Definition 5.2. We say that Λ ∈ B is D-proper if Λ is maximal among all nodes with the same
value of D:

D(Λ) < D(Δ), ∀Δ ∈ B such that Λ < Δ.

We denote by Bpr the subposet of the D-proper nodes of B.

The following remark is obvious.

Lemma 5.3. The γ -invariant linear spaces of AN+1(k̄) are all of the form M = M1 ⊕ · · · ⊕ Ms ,
with Mi ⊆ Li γ -invariant. If each Mi has exponent expMi = pεi , εi � δi , then expM =
pεD(ΛM), where ε = max{εi} and ΛM := {λi ∈ EV | Mi �= 0}.

For any 0 � ν � δi the subspace Ker(γ − λi)
pν

is the maximum γ -invariant subspace of Li

with exponent pν . The following result follows immediately.
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Lemma 5.4. For each pair (Λ,ν) with Λ ∈ B and 0 � ν � δ(Λ), consider the γ -invariant linear
subvariety of PN(k̄):

L
(ν)
Λ :=

⊕
λ∈Λ

Ker(γ − λ)p
ν

.

Then exp(L
(ν)
Λ ) = pνD(Λ), and this subvariety L

(ν)
Λ contains all γ -invariant subvarieties M

such that ΛM ⊆ Λ and vp(expM) � ν.

Note that for any Λ ∈ B with invariants D = D(Λ), δ = δ(Λ), we have a chain of nodes of
the poset L with respective exponents D,pD, . . . ,pδD:

L
(0)
Λ < L

(1)
Λ < · · · < L

(δ)
Λ .

Theorem 5.5. A node L ∈ L is proper if and only if L = L
(ν)
Λ for some Λ ∈ B which is D-proper,

and some 0 � ν � δ(Λ).

Proof. Suppose Λ is D-proper and let us show that L
(ν)
Λ is proper. Suppose that L

(ν)
Λ ⊆ M for

some M ∈ L with exp(L
(ν)
Λ ) = exp(M). In particular D(Λ) = D(ΛM) and this implies Λ = ΛM

because Λ is D-proper. Hence, M = L
(ν)
Λ by Lemma 5.4.

Conversely, suppose M proper with expM = pεD(ΛM). By Lemma 5.4 we have M ⊆ L
(ε)
ΛM

and this implies M = L
(ε)
ΛM

because M is proper. Finally, ΛM is proper because ΛM � Λ, with

D(ΛM) = D(Λ) would lead to M = L
(ε)
ΛM

� L
(ε)
Λ and M would not be proper. �

Corollary 5.6. Let δ = δ(EV) and let [0, δ] be the poset of integers 0 � ν � δ ordered by size.
We have a natural identification:

Lpr ↪→ [0, δ] × Bpr,

with image the subposet containing the nodes (ν,Λ) with ν � δ(Λ). In particular, Lpr is a finite
poset. Moreover, Lpr is a lattice.

Proof. The first statement is an immediate consequence of Theorem 5.5. In order to prove that
Lpr is a lattice it is sufficient to check that the subposet Bpr is a lattice. The total set 1̂ is al-
ways proper; hence, by [12, 3.3.1] it is sufficient to check that the intersection of two D-proper
elements is D-proper. Consider pairwise disjoint sets Λ0,Λ1,Λ2 ∈ B, such that Λ0 ∪ Λ1 and
Λ0 ∪ Λ2 are D-proper. Let us show that Λ0 is D-proper. If D(Λ0 ∪ {λ}) = D(Λ0), then

D(Λ0 ∪ Λ1 ∪ {λ}) = D(Λ0 ∪ Λ1), D(Λ0 ∪ Λ2 ∪ {λ}) = D(Λ0 ∪ Λ2).

Since these sets are D-proper we have λ ∈ (Λ0 ∪ Λ1) ∩ (Λ0 ∪ Λ2) = Λ0. �
We finish our study of the poset Lpr with two basic properties of the proper linear varieties.

Lemma 5.7. Two proper varieties of the same exponent are either disjoint or coincident.

Proof. Suppose that L,M ∈ Lpr have both exponent d , and L ∩ M �= ∅. The linear irreducible
subvariety generated by L and M is γ -invariant; if we check that it has still exponent d we shall
have necessarily L = M by the properness of L and M . Now, all non-zero vectors of the affine
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cone of L are eigenvalues of the linear mapping γ d ; this implies that γ d(x) = λx on this affine
cone, for some uniform λ ∈ k̄. Similarly, γ d(y) = μy on the affine cone of M for some μ ∈ k̄.
Since these two cones have some non-zero vector in common we have necessarily λ = μ and γ d

is the identity on the linear irreducible subvariety generated by L and M . �
Lemma 5.8. Let L ∈ Lpr and suppose that for some point P ∈ L the γ -orbit of P has e elements,
with e < expL. Then, there is a proper linear variety M ∈ Lpr with exponent e such that P ∈
M � L.

Proof. The positive integer e is the minimum exponent such that P is a fixed point of γ e. Now,
the linear irreducible subvariety M generated by Oγ (P ) is γ -invariant and it is pointwise fixed
by γ e. Hence, e = ord(γ|M) = expM .

Embed M in a (unique) proper subvariety with the same exponent:

M ⊆ M ′, expM ′ = e, M ′ ∈ Lpr.

Since L is proper and Lpr is a lattice, we have necessarily M ′ ⊆ L. �
We are ready to prove Theorem 3.2. The poset LG of G-linear arrangements (cf. Section 3.1)

can be identified to the quotient poset of L under the Galois action. More precisely, we have an
onto morphism of posets

L → LG, L �→ L ∪ σ(L) ∪ · · · ∪ σ r−1(L), r = degL.

Moreover, it follows easily from Lemma 5.7 that a node V ∈ LG is proper in LG if and only if
one (actually all) of the irreducible components L is proper in L. Hence, we have an induced
onto morphism of posets Lpr → P and we deduce from Corollary 5.6 that P is a finite lattice;
this proves item (1) of Theorem 3.2.

Item (2) of Theorem 3.2 is a consequence of Lemma 5.8 and item (3) is a consequence of
Theorem 1.2 and the following proposition.

Proposition 5.9. Let V be a proper G-linear arrangement of G-degree r and let L be one of its
irreducible components. Then, Z(V/k, t) = Z(L/kr , t

r ).

Proof. We want to prove the identity of formal series:∑
m�1

|V (km)|
m

tm =
∑
n�1

|L(krn)|
n

trn. (11)

By Lemma 5.7 the varieties σ i(L) are pairwise disjoint, because they are all proper and have the
same exponent. Since,

P ∈ V (km) ⇒ P ∈ σ i(L), σm(P ) = P ⇒ P ∈ σ i(L) ∩ σ i+m(L),

we deduce that V (km) = ∅ if r � m; hence, we can change m to rn in the left side of (11), and the
equality holds because |V (krn)| = r|L(krn)|. �
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