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Hypothermia is potently neuroprotective but poor mechanistic understanding has restricted its clinical use.
Rodent studies indicate that hypothermia can elicit preconditioning, wherein a subtoxic cellular stress confers
resistance to an otherwise lethal injury. The molecular basis of this preconditioning remains obscure. Here we
explore molecular effects of cooling using functional cortical neurons differentiated from human pluripotent
stem cells (hCNs). Mild-to-moderate hypothermia (28–32 °C) induces cold-shock protein expression and mild
endoplasmic reticulum (ER) stress in hCNs, with full activation of the unfolded protein response (UPR). Chemical
block of a principal UPR pathway mitigates the protective effect of cooling against oxidative stress, whilst pre-
cooling neurons abrogates the toxic injury produced by the ER stressor tunicamycin. Cold-stress thus precondi-
tions neurons by upregulating adaptive chaperone-driven pathways of the UPR in amanner that precipitates ER-
hormesis. Our findings establish a novel arm of neurocryobiology that could reveal multiple therapeutic targets
for acute and chronic neuronal injury.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Therapeutic cooling offers robust protection against ischaemic brain
damage, but its practical challenges and risks have limited its applica-
tion to specific patient groups (Choi et al., 2012; Yenari and Han,
2012). Advancing our insight into cooling-induced neuroprotection at
the cellular level could provide new molecular targets to bypass the
need for cooling—whilst expanding its therapeutic potential. Precondi-
tioning describes the tolerance achieved against an intensively toxic in-
sult by subjecting cells or tissue to a sublethal stress (Stetler et al., 2014).
Neuronal preconditioning can be effected by many and varied stimuli,
including hypothermia (Dirnagl et al., 2003; Yuan et al., 2004; Stetler
et al., 2014). In rodents, this cooling-induced tolerance requires de
novo protein synthesis (Nishio et al., 2000) — a fundamental arm of
the cold-shock response (Fujita, 1999), for which data in human neu-
rons is lacking. Depending on the depth of cooling, this response leads
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to cell-cycle arrest with shut-down of transcription and translation
(Yenari and Han, 2012). Simultaneously, a subset of highly conserved
‘cold-inducible’ RNA chaperones including RNA binding motif 3
(RBM3) and cold-inducible RNA binding protein (CIRBP) is rapidly
upregulated (Lleonart, 2010). These ‘cold-shock’ proteins mediate
important survival functions including facilitated translation of essential
mRNAs and suppression of apoptosis (Lleonart, 2010; Saito et al., 2010).

Aside from induction of cold-shock proteins however, little is known
of other fundamental cellular stress pathways in relation to cooling and
their potential relevance to hypothermic preconditioning (Hofman
et al., 2012; van der Harg et al., 2014). Hypothermia can induce protein
unfolding and disrupt the cell secretory pathway (Saraste et al., 1986;
Liu et al., 1994; Fujita, 1999), both ofwhichwould result in endoplasmic
reticulum (ER) stress (Kim et al., 2008). However, mammalian cell lines
have produced conflicting data regarding the ability of cooling to trigger
ER stress and downstream events coordinated by the unfolded protein
response (UPR) (Hofman et al., 2012; van der Harg et al., 2014).
Although this may relate to the variable depths of hypothermia studied,
it likely also reflects the resistance of immortal cell types to physiologi-
cal stress (Abdel Malek et al., 2015; Cerezo et al., 2015). Furthermore,
the ER-UPR cascade as a whole has never been explored at clinically-
relevant hypothermic temperatures. Potentially, such a moderate level
of cold-stress might bring about an adaptive proteostatic response in
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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post-mitotic neurons (Mendes et al., 2009; Fouillet et al., 2012). Here
we test this hypothesis by characterizing the cold-shock response to
protective hypothermia in functional cortical neurons differentiated
from human pluripotent stem cells (hCNs) (Bilican et al., 2014),
using this model to explore the molecular basis of hypothermic
preconditioning.

2. Materials and Methods

2.1. Human Brain Tissue

Human post-mortem cortical brain tissue was obtained under full
ethical and Institutional Review Board approval of the University of
Edinburgh. Adult samples (healthy control, 17 y) were provided by
the MRC Edinburgh Brain & Tissue Bank. Foetal samples were procured
after elective surgical abortion (gestation 16w),with full ethics permis-
sion of the NHS Lothian Research Ethics Committee (REC 08/S1101/1).
Post-mortem samples were included as positive (foetal) and neg-
ative (adult) controls for RBM3 and CIRBP expression, which is
developmentally-regulated in the human cortex (Miller et al., 2014
and The Allen Institute for Brain Science).

2.2. Cell Culture

All culture experiments were performed using hCNs derived from
human pluripotent stem cell lines. Two human embryonic stem cell
(hES) lines (H9, female, WiCell, Madison, WI and Shef 4, male, UK
Stem Cell Bank, designated HES1 and HES2) were obtained under full
ethical and Institutional Review Board approval of the University of
Edinburgh. One human induced pluripotent stem cell (iPS) line (IPS1,
healthy female control) was reprogrammed in-house after obtaining
written informed consent and ethics permission (REC/10/S1103/10).
hCN differentiation and immunocytochemistry protocols are described
in Bilican et al. (2014). Primary antibodies (Abs) included: βIII-tubulin
(mouse monoclonal, Sigma), RBM3 (rabbit monoclonal, Abcam) and
CIRBP (rabbit polyclonal, Pierce). Cell counts were performed blind to
the temperature variable.

2.3. Cooling and Multiplexed Injury Assays

Hypothermia was induced at 5 wwhen N90% of hCNs are functional
(Bilican et al., 2014; Livesey et al., 2014). Identical plates were cultured
at 28, 32 or 37 °C to simulate ‘moderate hypothermia’, ‘mildhypothermia’
or ‘normothermia’, respectively (Yenari and Han, 2012). Samples for
transcript analysis were lifted at 3 and 24 h, after which additional sam-
ples were processed for immunocytochemistry and biochemistry. For
oxidative injury experiments, neuronswere switched tominimalmedi-
um (MiM (Gupta et al., 2013)) containing no antioxidants 12 h prior to
temperature shift as above. After 24 h, H2O2 (diluted in MiM) was
applied at 0, 50, 100 or 200 μM via 50% media exchange. Control wells
received MiM with vehicle only. After a further 24 h at the respective
temperatures, culture media was harvested for the cytotoxicity assay
(CytoTox-One™, Promega), and cells lysed for the viability assay
(CellTiter-Glo®, Promega). LDH release (cytotoxicity) was read
fluorometrically (excitation 560 and emission 590 nm), whilst ATP pro-
duction (viability) was measured via luminescence (Promega Glomax).
Readings were taken in triplicate and averaged for each condition, after
subtracting values for MiM only (fluorescence) and no cell control
(luminescence). The derived ‘injury ratio’ (cytotoxicity in relative fluo-
rescent units (RFU) divided by viability in relative luminescent units
(RLU)) obtained for each well of cells adjusted for any potential inter-
well variation in cell number. To evaluate baseline toxicity of
tunicamycin (Tm) and protein kinase R (PKR)-like ER kinase (PERK)
inhibitor, neurons were switched to MiM 12 h before a 24 h exposure
to these compounds at 37 °C followed by multiplexed injury analysis
as above.
2.4. Quantitative Real-Time PCR (qRT-PCR)

RNA extraction, cDNA synthesis and qRT-PCR were performed as
described (Bilican et al., 2014) using primers listed in Supplementary
Materials and Methods. Validation of reference target stability in hCNs
under hypothermic conditions was determined with a combination
of geNorm (qbase+, Biogazelle) and NormFinder (Excel) analysis
(Vandesompele et al., 2002). qRT-PCR reactions were performed in
triplicate and average target transcript expression was normalized to
the geometric mean of eukaryotic translation initiation factor 4A2
(EIF4A2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression for each sample.
2.5. Quantitative Western Analysis

Cell pellets were harvested in ice-cold Tris-buffered saline (TBS)
containing protease inhibitors (cOmplete ULTRA, Roche), and where
necessary, phosphatase inhibitors (PhosSTOP, Roche). Post-mortem
samples were divided into 200–300 mg pieces at 4 °C. Protein was
extracted on ice in radioimmunoprecipitation assay (RIPA) buffer
(50 mM Tris pH 8, 150 mM NaCl, 1% Triton-X 100, 5 mM ethylenedi-
aminetetraacetic acid (EDTA), 0.5%Na·deoxycholate (w/v), 0.1% sodium
dodecyl sulphate (SDS)) containing protease inhibitors (as above, plus
100 μM phenylmethanesulfonylfluoride (PMSF), Fluka BioChemika).
Tissue samples required homogenization (Precyllys®24). Lysates were
ultracentrifuged (20 min, 50,000 ×g, 4 °C, Beckman). RIPA-insoluble
pelletswere further extracted for 20min in 2% SDS RIPA followed by re-
peat ultracentrifugation to isolate nuclear proteins. Protein concentra-
tion was measured (BCA assay, Pierce) and samples boiled prior to
SDS-polyacrylamide gel electrophoresis (PAGE) (4–20% gradient gels,
Thermoscientific). Proteins were transferred onto Immobilon®-FL
polyvinylidene fluoride (PVDF) membranes (Millipore) and blocked
for 45 min at room temperature (Odyssey™ Blocking Buffer, LI-COR®
Biosciences). Membranes were incubated overnight at 4 °Cwith prima-
ry Abs: activating transcription factor 6 (ATF6 at 1:100, mouse mono-
clonal, Abcam), binding immunoglobulin protein (BiP; also known as
glucose-regulated protein, 78 kDa (GRP78) or heat shock 70 kDa
protein 5 (HSPA5) at 1:1000, rabbit monoclonal, Abcam), CIRBP
(at 1:500, rabbit polyclonal, Proteintech), eukaryotic initiation factor
2α (eIF2α at 1:1000, mouse monoclonal, Abcam), phospho-eIF2α
(p-eIF2α at 1:100, rabbit monoclonal, Cell Signalling), PERK (at 1:100,
rabbit monoclonal, Cell Signalling), RBM3 (at 1:100, rabbit monoclonal,
Abcam), GAPDH (at 1:10,000, mouse monoclonal, Calbiochem) or het-
erogeneous nuclear ribonucleoprotein (hnRNP) A1 (at 1:1000, mouse
monoclonal, Santa Cruz), then probed for 1 h at room temperature
with Fluorescent conjugated secondary Abs (IRDye®680RDGoat (poly-
clonal) Anti-Rabbit IgG (H + L) and IRDye® 800CW Goat (polyclonal)
Anti-Mouse IgG (H + L), LI-COR® Biosciences). Blots were exposed
for 10 min (at 700 nm and/or 800 nm, LI-COR® Odyssey Fc Dual-
Mode Imaging System), with band intensities quantified in Image
Studio. Samples for each independently plated batch of cells were run
in triplicate and average intensity readings were normalized to their
respective loading control expression or total eIF2α expression (for
p-eIF2α quantification).
2.6. XBP1 Splicing Assay

hCNs were treated for 24 h with hypothermia or Tm (0.3 μg/ml).
qRT-PCR was performed as above. Conventional RT-PCR was per-
formed using Quick-Load® Taq 2X Master Mix (New England Biolabs)
and a BioRad C1000 Thermal Cycler (annealing temperature 60 °C).
GAPDH and c-Myc (MYC) were included for reference and to confirm
a stress response respectively. Products were resolved on 2.5% agarose
gels.
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2.7. Media and Supplements

Components were purchased from Invitrogen unless otherwise
stated. hCN differentiation medium is described elsewhere (Bilican
et al., 2014; Livesey et al., 2014). MiM comprised 90% salt–glucose–
glycine solution (Bading et al., 1993) with 10%Minimal Eagle's Medium
(+Earle's,−Glutamine) and0.5% Penicillin–Streptomycin. Tm(0.3 μg/ml,
Sigma) and PERK inhibitor (GSK2606414, 500 nM, Calbiochem) were
applied from the start of the temperature shift (they were present at
these concentrations throughout the 24 h preconditioning phase and
were then diluted by 50% upon the addition of H2O2 for the 24 h injury
phase).

2.8. Statistical Analysis

Pairwise correlations were performed by two-tailed Pearson corre-
lation. Remaining analyses were performed using linear mixed models
in Stata SE (Version 9.2, Stata Corp, TX, USA)with random effects for in-
tercept by batch, andwhere necessary, random effects for coefficient by
concentration or time.N denotes the number of individual cell lines and
n describes the total number of independently differentiated batches of
hCNs used as the statistical n for each experiment (the number of inde-
pendent observations). The number (nline) of batches derived from each
cell line is then stated in parenthesis to show the contribution of each
biological entity to the pooled total. Unless otherwise stated, data
are presented as standardized point estimates (SPE) + standardized
estimated standard error (SESE) after normalizing to control values
(normothermic or untreated cells). Asterisks denote significance of
the test statistic: *P b 0.05, **P b 0.01, ***P b 0.001, ****P b 0.0005.

3. Results

3.1. Human Neurons Exhibit an Archetypal Cold-Shock Response

To confirm the utility of hCNs to study cryobiological phenomena –
and noting that hallmark cold-shock protein induction has not previ-
ously been reported in human neurons – we first tested their capacity
to elicit this response at mild-to-moderate hypothermic temperatures
(Danno et al., 1997; Fujita, 1999; Chip et al., 2011; Yenari and Han,
2012; Tong et al., 2013; Peretti et al., 2015). Within 24 h of cooling,
RBM3 and CIRBP transcripts were both increased in hCNs at 28 °C and
32 °C relative to 37 °C, with a concomitant increase in the proportion
of RBM3- and CIRBP-positive cells (Fig. 1A and B). RBM3 displayed a
more acute and robust response to hypothermia than CIRBP, and both
proteins exhibited a predominantly nuclear expression pattern
(Fig. 1C and D). Biochemical analysis confirmed upregulation of these
chaperones in response to cooling (Fig. 1E and F), and correlation of
RBM3 and CIRBP transcript levels at each temperature was supportive
of their co-regulation under hypothermic conditions (Fig. 1G). In addi-
tion, hypothermic hCNs exhibited a time- and temperature-dependent
induction of immediate early transcripts c-Fos (FOS) and c-Jun (JUN)
(Yenari and Han, 2012) (Fig. S1 available online). Together, these
findings are consistent with a physiological cold-shock response in
hCNs.

3.2. Cooling Induces ER Stress in Human Neurons with Activation of
All UPR Branches

Since cold-shock can activate PERK (Hofman et al., 2012) and JUN
(Fig. S1), both of which are components of the UPR, we postulated
that cooling could trigger ER stress— the principal driver of UPR activity
(Walter and Ron, 2011). We tested this using Tm as a positive control
(Lin et al., 2007). BiP and 94 kDa glucose-regulated protein (GRP94)
are key chaperones that respond to ER stress and regulate protein fold-
ing (Walter and Ron, 2011). We observed a temperature-dependent
induction of BiP transcript, at an order of magnitude less than that
produced by Tm (Fig. 2A), whilst GRP94 transcript was elevated at
24 h only in response to Tm treatment (Fig. S2A). BiP protein also
showed an increasing trendwith cooling (Fig. 2B and D). ER stress initi-
ates a tripartite signalling cascade via 3 ERmembrane-associated signal
transducers (Walter and Ron, 2011). Once activated by autophosphory-
lation, the first of these transducers (inositol requiring enzyme 1α
(Ire1α)) directs non-conventional splicing of its downstream target,
x-box binding protein-1 (XBP1) (Lin et al., 2007). Spliced XBP1
(XBP1s) regulates transcription of several UPR target genes including
chaperones and ER-associated degradation (ERAD) components which
serve to alleviate ER stress (Hetz and Mollereau, 2014). We found a sig-
nificant upregulation of total XBP1 and Ire1α (ERN1) transcripts at 28
and 32 °C relative to 37 °C (Figs. 2C and S2B). We also observed an in-
crease in XBP1s transcript after cooling, again to a lesser extent than
that produced by Tm (Fig. 2E and F). A second UPR pathway involving
cleavage of ATF6 was induced at 28 °C (Hetz and Mollereau, 2014)
(Fig. 2D). ATF6 activates transcription of ERAD genes and XBP1 (Hetz
and Mollereau, 2014). Within the third pathway, total PERK expression
decreased after 24 h cooling and eIF2α was inactive at this time point
according to biochemical analysis of its phosphorylated form
(Fig. S2C) (Rutkowski et al., 2006). There was however a significant in-
crease in their downstream targets, activating transcription factor 4
(ATF4), DNA damage-inducible transcript 3 (DDIT3, or CHOP) and
growth arrest and DNA damage 34 (GADD34) at hypothermic temper-
atures (Figs. 2G, H, and S2E). In summary, these findings demonstrate
a mild ER stress in cooled hCNs, sufficient to activate all branches
of the UPR. To our knowledge, this is the first description of a full UPR
cascade in cells under hypothermic conditions.

3.3. Hypothermic Preconditioning of Human Neurons Requires
UPR-Driven ER-Hormesis

Mild ER stress with UPR activation inhibits apoptosis (Rutkowski
et al., 2006) andpre-conditionsneurons to resistmore stressful insults—
an effect termed ER-hormesis (Mendes et al., 2009; Fouillet et al., 2012).
To determine whether ER preconditioning contributes to hypothermic
protection of hCNs we chemically modified the ER-UPR cascade during
the pre-cooling phase, prior to inducing a standard oxidative stress pro-
tocol. PERK inhibitor was used to block the third UPR pathway, whilst
Tmwas added to induce ER stress (Lin et al., 2007). First we determined
dose response curves for each compound in normothermic hCNs to
identify concentrations that were non-toxic at baseline (Fig. S3).
Multiplexed injury analysis (Materials and Methods) was then applied
to hCNs exposed to increasing concentrations of H2O2, after pre-
incubation at 28 °C or 37 °C, with or without PERK inhibitor or Tm. As
expected, moderate hypothermia was protective of hCNs (Fig. 3A and
B). However, PERK inhibition increased hCN injury at each temperature,
abrogating the protective effect of cooling at all but the highest concen-
tration of H2O2 (Fig. 3A). Tm exacerbated oxidative stress-mediated
injury at 37 °C, but this effect was attenuated by pre-conditioning at
28 °C (Fig. 3B), thus directly demonstrating cooling-mediated
ER-hormesis. These results confirm that full hypothermic neuroprotec-
tion requires an intact UPR to prime the ER against intensively toxic
insults. The influence of cooling on this proteostatic cascade in hCNs is
summarized in Fig. 3C.

4. Discussion

In acute injury, mildly enhancing the UPR can rescue neurons from
programmed cell death and instigate adaptive ER preconditioning
(Hetz and Mollereau, 2014). In hCNs, PERK activity was essential for
hypothermic preconditioning against an oxidative challenge. Mild
XBP1 splicing after 24 h of cooling, together with a substantial increase
in unspliced XBP1 mRNA (Figs. 2E, F, and S2B) indicate that Ire1α and
ATF6 were active within the cooling period (Hetz and Mollereau,
2014). Moreover, the increase in BiP transcript after 24 h is consistent



Fig. 1.Mild-to-moderate hypothermia elicits a cold-shock response in hCNs. (A) RBM3 transcripts (left,N=3; n=14; nHESI =7, nHES2 =4, nIPS1 =3)with significant increases after 3 h
(32 °C P=0.011, 28 °C P=0.003) and 24 h (P b 0.0005). Cell counts for RBM3-positive nuclei (right,N=3; n=6; nHES1=4, nHES2=1, nIPS1=1,mean 37.2% (total 902 out of 2096 cells)
at 28 °C, P=0.039; mean 46.0% (total 1050 out of 2377 cells) at 32 °C, P=0.001; mean 20.8% (total 531 out 2062 cells) at 37 °C). For each independent hCN batch and temperature con-
dition, a minimum of 10 fields of view at 63× were counted (pooled from two replicate coverslips). Counts are presented asmean %+ standard error of themean (SEM). (B) CIRBP tran-
scripts (left,N=3; n=14; nHES1=7,nHES2=4,nIPS1=3, P b 0.0005 at 24 h) and cell counts (right,N=3;n=6;nHES1=4,nHES2=1,nIPS1=1,mean 48.9% (total 719 out of 1416 cells) at
28 °C; mean 52.3% (total 985 out of 1882 cells) at 32 °C; mean 13.1% (total 252 out of 1850 cells) at 37 °C, P b 0.0005). (C and D) Fluorescent micrographs of hCNs co-stained for neuronal
and cold-shock markers, scale bar = 10 μm. (E) Subcellular expression of RBM3 and CIRBP by immunoblot, alongside human foetal and adult cortex. GAPDH and hnRNP A1 are loading
controls. The stability of hnRNP A1 expression undermild hypothermic conditions in human cells has reported elsewhere (Danno et al., 1997). (F) QuantitativeWestern analysis of RBM3
and CIRBP (N=3; n ≥ 4; nHES1 ≥ 2; nHES2 =1, nIPS1=1). RBM3 expression was greatest at 28 °C (P=0.002); CIRBP expression peaked at 32 °C (P b 0.0005). (G) Correlation of RBM3 and
CIRBP transcripts (37 °C P = 0.001, 32 °C P = 0.012, 28 °C P b 0.0005). See also Fig. S1.
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with prior activation of ATF6 and splicing of XBP1 (Hetz andMollereau,
2014). Enhanced injury with PERK inhibition at 37 °C may reflect a
constitutive proteostatic function of the UPR in long-term culture —
potentially through buffering oxidative processes (Cullinan et al.,
2003). It might also explain why hypothermic induction of some PERK
branch-specific components was not observed; eIF2α phosphorylation
does occur under deep hypothermic conditions (10 °C) and contributes
to the global suppression of protein translation in mammalian cell lines
(Roobol et al., 2009; Hofman et al., 2012), but it may be undetectable
biochemically in the context of mild ER stress (Rutkowski et al., 2006).



Fig. 2.Hypothermia induces mild ER stress in hCNs with full activation of the UPR. (A) BiP transcripts after cooling (left,N=3; n=22; nHES1=11, nHES2 =6, nIPS1=5; 32 °C, P=0.006;
28 °C, P b 0.0005) or Tm treatment (right,N=3; n=8; nHES1=4, nHES2=2, nIPS1=2, P=0.004). (B) Total BiP protein expression (N=2; n=3; nHES1=2; nHES2=1; 28 °C, P=0.051).
(C) IRE1α transcripts (P b 0.01,N=3; n=14; nHES1=7, nHES2=4, nIPS1=3). (D) Immunoblots of fractionated lysates (C= cytoplasmic, H=high-detergent) fromhCNs. Note increased
BiP, full length (fATF6), and cleaved (cATF6) sitting in the high detergent fraction at 28 °C. This is consistent with nuclear translocation of cATF6 and upregulation of its target transcripts
(BiP and unspliced XBP1 — as shown in Figs. 2A, E, and S2B). (E) Gel images of RT-PCR products. Faint bands at 263 bp confirm mild splicing of XBP1 in hypothermic hCNs relative
to negative (37 °C) and positive (Tm-treated) controls. GAPDH= reference target. (F) qRT-PCR analysis of XBP1s transcript after cooling (left, N = 3; n = 22; nHES1 = 11, nHES2 = 6,
nIPS1 = 5; 28 °C, P = 0.003) or Tm-treatment (right, N = 3; n = 8; nHES1 = 4, nHES2 = 2, nIPS1 = 2, P b 0.0005). (G) CHOP transcripts after cooling (left, N = 3; n = 22; nHES1 = 11,
nHES2 = 6, nIPS1 = 5; 32 °C, P = 0.011; 28 °C, P = 0.001) or Tm treatment (right, N = 3; n = 8; nHES1 = 4, nHES2 = 2, nIPS1 = 2, P b 0.0005). (H) GADD34 transcripts (N = 3; n = 7;
nHES1 = 3, nHES2 = 2, nIPS1 = 2, 32 °C, P b 0.0005; 28 °C, P b 0.0005; Tm, P b 0.0005). See also Fig. S2.
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Equally, since PERK-mediated translational repression is subject to ho-
meostatic autoregulation by phosphatases (Lin et al., 2007), a resolving
influence of cooling on eIF2α activation is supported byhypothermic in-
duction of GADD34 in hCNs (Figs. 2H and 3C) (Ma and Hendershot,
2003). In this respect, rather than signifying the duration limit of protec-
tive cooling, the CHOP induction observed would be a pre-requisite for
GADD34-mediated negative feedback on eIF2α (Halterman et al.,
2010). Accordingly, others have highlighted the protective role of
CHOP in neuronal systems (Chen et al., 2012; Engel et al., 2013). The
fact that 24 h cooling did not increase levels of the pro-apoptoticmarker
Bax (Fig. S2E) is in line with previous studies (Yenari et al., 2002) and
further supports our conclusion that this duration and depth of hypo-
thermia produced an adaptive UPR. Potentially, cold-shock proteins
may complement this cascade by relieving translational repression
of critical mRNAs (Peretti et al., 2015), and limiting CHOP-mediated
apoptosis (Saito et al., 2010).

During an adaptive stress response UPR branches undergo complex
homeostatic self-regulation (Fig. 3C). Thus the cross-sectional UPR



Fig. 3.HypothermicUPR-mediated preconditioningof the ER protects hCNs against oxidative stress. (A)Oxidative stress-mediated injury is increased by PERK inhibitor (PI) (N=3;n=3;
nHES1=1, nHES2=1, nIPS1=1; 28 °C, P b 0.0005; 37 °C, P=0.016). Hypothermia remained protective only at 200 μMH2O2 (P=0.023). (B) H2O2 injury is increased by Tm (N=3; n=7;
nHES1=5, nHES2=1, nIPS1=1; 28 °C, P b 0.05; 37 °C, P b 0.0005). Hypothermia reduced the toxic effect of Tm (P=0.062). Note that log scalewas required to accommodatemagnitude of
injury changes acrossH2O2 concentrations in Fig. 3A andB. (C) Proposedmechanism of ER-hormesis in cooledhCNs. UPR pathways are depicted, togetherwith known regulatory feedback
pathways. Filled boxes denote components induced at transcript and/or protein level in hCNswith cooling. Phospho-IRE1α and phospho-PERKwere not assessed. Orange arrows indicate
hormetic elements that resolve the UPR and increase ER resilience to stress. See also Fig. S3.
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profile captured in our hCN system cannot convey the dynamic nature
of these pathways. However, our analysis at 24 h intimately links UPR
activation to neuronal preconditioning, since this was the point at
which H2O2 was applied, and it further indicates co-ordination of
ER-hormesis with cold-shock protein induction. The lack of GRP94
induction after 24 h cooling may reflect the half-life of its transcript or
the selective nature of this chaperone, whose client list is smaller than
that of BiP — in particular, GRP94 is not induced at high temperatures
(Marzec et al., 2012). Furthermore, prolonged ER stress leads to sequen-
tial activation then deactivation of Ire1α, ATF6 and PERK pathways
respectively — which might explain the bias of UPR components
towards the PERK arm at 24 h (Tabas and Ron, 2011). Nevertheless,
our transcript analysis revealed distinct patterns of UPR responses
resulting from two different stresses; whilst BiP, GRP94, XBP1s and
CHOP dramatically increased with Tm, ATF4 and GADD34 induction
were comparable between Tm and cooling. Therefore, in contrast
to models described elsewhere (Rutkowski et al., 2006), the negative
regulation of eIF2α appears to take precedence over unloading the ER
in cooled human neurons. This relief of translational repression may
confer tolerance to a prolonged hypothermic state (Peretti et al., 2015;
Moreno et al., 2013).

In the clinic, ‘preconditioning’ is typically ascribed to a transientmild
stress followed by a recovery interval (Nishio et al., 2000; Stetler et al.,
2014). Here we have applied this term in its broadest sense — i.e., a
subtoxic cellular stress that can lead to a protective state (Stetler et al.,
2014) in order to account for the proteostatic priming observed during
our pre-incubation phase of cooling. This definition circumvents the
need for a re-warming phase which would confound analysis of oxida-
tive injury by inducing relative hyperthermic and hypoxic stresses (Liu
et al., 1994; Lleonart, 2010; Chip et al., 2011; Neutelings et al., 2013).
Hypothermic preconditioningmay reconcile conflicting data describing
UPR modulation in neuronal health; (1) that ER stress can elicit UPR-
mediated hormesis (Mendes et al., 2009; Fouillet et al., 2012), (2) that
circumventing UPR-mediated translational repression promotes long-
term survival (Moreno et al., 2013), and (3) that inhibiting eIF2α phos-
phatases resolves ER stress (Kiskinis et al., 2014). This highlights the
importance of fine-tuning the entire network, rather than adjusting a
single pathway or component — such a combinatorial approach has
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been proposed for amyotrophic lateral sclerosis (Kiskinis et al., 2014).
Whilst hypothermic preconditioning originates from the acute injury
setting, impaired stress responses underlie several neurodegenerative
disorders (Hetz and Mollereau, 2014) and preconditioning in general
is a proposed target (Stetler et al., 2014). Cooling has recently demon-
strated some benefit in an in vivo model of spastic paraplegia (Baxter
et al., 2014) and Peretti et al. (2015) observed that neurodegenerative
synaptic loss could be partially rescued through early cooling-induced
enhancement of RBM3 expression. Conceivably, this temporal depen-
dency might relate to hypothermia-mediated proteostatic priming,
elicited prior to the build-up of a significant protein aggregate load.
Whether the hypothermic preconditioning described here is linked to
a cytoprotective mechanism that is synergistic with the preservation
of synaptic plasticity is worthy of further investigation (Peretti et al.,
2015). Ultimately, disease stage andneuronal subtypewould determine
whether enhanced or prophylactic preconditioning could be useful in
the context of neurodegeneration (Saxena et al., 2009).

In response to cooling, hCNs displayed all the hallmarks of an adap-
tive, preconditioning UPR response: mild ER stress and activation of all
3 ER-stress transducers, a low level of CHOP induction that was insuffi-
cient to effect apoptosis, absence of detectable levels of phospho-eIF2α,
and residual expression of key ER chaperones (Rutkowski et al., 2006;
Tabas and Ron, 2011). The reversibility of these effects and the period
over which they would remain protective is currently unknown and is
part of ongoing work. Since our cooling paradigm can be used to titrate
UPR activation, it represents a simple method to address subtle but
important effects dictating adaptive versus maladaptive outcomes of
this cascade in any cell type. We propose that ER-hormesis is an impor-
tant outcome of the cold-shock response that protects human neurons
from both ER and oxidative stress. This ‘cross-tolerance’ effect
(Rutkowski et al., 2006; Stetler et al., 2014) places exponential value
on the molecular neurobiology of cooling, which may deliver novel
therapeutic targets for an unmet need.
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