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Abstract

Interactions between extracellular matrix proteins and

prostate carcinoma cells change dramatically during

prostate tumor progression. We have concentrated on

two key modifications that occur in the hemidesmo-

some in prostate carcinoma: loss of laminin-5 protein

expression and altered basal cell polarity of the A6h4
integrin. We previously demonstrated two cell line–

specific isoforms (h3A and h3B) of the LAMB3

message. Cells expressing only the h3B isoform did

not translate the h3 protein and were unable to

assemble the laminin-5 trimer. One such cell line,

LNCaP, was selected to determine whether restoration

of the laminin-5 h3A isoform would cause expression

of a functional laminin-5 h3 chain, assembly and

secretion of the laminin-5 trimer, and reversion to a

non-neoplastic phenotype. Laminin-5 h3A cDNA was

cloned and stably transfected into LNCaP cells. We

observed the restoration of the h3 protein, but a

laminin-5 trimer was not secreted. Moreover, increased

cell migration was demonstrated, and tumorigenicity

was increased in SCID mice. A microarray analysis,

performed between transfected and nontransfected

LNCaP cells, showed most changing genes to be

associated with signal transduction. The h3 chain of

laminin-5 may thus play an important role in signal

transduction, which may enhance cell motility and

tumorigenesis.
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Introduction

Intricate connections between the extracellular matrix

(ECM), cell surface receptors, and cytoskeleton establish

an elaborate, multifaceted adhesion complex and signaling

mechanism. Alterations in these relationships are important

in the transformation from a normal to malignant phenotype

[1,2]. Individual components of the ECM, particularly hemi-

desmosomal-associated proteins, have been shown to be

modified in prostate tumor progression [3,4]. Laminins, a

family of ECM glycoproteins expressed in the basal lamina of

various tissues, are polymeric proteins composed of three

different polypeptide chains (a, h, and g) arranged in a cruci-

form structure [5]. Each polypeptide chain is encoded by a

separate gene, and different combinations of these chains

have led to the identification of various isoforms. Although the

distinct biologic functions of several laminins are uncharacter-

ized, some have been shown to play a significant role in cell

growth and migration, tissue regeneration, cell differentiation,

cell adhesion, and various pathologic conditions [6–14].

Laminin-5 (a3h3g2) is epithelium-specific and forms an-

choring filaments—one of the pivotal hemidesmosomal com-

ponents involved in a structural relationship between the

epithelium and the stroma [15,16]. The C-terminus of the a3

chain of laminin-5 contains a series of globular domains, which

constitute the accepted binding site for its receptors: the a6h4
or a3h1 integrins [17–21]. These transmembrane cell surface

receptors are well established as mediators of bidirectional

signal transduction [22–26]. Recent studies have demonstrat-

ed that, depending on the cleavage status of the h3 or g2

chains, laminin-5 can either cause stable cell adhesion or

migration through integrin interaction, or serve as a scatter

factor in an integrin-independent manner [27–30]. The patho-

logic significance of laminin-5 to epithelial attachment was

discovered by the identification of mutations in the genes

coding for the individual chains in patients affected by Herlitz

junctional epidermolysis bullosa (H-JEB), a severe blistering

disease with separation within the cutaneous basement mem-

brane at the level of the basal lamina, usually causing neonatal

death [9–13,31]. A knockout mouse of laminin-5, through

targeted disruption of the a3 chain, resulted in similar blisters

and neonatal lethality [32]. The role of laminin-5 in tumorigen-

esis is less clear [16,33–39]. Recent work has demonstrated
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that the h3 chain of laminin-5 is specifically cleaved by the

metalloproteinase MP1-MPP [40]. We have demonstrated

that in prostate carcinoma, protein expression for the h3 and

g2 chains of laminin-5 is absent and the basal cell polarity of

the a6h4 integrin is lost [41]. The significance of these

defects is presently under investigation in our laboratory.

We have previously reported the existence of two iso-

forms (h3A and h3B) of the message for LAMB3, which was

verified by reverse transcription polymerase chain reaction

(RT-PCR) analysis [42]. The open reading frames for both

forms were homologous. They differed, however, within the

5V and 3V untranslated regions, and their expression was cell

line–specific (Figure 1). Those cells that expressed only the

h3B isoform neither translate the h3 protein, nor assemble

nor secrete the laminin-5 trimer. The prostate carcinoma cell

line, LNCaP, was one such line, and served as a working

model for this present study. LNCaP cells express at least

five integrin pairs, including the laminin receptors (a6h1,
a3h1, and a6h4). We hypothesized that in vitro restoration

of the laminin-5 h3A isoform into LNCaP cells would cause

expression of a fully functional h3 protein. We tested whether

assembly of an operational heterotrimer would alter cell

migration as well as tumorigenicity. In this study, laminin-5

h3A cDNA was cloned from the HaCaT cell line and was

stably transfected into LNCaP cells by the liposome-mediat-

ed gene transfer method and subsequent G418 selection.

We observed the restoration of the h3 protein by Western

blot analysis and isolated small amounts of the individual

laminin-5 chains from the supernatant. An assembled lam-

inin-5 ECM could not be demonstrated, and focal contacts

rather than hemidesmosomes were seen by electron micros-

copy. Functional studies, however, revealed that the expres-

sion of h3 in LNCaP cells increased migration and enhanced

tumor formation in SCID mice. We performed a 22,283-

human gene microarray analysis to further investigate these

findings. A total of 395 genes was found to be significantly

changed (greater than two-fold, P V .005). Thirteen of 15

genes selected for validation by real-time RT-PCR agreed

with the microarray data. The h3 chain in transfected LNCaP

cells seemed to play a putative role in signal transduction,

and may explain why transfected LNCaP cells showed

increased motility in vitro and increased tumorigenesis in

SCID mice.

Materials and Methods

Cells in Culture

The human keratinocyte cell line, HaCaT, was obtained

from Dr. Norman Fusenig’s laboratory (German Cancer

Center, Heidelberg, Germany).

The LNCaP human prostate carcinoma cell line (passage

36) was obtained from the American Type Culture Collection

(Rockville, MD).

The cell lines were maintained at 37jC in a humidified

atmosphere of 95% air and 5% CO2. HaCaT cells were

grown in Dulbecco’s modified Eagle’s medium (DMEM;

Invitrogen Corp., Carlsbad, CA) containing 10% fetal bovine

serum, glucose (1 g/l), penicillin G, streptomycin sulfate, and

L-glutamine in final concentrations of 100 U/ml, 100 mg/ml,

and 0.292 mg/ml, respectively.

LNCaP cells were maintained in RPMI 1640 (Invitrogen

Corp.) with supplements as described for HaCaT cells.

Cloning Strategy of LAMB3A

We have previously reported two isoforms of the h3
mRNA, designated h3A and h3B [42]. An examination of

exon 1 of LAMB3 revealed the presence of two transcrip-

tional start sites (Figure 1). We demonstrated that both

messages were differentially expressed in various cell lines.

h3A expression was absent in LNCaP and MCF-7, greatly

reduced in PC3-N, but present in eight other epithelial cell

lines. h3B was present in all cell lines studied. Only those

cells that expressed the h3A message, however, expressed

proteins by Western blot and immunohistochemical analy-

ses. Because we previously reported that HaCaT cells

contained the h3A message as well as the laminin-5 hetero-

trimer, we selected this cell line for the cloning of LAMB3A.

Total RNA was isolated using the Qiagen RNeasy protocol

for animal cells (Qiagen Inc., Valencia, CA) and treated with

DNase using the MessageClean Kit (GenHunter Corpora-

tion, Nashville, TN) to remove genomic DNA contamination.

The enzyme was removed using RNeasy Protocol (Qiagen

Inc.) and the RNA was quantitated by spectrophotometry.

Reverse Transcription

DNase-treated HaCaT RNA was reverse-transcribed into

cDNA using Omniscript Protocol (Qiagen Inc.). Briefly, 2 mg

Figure 1. b3 Message isoforms. Examination of exon 1 of LAMB3 revealed the 5V UTR of b3A in the first 43 nucleotides of exon 1 and the 5 V UTR of b3B within the

intron. This suggested two transcription start sites with the possibility of differential transcriptional regulation.
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(6 ml) of RNA was heated to 65jC for 3 minutes and placed

on ice, then 1 � buffer RT, 0.5 mM of each dNTP, 1 mm
oligo-dT primer, 10 U of RNase inhibitor, and 4 U of Omni-

script Reverse Transcriptase were added to the RNA for a

final volume of 20 ml and heated to 37jC for 1 hour.

Polymerase Chain Reaction (PCR)

The reverse transcription reaction was verified by using a

PCR with h-actin (Actin Primer Pair; Ambion, Inc., Austin,

TX) under the following conditions: 95jC, 5 minutes; 30

cycles of 94jC, 1 minute; 59jC, 1 minute; 72jC, 1 minute;

and 72jC for 10 minutes.

The primer pairs for h3A spanned the first 20 bases of the

unique 5V UTR as well as the unique base pairs in the 3V UTR
region, generating a 3971-bp product as previously reported

[42]:

sense: GCT TTC AGG CGA TCT GGA GA
antisense: TGT GCT TGG TCC AGG ATT CC

h3A was amplified using the Expand High Fidelity PCR

System (Roche, Mannheim, Germany) with the following

conditions. Master mix 1 was prepared separately and

contained 200 mM (1 ml) of each nucleotide, 300 nM (1.5 ml)
of each primer, and 1 ml of cDNA template (0.1–0.75 mg) for
a final volume of 25 ml. Master mix 2 was prepared sepa-

rately and contained 19.25 ml of sterile H2O, 1 � Expand

High Fidelity buffer with 15 mM MgCl2 (5 ml), and 2.6 U

(0.75 ml) of Expand High Fidelity PCR System enzyme mix

for a final volume of 25 ml. The master mixes were pipetted

together on ice into a thin-walled PCR tube, mixed well, and

placed in a PTC-200 Peltier Thermal Cycler (MJ Research,

Waltham, MA). h3A was amplified using the following con-

ditions: 94jC, 2 minutes; 10 cycles at 94jC, 15 seconds;

58jC, 30 seconds; 68jC, 3 minutes; 20 cycles at 94jC,
15 seconds; 58jC, 30 seconds; 68jC, 3 minutes, 5 seconds

with the addition of 5 sec/cycle; 68jC, 7 minutes. A single

3971-bp product was produced when analyzed by 0.8%

agarose gel electrophoresis in 1 � TAE. The band was

cut from the gel and extracted using Geneclean Spin Kit

(Bio101, Vista, CA).

TOPO TA Cloning

The h3A PCR product was cloned into a pcDNA3.1 vector

using the manufacturer’s instructions in the TOPO TA Ex-

pression Kit (Invitrogen Corp.). Briefly, the PCR product was

incubated at room temperature for 30 minutes along with the

salt solution, sterile water, and pcDNA 3.1 vector provided.

Two microliters of the cloning reaction was added to one vial

of One Shot, TOP10 chemically competent Escherichia coli

cells and was placed on ice for 30 minutes. The cells were

heat-shocked for 30 seconds at 42jC, and were immediately

placed on ice. A total of 250 ml of room-temperature SOC

medium (Invitrogen Corp.) was then added to the cells and

mechanically shaken at 200 rpm for 1 hour at 37jC. Thirty
microliters of the reaction was spread evenly in the middle of

prewarmed agar plates and incubated overnight at 37jC.

Ten colonies were selected and cultured in LB medium

containing 100 mg/ml ampicillin at 37jC and mechanically

shaken overnight at 400 rpm. Plasmids were isolated using

QIAprep Miniprep Kit (Qiagen Inc.) and were analyzed by

restriction analysis with EcoRV. Positive samples were ver-

ified by automated DNA sequencing using an ABI-Prism 377

automated sequencer, T7 and BGH primers from the TOPO

cloning kit, and the 5VLAMB3A primer used in Expand PCR.

This system uses both Taq cycle sequencing and dye deoxy

terminator incorporation to optimize throughput and the

length of read for sequencing data. Protein production by

the LAMB3A gene was demonstrated by the TNT Quick

Coupled Transcription/Translation System (Promega Corpo-

ration, Madison, WI) using the manufacturer’s protocol with

[35S]methionine (1000 Ci/mmol at 10 mCi/ml) and Luciferase

DNA as a positive control. The proteins were separated

by 8% SDS polyacrylamide gel electrophoresis (PAGE)

(data not shown).

Transfection of LNCaP Cells

The pcDNA3.1/LAMB3A construct was transfected into

LNCaP cells (passage 36) by an enhancement of the lipid-

mediated gene transfer method [43] using Effectene Trans-

fection Reagent (Qiagen Inc.). Briefly, LNCaP cells were

plated into a six-well plate (35 mm/well) to 60% confluence.

About 1.6 mg (16 ml) of purified construct or vector alone

was diluted into 371.2 ml of buffer EC and 12.8 ml of enhancer
for a final volume of 400 ml, and incubated at room temper-

ature for 5 minutes. Twenty microliters of Effectene Trans-

fection Reagent was mixed with the above solution and

incubated at room temperature for 10 minutes. The growth

medium was aspirated from the cells during this incubation,

and 1.6 ml of RPMI 1640 ‘‘complete’’ medium (with 10%

serum and antibiotics) was added to the PBS-washed cells.

Six hundred microliters of RPMI 1640 ‘‘complete’’ medium

was added to the solution containing LAMB3A or empty

vector. This solution was added drop by drop to the cells

and incubated at 37jC and 5% CO2 for 48 hours. Drug

selection using 500 mg/ml G418 (Geneticin; Invitrogen

Corp.) was started 48 hours after transfection. Three weeks

after drug selection, colonies were harvested by 0.5-mm

no. 1 Whatman trypsin-soaked filter papers and expanded

to cell lines.

Antibodies

Murine monoclonal antibodies clone 17 against the h3
chain of laminin-5 (Kalinin B1; BD Biosciences, San Jose,

CA), clone GB3 specific for the g2 chain of laminin-5 only

when the complete trimer is present (Sera-Lab, Sussex,

England, UK), and clone 3E1 against the h4 integrin (Invi-

trogen Corp.) were purchased. The rat monoclonal antibody

clone J1B5 specific for the a6 integrin was generously

provided by Dr. Caroline Damsky (University of California,

San Francisco, CA).

Mouse monoclonal antibody clone BM165 specific for the

a3 chain of laminin-5 was generously provided by Dr. Robert

Burgeson (Harvard Medical School, Charlestown, MA).
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SDS-PAGE and Western Blot Analysis

Western analysis was performed as described previously

with slight modifications [42]. Briefly, total cell lysates, from

cultured LNCaP and HaCaT cells and NP40 lysis buffer

containing equal amounts of protein (20 mg), were electro-

phoresed on an 8% SDS polyacrylamide gel and transferred

to a nitrocellulose membrane. Themembrane was blocked in

Tris base saline with Tween 20 (Fisher Scientific, Pittsburgh,

PA) (TBS-T) containing 10% nonfat milk powder at 4jC
overnight and then incubated for 2 hours with monoclonal

antibody clone 17. The membrane was then incubated with

secondary antibody [goat anti–mouse horseradish peroxi-

dase (HRP), 1:50,000; Jackson Immuno Research Labora-

tories, West Grove, PA] for 1 hour and specific proteins were

detected using chemiluminescence (Phototype-HRP Detec-

tion Kit for Western Blotting; Cell Signaling Technologies,

Beverly, MA). Monoclonal antiactin, clone AC40 (Sigma,

St. Louis, MO), was used to demonstrate equal loading.

Affinity Column and Silver-Stained SDS-PAGE

Three milligrams of 6F12 anti–h3 chain antibody was

mixed together with CNBr-activated Sepharose 4B beads

(Amersham Pharmacia Biotech AB, Uppsala, Sweden) and

shaken overnight. The next day, the beads were washed with

binding buffer (0.1 M NaHCO3 and 0.5 M NaCl, pH 8.3).

Tris–HCl (0.1 M) with 0.5 NaCl, pH 8.0, was used for

blocking and the column was washed with PBS. Five hun-

dred microliters of transfected LNCaP conditioned media

(RPMI in 1% FBS and 50 mg/ml) was placed on the column,

washed with PBS, and eluted with 0.1 M glycine elution

buffer, pH 2.7. Twenty milliliters was collected, concentrated

to 50 ml, and loaded onto a 6% SDS polyacrylamide gel

stained with silver under reducing conditions.

Immunohistochemistry and Confocal Microscopy

For immunofluorescence microscopy, cultured cells were

grown on glass coverslips until 80% to 90% confluent

(usually 48–72 hours). They were fixed by quickly dipping

into PBS, then at �20jC methanol for 10 minutes, and six

dips in cold acetone, and briefly air-dried. Application of

primary and secondary antibodies, as well as observation

of immunofluorescence using confocal laser scanning mi-

croscopy (LSM 410; Carl Zeiss, Jena, Germany), were as

previously reported [44].

Electron Microscopy

For conventional transmission electron microscopy,

cells grown on coverslips followed procedures previously

reported [45].

Cell Migration Assay Using Time Lapse Video Microscopy

Seventy thousand cultured LNCaP cells transfected with

LAMB3A or pcDNA 3.1 vector alone were seeded on a

Delta T dish (0.15 mm; BiopTechs, Inc., Butler, PA) in 2 ml

of serum-free medium containing 5% penicillin/streptomycin.

Prior to the start of the video, cells were allowed to attach to

the dish for 5 hours on the microscope stage. Migration was

monitored for 18 hours using differential interference con-

trast optics on an inverted Olympus IMT2 microscope (Olym-

pus America, Melville, NY) equipped with a BiopTechs

Delta T live cell system under a humidified (5% CO2 bal-

anced ultrazero air) atmosphere. Images were obtained

with a grayscale ORCA-100 CCD camera (Hamamatsu

Photonics Sytems, Bridgewater, NJ) and viewed using

SimplePCI 4.0 software (Compix Imaging Inc., Cranberry

Township, PA). Assays were repeated twice.

Based on scale measurements provided by SimplePCI

4.0 software, eight cells from each group were independently

measured. The distance each cell migrated was measured

hourly and a total distance was obtained for the 18-hour

period. The mean distance of migration for each group of

eight cells (vector alone and h3A transfects) was calculated

and the Student’s t test (two-tailed, paired) was performed

on the data (n = 8, P = .0006).

Tumorigenicity

Two groups of four male SCID mice each were injected

subcutaneously with either 10 million clone 2.9h3A cells or

LNCaP cells that received vector alone. For each mouse,

cells were mixed in equal volumes of matrigel and sterile

saline. A second experiment was performed with the same

conditions, except that cells were mixed in sterile saline

alone. As tumors developed, they were measured for tumor

volume estimation (mm3) in accordance with the formula:

a2 � b/c, where a is the smallest diameter and b is the largest

diameter using Mitutoyo solar hand-held calipers. Animals

were sacrificed after 60 days, complete autopsies were

performed, and tissues were snap-frozen and formalin-fixed.

Gene Expression Profiles and RT-PCR Analysis

Total RNA from parental LNCaP and those LNCaP cells

transfected with empty vector and h3A was isolated using

Macherey-Nagel Nucleospin Kit (BD Biosciences Clontech,

Palo Alto, CA) and converted into cRNA according to

the manufacturer’s instructions (Affymetrix, Santa Clara,

CA). The Affymetrix HG-U133A microarray (derived from

UniGene, dbEST, WUSTL, GenBank, and RefSeq data

bases) contained 22,283 unique species and was hybrid-

ized, washed, and scanned according to the manufacturer’s

instructions (Affymetrix). Primary data were processed using

Affymetrix Microarray Suite 5.0 software (Affymetrix) to

determine the average difference value and to assess signal

intensity for each probe set. Briefly, a comparison of gene

expression profiles from parental LNCaP and those trans-

fected with empty vector yielded no statistical difference in

gene expression, enabling us to compare cells that received

empty vector against those transfected with h3A. For genes
that increased, sorting was first performed by those that were

present in experimental conditions, then by change calls

designated ‘‘I,’’ and, finally, by the signal/log ratio z 1.0

(i.e., a fold change of two or greater). Similarly, genes that

decreased were first sorted by genes that were present in

the control condition, then by a change call designated ‘‘D,’’

and, finally, by the signal/log ratio of V 1.0 (i.e., a two-fold or

greater change).
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Selected genes were validated by real-time RT-PCR

analysis. Briefly, reverse transcription was performed using

TaqMan Reverse Transcription Reagents (Roche Molecu-

lar Systems, Branchburg, NJ) and 50 ng of total RNA in a

50 ml reaction. The reverse transcription reaction was primed

with random hexamers and incubated at 25jC for 10 minutes

followed by 48jC for 30 minutes and 95jC for 5 minutes, and

chilled at 4jC. Each PCR reaction consisted of 10 ml of cDNA
added to 25 ml of TaqMan Universal PCR Master Mix (Roche

Molecular Systems), 2.5 ml of gene-specific primer/probe mix

(Assays-by-Design; Applied Biosystems, Foster City, CA)

and 12.5 ml of PCR water. The PCR conditions were: 95jC
for 10 minutes, followed by 40 cycles of 95jC for 15 seconds

alternating with 60jC for 1 minute. JUN, RASSF1, FGFR2,

JAK2, VEGF, FOXM1, BIRC5, HMMR, and GAPDH were

performed and the data collected using the ABI Prism 7000

real-time sequence detection system (Applied Biosystems).

The gene-specific TaqMan probes were labeled with the 5V
reporter dye, 6-FAM, and a 3V end that contains a nonfluo-

rescent quencher and a minor groove binder. Differences in

expression were determined using the equation 2�DDCt,

where the Ct value for each sample was subtracted from

the Ct value of the GAPDH control. Primer sequences are

available upon request.

Results

Laminin-5 and LAMB3 Expression in Parental LNCaP Cells

Earlier immunohistochemical analysis in our laboratory

revealed that all three chains of laminin-5 were expressed

in HaCaT cells (Figure 2, A–C), whereas the h3 chain was

absent in LNCaP cells (Figure 2, D–F ). The pattern of

expression of the a3 and g2 chains differed between both

cell lines. Extracellular secretion and formation of a subcel-

lular matrix were seen in HaCaT cells, whereas only an

intracellular pattern was demonstrated in LNCaP cells.

Generation of LAMB3A LNCaP Cell Lines

LNCaP cells of low passage number were transfected

with the human LAMB3A cDNA expression vector

pcDNA3.1/CMV/LAMB3A or the pcDNA3.1/CMV vector

alone as a control. After drug selection, various clones were

analyzed for LAMB3A gene and protein expression using

quantitative (‘‘real-time’’) PCR and immunoblotting, respec-

tively. As shown in Figure 3A, varying h3 protein expression

was seen in three independent clones (2.9, 2.7, and 1.24) by

Western blot analysis, but was absent in both the control

LNCaP cell line receiving empty vector and the parental

cells. h3 protein expression was also demonstrated by

immunohistochemistry (Figure 3B).

Heterotrimer Formation and Integrin Expression

Restoration of the laminin-5 trimer and expression of

the a6h4 integrin were attempted by immunohistochemistry.

For heterotrimer formation detection in LAMB3A-transfected

cells, we used a monoclonal antibody (GB3) specific for

the g2 chain of laminin-5 only when the complete trimer is

present. Extracellular trimer formation was not detected in

parental LNCaP cells or those receiving empty vector. No

trimer was apparent surrounding the cells, and an inconclu-

sive staining pattern was seen on the cell surface in the

transfected cells. Despite the lack of convincing extracellular

trimer, small amounts of the three laminin-5 chains were

observed in silver-stained 6% SDS-PAGE gels made from

supernatants using an anti-h3 affinity column (data not

shown).

Localization of the a6 integrin along the cytoplasmic

membrane was seen in LAMB3A-transfected cells but could

barely be detected in parental cells or those receiving empty

Figure 2. Laminin-5 expression. Confocal laser scanning micrographs showed the expression of laminin-5 subchains in HaCaT (A–C) and LNCaP cells (D–F).

The a3, b3, and c2 chains were expressed in HaCaT cells, whereas the b3 chain was absent in LNCaP cells (E). Moreover, the pattern of expression differed

between both cell lines. Extracellular matrix formation was seen in HaCaT cells for all three chains, whereas the a3 and c2 chains were intracellular in LNCaP cells.
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vector (Figure 4, A and B). a3, h1, and h4 integrin expres-

sion could not be detected, and there was no colocalization

with either of their respective integrin partners or the h3 chain

of laminin-5 (data not shown). In addition to the prominent

plasma membrane localization, the a6 integrin was detected

in a punctate staining pattern on the surface of the cells. This

punctuate a6 integrin (green) colocalized with the a3 chain of

laminin-5 (red) in LAMB3A-transfected cells (Figure 4,C–E).

This pattern supports the formation of focal contacts, which

were seen by electron microscopy.

Taken together, these results suggest that the introduc-

tion of the h3 chain was sufficient for LNCaP cells to produce

the h3 protein and small amounts of all three chains in the

supernatant. The presence of the ligand apparently effected

integrin distribution on the cytoplasmic membrane because

these receptors are not typically detected by immunohisto-

chemistry in parental LNCaP cells. The introduction of the

h3 chain did not cause the assembly of a heterotrimer or a

recognizable ECM. Moreover, hemidesmosomes did not

form although focal contacts were observed.

Characterization of Migratory and Adhesive Properties

After 18 hours of growth on plastic, h3A-transfected cells

were clearly more migratory than LNCaP cells that received

vector alone when viewed with the BiopTechs Delta T live

cell system (Figure 5). The h3A-transfected cells demon-

strated an ability to spread easily, especially in clusters.

Lamellopodia formation was noted in virtually every cell as

well as in cell-to-cell attachments (Figure 5, A and B). Cells

that received vector alone tended to remain fixed and did not

spread. Lamellopodia were absent, with most cells staying

rounded and isolated (Figure 5, C and D). The mean

distance of migration for eight individual cells receiving h3A
was three times greater than for eight cells receiving empty

vector (Figure 5E and Table 1).

Clone 2.9 cells adhered better on plastic (n = 6, P = .006)

than those that received the empty vector, based on a routine

crystal violet absorbance assay (data not shown). The cells,

however, required a protracted adhesion time (26–28

hours), which was unusual for this assay because most cell

lines studied in our laboratory attach between 30 and 90

minutes. The results were variable and inconclusive at

various time points attempted (90 minutes; 4, 6, 18, and 24

hours), and with alternative substrates (e.g., fibronectin and

laminin-5) with minimal cell adherence, unless incubated

overnight. We noted increased lamellopodia formation after

18 hours and we observed maximal response with cells

incubated for over 24 hours.

LAMB3A Increases Tumor Growth In Vivo

Two groups of four male SCID mice were initially injected

subcutaneously with 10 million cells transfected with h3A or

empty vector and mixed in equal volumes of matrigel and

sterile saline. By day 35, mean tumor volumes were equal for

tumors formed by h3A-transfected cells or those receiving

vector alone. This closely resembled in vitro growth in which

Figure 3. Protein expression of LAMB3 in b3A-transfected LNCaP cells. (A) Western blot analysis of cell lysates from various b3A-transfected clones (2.9, 2.7, and

1.24). Monoclonal antibody clone 17 against the b3 chain of laminin-5 was used. Eight percent acrylamide gel electrophoresis revealed differential b3 protein

expression levels in various clones, with clone 2.9 having the strongest expression after controlling for equal loading with b-actin. LNCaP cells that received empty

vector demonstrated no b3 protein and behaved like the parental LNCaP cell line used as a negative control. HaCaT cell lysate was used as a positive control. (B)

Immunofluorescent analysis using monoclonal antibody clone 17 and confocal laser scanning microscopy of cultured transfected cells grown on coverslips. Note

granular deposition of b3 protein on cell surface of b3A-transfected cells and the absence of the b3 protein in LNCaP cells transfected with vector alone.
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no significant difference was seen in log and plateau phases.

After 35 days, however, tumors formed by h3A-transfected
cells grew to sizes twice as large as tumors formed by cells

receiving vector alone. To remove any effect from matrigel,

the experiment was repeated by mixing the transfected cells

in sterile saline. Similar results were obtained. After 45 days,

the tumors formed by h3A-transfected cells almost tripled in

volume (P = .007) in comparison to those that received the

empty vector (Figure 6).

These experiments suggest that h3A may play a growth-

stimulatory role. Morphologically, the tumors formed with

transfected cells appeared to be slightly more aggressive

than tumors formed by cells receiving empty vector. Ki-67

results showed no difference in counts of positive cells

between tumors formed by either h3A-transfected cells or

those receiving vector alone.

Gene Expression Profiles

Gene expression profiles were studied using Affymetrix

HG-U133A microarrays and Suite 5.0 Software, as de-

scribed in Materials and Methods section. Of 395 genes that

were found to be statistically changed (greater than two-fold

change, P V .005), 233 were upregulated and 162 were

downregulated (Figure 7) (a complete list can be obtained

from http://azcc-microarray.arl.arizona.edu/index.php3).

The diverse functions of these genes were known in less

than half of the cases and included signal transduction,

transcriptional regulation, protein modification, mitosis, cell

motility, ion transport, and metabolism. The function of most

of the known upregulated genes was related to transcription

regulation (21 genes), protein modification (16 genes), and

mitosis (16 genes). Signal transduction (13 genes) and cell

or vesicle transport (8 genes) were the next most common

categories. Protein modification (14 genes), signal transduc-

tion (14 genes), and transcription regulation (11 genes) were

the most common functions of the downregulated genes.

Fifteen genes were selected for validation by real-time

RT-PCR analysis using GAPDH as a normalizing control

(Table 2). Thirteen of 15 genes (87%) concurred with the

microarray data. Although FGFR3 (fibroblast growth factor

receptor 3) and BIRC1 (baculoviral inhibitor of apoptosis

repeat-containing 1) did not agree with the microarray data,

other members of these families, FGFR2 and BIRC5 (survi-

vin), substantiated the microarray results.

Two of the cell or vesicle transport upregulated genes

were directly associated with cell motility, PRC1 (protein

regulator of cytokinesis) and HMMR (hyaluronan-mediated

motility receptor). PRC1 increased 2.14-fold and HMMR

increased 3.25-fold. In contrast, none of the downregulated

genes was directly associated with cell motility. Moreover,

cells transfected with h3A showed a significant increase in

HMMR gene expression compared to those receiving vector

alone when validated by real-time RT-PCR (Figure 8).

Among the upregulated genes related to signal transduction

Figure 4. Confocal laser scanning micrographs of a6 integrin and colocalization of a6 with the a3 chain of laminin-5. (A and B) Immunofluorescence using clone

J1B5 against the a6 integrin. Note an accentuated punctate and intracellular deposition on the cytoplasmic membrane, as well as increased cytoplasmic membrane

polarization, of the a6 integrin in b3A-transfected cells (B) compared to LNCaP cells that received vector alone (A). (C–E) Colocalization of clone BM165 against

the a3 chain of laminin-5 (C; red) and a6 integrin using J1B5 (D; green) was used in double-labeled immunofluorescence (E). A punctate as well as intracellular

distribution of the a6 integrin were noted (D). The punctate a6 integrin staining colocalized (yellow) with the a3 chain of laminin-5 (E). In contrast, the cytoplasmic

membrane a6 seen at the juncture of cells (D) did not colocalize with the b3 laminin chain.
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found in the h3A-transfected cells, LIM protein (LIM kinase,

an enzyme involved in cell motility) was increased seven-

fold. LYN (a viral-related oncogene homolog), DLG7 (discs,

large homolog 7, a tumor-suppressor gene in the Wnt

pathway), and ECTZ (epithelial cell transforming sequence

2 oncogene) were related to cell growth. Two genes from the

baculoviral inhibitor of apoptosis family, BIRC1 and BIRC5

(survivin), were associated with cell survival. FOXM1 (fork-

head box M1), a transcription regulator, and SMG-1, a PI-3

kinase–related kinase, both in the AKT pathway, were also

upregulated. LYN, DLG7, and ECTZ were not selected for

validation. Cells transfected with h3A also showed a signif-

icant increase in gene expression in the remaining five

aforementioned genes then those receiving vector alone

when validated by real-time RT-PCR (Figure 8).

The downregulated signal transduction genes were pri-

marily associated with the growth factor–ERK pathway. Jun

was decreased 4.6-fold, and RASSF1, FGFR2, FGFR3,

VEGF, JAK2, CDH1 (E-cadherin), and GRB10 were de-

creased two-fold to three-fold in the h3A-transfected cells.

All of these were validated by real-time RT-PCR (Figure 8).

Taken together, the microarray data appeared to correlate

with the in vitro migration data and suggest that the intracel-

lular h3 chain of laminin-5 may play an important role in

signal transduction. Specifically, in conjunction with the

in vitro cell growth and SCID mice tumor data, the h3 chain

may play a role in cell survival.

Discussion

Previous work in our laboratory revealed two isoforms (h3A
and h3B) of the message for LAMB3, which were cell line–

specific [42]. Although the open reading frames for both

forms were homologous, we found differences in the 5V and

 

Figure 5. Migration assay of LNCaP cells transfected with b3A or vector alone using time lapse video microscopy after 18 hours. (A) b3A-transfected cells were

more migratory and demonstrated an ability to spread easily after 18 hours (B). Note lamellopodia formation in virtually every b3A-transfected cell as well as cell-to-

cell attachments (B). Cells that received vector alone (C) tended to remain fixed and did not spread (D). Note the absence of lamellopodia, with most cells staying

rounded and isolated after 18 hours (D). (E) Mean distance of migration. The mean distance of migration for each group of eight cells (vector alone and b3A
transfects) was calculated. Student’s t test (two-tailed, paired) was performed (n = 8, P = .0006). Error bars equal 1 SD of the mean.

Table 1. Migration Distance.

Vector b3A-Transfected

Distance Rate Distance Rate

156 8.6 204 11.3

0 0 201 11.2

198 11 198 11

0 0 261 14.5

0 0 216 12

33 1.83 117 6.5

30 1.67 192 10.7

96 5.33 198 11

Mean 64.13 3.55 198.38 11.03

SD 72.33 4.01 39.97 2.05
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3V untranslated regions (Figure 1). Cells that expressed only

the h3B isoform, such as LNCaP, did not translate the h3
protein nor synthesize the laminin-5 heterotrimer. Our pres-

ent data indicate that the stable transfection of h3A into these

prostate carcinoma cells supports protein production of the

h3 chain. In vitro results included focal contact formation,

polarization of the a6 integrin to the perimeter of the cell,

increased cell spreading, and migration. When injected into

SCID mice, in the presence or absence of matrigel, these

cells also demonstrated increased tumor growth after a

period of 35 to 40 days.

Although the a3 chain has been restored in human

fibrosarcoma cells, ours is the first report of restoration of

the h3 chain in human carcinoma cells [46]. Other laborato-

ries have successfully restored either the h3 or g2 chains,

and showed laminin-5 heterotrimer formation [47–49]. This

work was carried out in keratinocytes taken from junctional

epidermolysis bullosa patients who had a mutation in either

chain [47–49]. The h3A-transfected LNCaP cells, however,

only made small amounts of the individual laminin-5

chains but did not form laminin-5 matrix in comparison to

the work done in keratinocytes [47–49]. The lack of a de-

tectable heterotrimer may be suggested by earlier work

in our laboratory [50]. In that study, we showed that

LNCaP cells retained most of their laminin production and

could not secrete various laminin chains owing to abnormal

glycosylation [50].

In the current study, transfected cells showed focal con-

tact formation but did not show restoration of an extracellular

basal lamina typically lost in prostate carcinoma, nor evi-

dence of hemidesmosome formation. This result is consis-

tent with work done by our group and others [51,52]. We

have shown that a6h1and a3h1 are both involved in the

formation of dynamic focal contacts important for cell loco-

motion [51]. We have found that prostate cell lines able to

form invasive tumors in immunocompromised mice have

increased expression of the a6h1 integrin [51]. Recently,

this integrin has been reported to be more involved in cell

spreading than static attachment [52]. We know from previ-

ous work that the presence of the a6 integrin in the LNCaP

cell can usually not be demonstrated by immunohistochem-

istry but is present by Western blot analysis. Interestingly,

transfection with h3A apparently polarized the a6 integrin to

the cytoplasmic membrane and colocalized with the a3 chain

of laminin-5 in punctuate focal adhesion contacts. The

Figure 6. Tumorigenicity. Mean tumor volumes after 10 million cells

transfected with b3A or empty vector were mixed in sterile saline and

injected subcutaneously into SCID mice. After 45 days, tumors formed by

b3A-transfected cells almost tripled in volume (P = .007) in comparison to

those that received empty vector. Error bars represented by standard

deviation. Similar results were obtained when cells were mixed in equal

volumes of matrigel and sterile saline. By 35 days, the b3A-transfected
cells had formed tumors smaller than those that received empty vector. After

this time, however, as cells apparently adapted to their microenvironment, the

tumors formed by b3A-transfected cells doubled in volume and remained

twice as large as those formed by cells that received empty vector (data

not shown).

Figure 7. Scatter plots from Affymetrix HG-U133A microarray. Microarrays were normalized using the global scaling method recommended by Affymetrix. These

data were used to generate fold change. A total of 395 genes, which showed a two-fold change or greater, was selected and analyzed for significant differences

using the Affymetrix DMT data mining tool. There were 233 upregulated and 162 downregulated genes. Scatter plots were created using Genespring version 6.1

software (Silicon Genetics, Redwood City, CA). False color representations are depicted showing different levels of signal intensity, with blue being the lowest,

yellow being intermediate, and red being the highest. The 395 genes that showed a two-fold change or greater are represented in (A), and the 233 upregulated

and 162 downregulated genes are depicted in (B).
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observed increased lamellopodia formation, spreading, and

migration may be related to this polarization of the a6

integrin. We could not demonstrate colocalization of the h4
integrin, suggesting that the presence of overexpression of

the h3 laminin chain was insufficient in this cell type to cause

hemidesmosome formation.

Based on our microarray results, upregulation of LIM

kinase and downregulation of E-cadherin may further explain

why the transfected h3A cells showed increased motility. LIM

kinase is known to be responsible for cofilin phosphorylation,

both of which are key members of a Rac signaling cascade

that regulates lamellopodia formation, cell adhesion, and cell

motility [53]. Recent evidence suggests that LIM kinase may

play an essential role in cancer invasion in general as well as

invasive growth of prostate epithelial cells [54,55]. Moreover,

the downregulation of E-cadherin agrees with previous work

showing a gain of N-cadherin and a loss of E-cadherin

(referred to as ‘‘cadherin switching’’) in human prostate

cancer progression [56–58].

Perhaps our most intriguing result was the increased size

of tumors when h3A-transfected cells were injected subcu-

taneously in SCID mice. Prior to 40 days, the in vivo data

resembled the in vitro growth curve. After 35 to 40 days,

however, as these cells apparently adapted to their micro-

environment, tumor volume tripled in comparison to cells

receiving empty vector. An Affymetrix microarray experiment

was performed to further analyze the effects of h3 transfec-

tion. LNCaP cells transfected with h3A showed upregulation

of genes associated primarily with transcription regulation,

protein modification, mitosis, and signal transduction, as well

as cell or vesicle transport. The most common functions of

Figure 8. Validation by real-time RT-PCR. Real-time RT-PCR was performed as described in Materials and Methods section and the threshold bar for Ct

determination was set within the linear range of the PCR amplification. Fold increase was determined by first subtracting out GAPDH expression from each sample

before comparing relative expression values (2�DDCt). A representation of 5 of 13 genes that concurred with microarray results is shown with gene expression levels

compared between parental, nontransfected (LNCaP) cells, and transfected cells receiving either b3A or empty vector.

Table 2. Genes Selected For Validation.

Jun

Ras association domain family 1 (RASSF1)

FGFR2

FGFR3

JAK2

E-cadherin (CDH1)

Growth factor receptor–bound protein 10 (GRB10)

VEGF

Forkhead box M1 (FOXM1)

BIRC1

BIRC5

HMMR

PI-3 kinase– related kinase (SMG-1)

LIM protein

GAPDH
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the downregulated genes were also protein modification,

signal transduction, and transcription regulation. The upre-

gulated genes were related to survival or the AKT pathway,

whereas the downregulated genes were associated with the

growth factor–ERK pathway. Preliminarily, the increased

tumor volume seems to be attributed to a triggering of cell

survival signaling by the intracellular h3 chain. Further work

is needed to determine whether the increased tumor volume

can be explained by integrin mediation, cell growth signaling,

or a combination of these processes, Our results do suggest,

however, a putative role for the h3 chain of laminin-5 in signal

transduction.

This role is not surprising in light of recent work by Schenk

et al. [59], which showed that a proteolytic fragment of the

g2 chain of laminin-5 can serve as a ligand for EGFR. In

addition, a novel coculture technique using normal human

prostatic fibroblasts and LNCaP cells demonstrated that

prostatic fibroblasts promoted tumor formation and retarded

the apoptotic pathways in tumor cells [60]. The role of the

microenvironment and interactions with neoplastic cells has

been well documented perhaps most poignantly by Hanahan

and Weinberg in their heterotopic view of cancer biology. In

that model, the interplay between carcinoma cells and nor-

mal cells, and vessels and stroma is emphasized [61].

In conclusion, we demonstrated that laminin-5 h3A ex-

pression in LNCaP cells increased cell migration in vitro and

tumorigenicity in vivo. These results were supported by a

human microarray experiment, which indicated that the h3
chain of laminin-5 seems to play an important role in signal

transduction, particularly cell survival. The h3A-transfected
cells, however, remained incapable of secreting a laminin-5

matrix and forming hemidesmosomes, which may suggest a

deficiency in the translational machinery unique to LNCaP

cells. Whether these findings are unique to prostate cancer

or can be replicated in other carcinoma cell lines warrants

further investigation. We are presently examining the role of

h3A expression in MCF-7 breast cancer cells, which are also

incapable of making this protein.
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