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a b s t r a c t

Refactoring transformations are important for productivity and quality in software
evolution. Modular reasoning about semantics preserving transformations is difficult
even in typed class-based languages because transformations can change the internal
representations for multiple interdependent classes and because encapsulation can be
violated by pointers to mutable objects. In this paper, an existing theory of representation
independence for a single class, based on a simple notion of ownership confinement, is
generalized to a hierarchy of classes and used to prove refactoring rules that embody
transformations of complete class trees. This allows us to formalize refactorings that
inherently involve class inheritance, such as Pull Up or Push Down Field; moreover,
this makes it possible to generalize refactorings previously restricted to change of data
representation of private attributes (like Extract Class and Encapsulate Field) to address
data refinement of protected attributes, dealing with the impact that the corresponding
transformations may cause in the subclasses. The utility of the proposed rules is shown in
a relatively extensive case study. Shortcomings of the theory are described as a challenge
to other approaches to heap encapsulation and relational reasoning for classes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

According to Wikipedia, ‘‘code refactoring is the process of changing a computer program’s source code without
modifying its external functional behavior in order to improve some of the nonfunctional attributes of the software’’.
Refactoring is an integral part of formal and informal software development processes in many organizations and tool
support is provided by popular development environments such as Eclipse. However, the intent to preserve functional
behavior is not always achieved [32], nor is it easily assessed. Useful refactorings may change many classes (e.g., replacing
direct access to a protected field by get/set methods) and/or runtime data structures (e.g., introducing or eliminating
indirection via wrapper objects). System testing can confirm whether a refactored program passes the tests of the original,
and at least some unit tests will still be applicable to the refactored version. However, tests are rarely sufficient to determine
whether all functional behavior has been preserved.

This paper contributes to an ongoing project in which semantics preserving refactoring transformations are formally
defined and validated. In previous work [8] we present algebraic laws for a Java-like language including recursive classes
and features such as inheritance. The laws are proved sound (using a predicate transformer semantics [12]) and relatively
complete, through a normal form reduction process, and used to prove sample refactorings. Many interesting refactorings
involve a change of data representation, for which a theory of data refinement was developed [13]. These works rely on the
drastic restriction that programs do not share mutable objects, so that ‘‘copy semantics’’ can be used.
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We have investigated the impact of reference semantics on the laws [37], using the rCOS [20] refinement theory, and
identified a number ofwhatwe call laws of classeswhich remain sound in reference semantics, even obviously sound because
they are fine grained changes of static program structure. However, rCOS does not yet provide data refinement laws with
reference semantics.

The key difficulty for data refinement is the potential for references to violate encapsulation boundaries and create
interdependences that are not evident in the program syntax. There have beenmanyworks on ownership and other notions
of alias control intended to tame reasoning about references (e.g., [14,4,26]). In previous work [5], we develop a notion
of simulation for proving equivalence between two implementations of a class, relying on a somewhat restrictive form of
ownership confinement. In later work [6] we develop a more flexible version that caters for transferable ownership. In both
of these works we follow Reynolds [29] in terming the main result an abstraction theorem. Representation independence
for languages with references is under active investigation but recent advances [36,21,9,2,39,17,16] do not directly address
class based languages. The technique of Koutavas and Wand [21] was adapted to a class based language [22] and used to
verify the examples in [5] but those are specific programs involving a single class rather than general refactoring laws.

The works in the preceding paragraph focus on proving contextual equivalence of program fragments, in other words,
equivalence in all contexts. As pointed out in several works (e.g., [8]), many useful laws hold only in restricted contexts,1
such as, for instance, those where method contracts are satisfied, downcasts are absent, or some alias confinement property
holds. In particular, many of the refactorings in Fowler [18] impose restrictions on the whole program, though it is not
always obvious from their informal descriptions (see [28,30]). For that reason, [8] considers whole program equivalence, via
schematic laws in which contextual constraints can be expressed syntactically. We do the same here.

In this paper we present an abstraction theorem for using simulation to prove equivalence of two versions of an entire
hierarchy of classes. The theorem is used to prove a data refinement law, which is itself used in the proofs of some general
refactoring rules. Those rules are in turn used to carry out a detailed case studywith several steps. One step of the case study
embodies a rather specific transformation andmakes direct use of the data refinement law. Therefore, the law is useful both
to prove more general transformations (contributing to sound refactoring catalogs) as well as to justify specific changes of
data representation in the application being refactored.

A short summary of the ideas that havemotivated the contributions of this paper canbe found in ourworkshoppaper [35].
There we illustrate the refactorings via a simplified version of the case study developed here, and briefly sketch the notion
of confinement and results on representation independence.

The range of refactorings we can address are all those that involve some change of data representation. Some of these
refactorings (like Pull Up or Push down Field) make explicit the impact of data refinement in the inheritance tree. Other
refactorings, like Extract Class or Encapsulate Field, as originally presented [18], affect only private fields, so that the change
of data representation is restricted to a single class. Nevertheless, it is useful to generalize these refactorings to encompass
protected attributes as well. Although using private fields is among the good practices of object-oriented programming,
there are several applications, particularly frameworks intended to be extended, whose design are heavily based on the
use of protected attributes; a well-known example is Java’s Swing API. Furthermore, efficiency might also dictate the use
of protected attributes; the direct access of these attributes by subclasses is convenient, for instance, in the case of the
implementation of some collections. Therefore, our work provides infra-structure both to propose new refactorings and to
generalize well-known refactorings to allow their application in such contexts. Of course, our data refinement law can be
used to justify change of data representation of an individual class, as a special case; even in this simpler case, our results
extend previous work [10], which is restricted to copy semantics.

Remarkably,we achieve these results via a relatively simple generalization of results in [5]. There, a notion of ownership is
defined in terms of class types declared in the program, taking advantage of nominal typing as in Java and avoiding the need
for special type annotations [14,4,1,26] or specifications [6,7,34]. We adapt that approach to fit protected visibility and we
improve it so that instances of library classes can be owned, without disallowing other uses of those classes. We expect that
our adaptation can be enforced by a straightforward static analysis, like that worked out in [5], but that is beyond the scope
of this paper. What matters here is that the approach is well suited to use with refactorings. In most cases, we found that
confinement follows from the conditions already required for soundness of the various refactorings we considered. Only the
Extract Class refactoring and the data refinement law have explicit conditions concerning confinement. We also follow [5]
in using a denotational semantics. Compositional semantics facilitates proof of simulations and program equivalences by
structural induction on program texts. Our semantics, and hence the notion of program equivalence, is idealized in the sense
that it models an unbounded heap and unbounded runtime stack.

In the next section we introduce the programming language we adopt. It is an idealized fragment of Java, without
threads, generics, reflection, or nested classes. Section 3 provides the denotational semantics and uses it to define program
equivalence based on observable behavior. In Section 4 we formalize a notion of ownership confinement, and in Section 5
we prove an abstraction theorem for class hierarchies. In Section 6 we prove a data refinement law that directly embodies
the abstraction theorem, and we prove some refactorings whose change of data representation might impact an arbitrary
number of classes in an inheritance tree. Some of those refactorings are proved using the data refinement law and others
are proved directly from the semantics. A case study is developed in Section 7 to illustrate the application of the refactoring

1 This is also remarked in [22], where a specific restriction on downcasts is investigated.
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cd ::= class K ext L { vis f : T mt } class declaration
T ::= K | bool | int data type
vis ::= pri | prot | pub visibility modifier for fields
msig ::= m(x : T ) :U method signature
mt ::= methmsig { c } public method declaration
c ::= x := e assign to variable

| x.f := y field update
| var x : T in c local variable block
| c1; c2 | if x then c1 else c2 sequence, conditional

e ::= x | null | true | 0 | 1 | 2 . . . variable, constant
| x.f field access
| x = y | . . . equality test and other prim. ops.
| x is K type test
| (K) x type cast
| new K object construction
| x.m(y) method call
| let x be e1 in e2 sequenced local binding

Fig. 1. Grammar of classes and methods. Bold keywords and punctuation marks including ‘‘{’’ and ‘‘}’’ are terminal symbols.

rules and the data refinement law. In the final section we summarize our contributions, further discuss related work, and
list some challenges for future research.

The sections proceed in order of logical dependency. However, for illustrative examples, the reader is encouraged to
proceed directly to Section 7. In particular, in Section 7.3 we point out the need for confinement, in one of the refactoring
steps. In Section 7.4 we point out the need for confinement in a direct use of the data refinement law.

2. Programming language syntax

This section formalizes the language used in this paper. The syntax and semantics are adapted from [25] (but without
interface types or first-class exceptions), which is a streamlined version of the language and denotational semantics of [5].

2.1. Grammar

The grammar is based on some given sets of names, using the following nomenclature for typical elements:

K , L,M,N ∈ ClassName names of declared classes
S, T ,U, V data types (including class names)
b, c, d commands
x, y, z, f variable names (parameters, fields, and locals)
m, n method names.

The syntax for classes and methods is in Fig. 1. Apart from the above conventions, we use x to indicate a list of variables. But
the identifier x has nothing to do with the identifier x. We indicate lists of types, expressions, etc. analogously.

We use the terms ‘‘field’’ and ‘‘attribute’’ interchangeably to refer to the variables of a class. There are two distinguished
variable names, self and res, which have special uses in the semantics: the receiver object and expression result, respectively.
The return value of amethod is given by the final value of res, as if everymethod body had at the end the statement ‘‘return
res’’. There are three distinguished class names, Object, Void, and None, as well as one distinguished method name ctor.
The latter is used as the constructor method. Whereas Object serves as usual as the top of the class hierarchy, Void plays a
technical role that streamlines the formalization of program equivalence (Section 3.5). In particular, Void is the type of self
in the main program. Class Void has no fields, no methods other than ctor, and no subclasses. Class None plays a technical
role in the formalization of confinement; it never occurs in programs.

Definition 1 (Complete Program, Class Table). A complete program is a sequence cds of class declarations together with a
command c , written cds • c.

When convenient, we abuse notations and treat a list cds of class declarations as a function, called a class table, that maps
each declared class name K to its declaration cds(K).

As usual we model input and output by the global variables of the main program c in cds • c . To avoid clutter in the
refactoring laws we refrain from formalizing syntax for the declaration of these global variables, but implicitly they do have
type declarations which are used when we define well-formed programs later.
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1. No parameter or local variable declaration uses the name self or res.
2. The subtype relation≤ is acyclic.
3. Field names are not shadowed, that is, if f : T is in dfields(K) then f is not in fields(super(K)).
4. Method types are invariant, except for constructors. That is, if mtype(U,m) is defined and T ≤ U and m ≠ ctor then mtype(T ,m) =

mtype(U,m).
5. For any K , every method declarationm(x : T ) :U {c} in cds(K) is typable in the sense that Γ ⊢ c where Γ = [self : K , res :U, x : T ].
6. In every class K , K ≠ None, there is one declaration for a method named ctorwith return type K and body of the form c; res := self.
7. Every occurrence of an expression new K (in any class) has the form let x be new K in x.ctor(y) and moreover there are no other

invocations of ctor.
8. Class Void has superclass Object, no subclasses, no fields, and no methods other than the obligatory ctor.
9. Class None is declared as class None ext Object { }, and the class name None does not occur anywhere in any other class; nor in the

main program.
10. Every superclass must be declared and every class is declared only once.

Fig. 2. A well-formed class table. Rules that define Γ ⊢ c appear in Fig. 3.

The syntax is in ‘‘A-normal form’’ [33], i.e., subexpressions in various constructs are restricted to be variables. The only
command form that involves general expressions e is assignment x := e to a variable.2 We sometimes write ‘‘le := e’’ to
stand for an assignment of either form x := e or x.f := y.

For a method m with return type Void, we omit ‘‘ :Void’’ in the declaration and treat x.m(y) as a command, which
desugars to var y :Void in y := x.m(y) using dummy y. Typically, the body of such a method has no assignment to the
distinguished variable res and thus the return value is the initial value of res (i.e., the default, null). We consider all methods
to have public visibility.

We need to consider constructors because our main results rely on simulation relations, which are usually established
by some initialization code. On the other hand, it simplifies the semantics to treat constructors like other methods as much
as possible. We confine attention to programs in which each class declares one method named ctor and new K only occurs
in the form (new K).ctor(y) —which is sugar for let x be new K in x.ctor(y). Moreover, the body of ctor has the form
c; res := self. Thus the expression (new K).ctor(y) evaluates to a reference to the freshly allocated and initialized object.

2.2. Program typing

We begin by defining some functions that extract parts of the syntax. Let

cds(K) = class K ext L {vis f : T ; mt}.

Define super(K) = L. Letmt be in the listmt of method declarations, somt has the form

methm(x : T ) :U {c}.

We record the type and parameter names by defining mtype(K ,m) = x : T→U . If m is inherited in K from L (i.e., is defined
in L but not declared in K ) then mtype(K ,m) is defined to be mtype(L,m). Thus mtype(K ,m) is defined iff m is declared or
inherited in K . LetMeths(K) be the set ofm such thatmtype(K ,m) is defined.

For declared fields we define dfields(K) = f : T . Let visib(K , f ) be the visibility marker of field f . To include inherited
fields we define, recursively,

fields(K) = fields(L) ∪ dfields(K).

In a well-formed class table this union will be disjoint.
The subtype relation≤ is the least reflexive and transitive relation such that super(K) = L implies K ≤ L. A consequence is

that, for primitive types, T ≤ U holds just if T isU . Moreover, in a well-formed class table, K ≤ Object for all K ∈ ClassName.
We write V ≤ T to express that V and T are lists of the same length and corresponding elements are related by≤.

A class table cds is well-formed provided it satisfies the conditions in Fig. 2, which refers to the typing rules in Fig. 3.
The typing judgment has the form Γ ⊢ c where Γ is a typing context: a finite map from variable names to data types.
The functions mtype and dfields depend on a class table cds, hence so does the typing relation ⊢, but this dependence is
suppressed in the notation.

The typing rules could be streamlined if in addition we added a subsumption rule. As a technical convenience, we choose
instead to use only syntax-directed rules. This lets us define the semantics by induction on typing derivations, which are
essentially unique. The rules disallow variable re-declaration (shadowing): in the rule for var, the context [Γ , x : T ] would
not be well formed if xwas in the domain of Γ .

Recall that a complete program cds•c consists of a well-formed class table and a command c. There is an implicit context
Γ such that Γ ⊢ c , which we do not make explicit in the syntax (in order to streamline the laws, as in [8]). We do not model

2 One would expect the grammar for expressions to allow equality tests of the form e = e, method calls of the form e.m(e), and so forth. These can all
be desugared to our syntax by simple translations using let-expressions.
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Γ ⊢ x :Γ (x) Γ ⊢ true : bool Γ ⊢ null : K

Γ ⊢ x : K K ≤ L (f : T ) ∈ dfields(L)
(visib(L, f ) = pri ⇒ Γ (self) = L) (visib(L, f ) = prot ⇒ Γ (self) ≤ L)

Γ ⊢ x.f : T

Γ ⊢ x : K mtype(K ,m) = z : T→U Γ ⊢ y : V V ≤ T
Γ ⊢ x.m(y) :U

Γ ⊢ x : L
Γ ⊢ (K) x : K

Γ ⊢ x : L
Γ ⊢ x is K : bool Γ ⊢ new K : K

Γ ⊢ e : T [Γ , x : T ] ⊢ e1 :U
Γ ⊢ let x be e in e1 :U

[Γ , x : T ] ⊢ c
Γ ⊢ var x : T in c

Γ ⊢ e : T T ≤ Γ (x) x ≠ self
Γ ⊢ x := e

Γ ⊢ x : K K ≤ L (f : T ) ∈ dfields(L) Γ (y) ≤ T
(visib(L, f ) = pri ⇒ Γ (self) = L) (visib(L, f ) = prot ⇒ Γ (self) ≤ L)

Γ ⊢ x.f := y

Fig. 3. Selected typing rules for expressions and commands, for a given class table.

static methods or fields; indeed, we need self ∈ dom(Γ ) to formalize confinement of the main program. Hence we assume
that self has type Void in a main program.

Method m is inherited in K from L if K ≤ L, there is a declaration for m in L, and there is no declaration for m in any M
such that K ≤ M < L. To make the class table explicit, we also saym is inherited from L in cds(K).

Because the language has single inheritance, the subtyping relation ≤ is a tree: if L ≤ M and L ≤ K then M ≤ K or
K ≤ M . If mtype(K ,m) is defined for some K then it is defined for all subclasses of K and there is a unique ancestor class
declaringm that is least with respect to≤.

For any m and K such that mtype(K ,m) is defined, the method depth of K for m in cds is defined by depth(K ,m) =
1+ depth(super(K),m) ifmtype(super(K),m) is defined; otherwise, depth(K ,m) = 0. An immediate consequence is that if
mtype(K ,m) is defined and depth(K ,m) = 0 then cds(K) has a declaration form.

Concerning visibility for protected fields, our access rule is a simplification of, for instance, a language like Java, which
includes packages and, therefore, amore elaborate notion of scope. Our rule for type cast is slightly simpler andmore general
than in Java: besides up and down casts, it allows casts that are certain to fail; similarly for type test.

3. Program semantics

In this section we present a denotational semantics for our programming language. We start by defining the relevant
semantic domains, followed by the semantics of expressions and commands. We then define partial orderings on the
domains. Then we give the semantics of method declaration and class table. Finally, we define program equivalence.

3.1. Semantic domains

We assume a given infinite set Ref of references —abstract addresses. A ref context is a finite partial function r that maps
references to class names. The idea is that if o ∈ dom(r) then o is allocated and moreover o points to an object of type r(o).
We define the set

RefCtx = Ref ⇀ (ClassName− {None})

where⇀ denotes finite partial functions. The effect of disallowing class None in the range is that there are never instances
of this class. This is feasible owing to condition 9 in Fig. 2. The need to explicitly disallow instances of None, even though
the name is not allowed to appear in code, is a price we pay for using a denotational semantics.

Let null be some fixed value with null /∈ Ref . For data types T the domain of values is defined by cases on T , for any ref
context r .

Val(bool, r) = {true, false}
Val(int, r) = Z
Val(K , r) = {null} ∪ refs(K , r)
refs(K , r) = {o ∈ dom(r) | r(o) ≤ K}.
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Note that for any ref context r we have

K ≤ L implies Val(K , r) ⊆ Val(L, r). (1)

Sometimes we abuse notation and write Val(T , r) for lists of values, of types Val(T1, r), Val(T2, r), . . . , Val(Tn, r).
The next definitions involve dependent function spaces or dependent pairs.3 The first use of dependent types is in the

definition

PreStore(Γ , r) = (x : dom(Γ ))→ Val(Γ (x), r).

What this means is that PreStore(Γ , r) is a set of functions; and for any s in PreStore(Γ , r), the domain of s is dom(Γ ), and
s(x) is an element of Val(Γ (x), r) for each x ∈ dom(Γ ).

The domain of stores imposes an additional invariant on the semantics, that self is not null: define Store(Γ , r) by

s ∈ Store(Γ , r) iff s ∈ PreStore(Γ , r) and (self ∈ dom(Γ ) ⇒ s(self) ≠ null).

Next we build up to program states. Define obcontext(K) to be the variable context obtained by removing visibility
markers from fields(K). Define

FieldRcrd(K , r) = Store(obcontext(K), r)
Heap(r) = (o : dom(r))→ FieldRcrd(r(o), r)
State(Γ ) = (r : RefCtx)× Heap(r)× Store(Γ , r).

So a heap h is a map sending each allocated reference o to a record, h(o), of the object’s current field values; and h(o)(f ) is
the value of field f . A Γ -state has the form (r, h, s)with h a heap for r and s a store for Γ and r .

In Section 4 and later, we often decompose heaps into fragments. For that purpose, we say h is a pre-heap for r if h is like
a heap except that its domainmay be a subset of dom(r); in particular, its object fields may contain values that are in dom(r)
but not in dom(h). Formally:

PreHeap(r) = (o : dom(r)) ⇀ FieldRcrd(r(o), r).

The most important domain is state transformers.4

STrans(Γ ,Γ ∗) = (σ : State(Γ ))→ {⊥} ∪ {τ |τ ∈ State(Γ ∗) ∧ extState(σ , τ )}

Relation extState is defined to say that one state’s ref context extends the other’s5:

extState((r, h, s), (r∗, h∗, s∗)) iff r ⊆ r∗.

This expresses that the type of a reference never changes. We do not model garbage collection; unreachable objects remain
in the state.

The domain of state transformers subsumes meanings for methods, expressions and commands:

SemExpr(Γ , T ) = STrans(Γ , [res : T ])
SemCommand(Γ ) = STrans(Γ ,Γ )
SemMeth(K ,m) = STrans([self : K , x : T ], [res :U])

where mtype(K ,m) = x : T→U .

We sometimes use the term state transformer type, with notation Γ  Γ ∗, in connection with elements of STrans(Γ ,Γ ∗).
Thus a command in context Γ denotes a state transformer of type Γ  Γ . An expression of type T in context Γ denotes a
state transformer of type Γ  [res : T ]. And amethod declaration withmtype(K ,m) = x : T→U denotes a state transformer
of type [self : K , x : T ] [res :U].

Amethod environment is defined to be a table ofmeanings for all methods in all declared classes. The set,Menv, of method
environments is defined by

Menv = (K : ClassName)× (m :Meths(K))→ SemMeth(K ,m).

A class table cds denotes a method environment, [[cds]], defined later. The idea is that a method environment η is defined for
pairs (K ,m), where K is a class with methodm, and moreover η(K ,m) is a state transformer suitable to be the meaning of a
method of type mtype(K ,m). In case m is inherited in K from L, η(K ,m) will be the restriction of η(L,m) to receive objects
of type K .

3 We write (x :D) → E for total functions where the type E of the range may depend on the value x of the argument, and similarly (x :D) × E for
dependent pairs.
4 We use the asterisk (∗)merely to decorate identifiers, in order to save the dash (′) for pairs of related programs and states (starting in Section 5).
5 Since r and r∗ are partial functions which we treat as sets of pairs, r ⊆ r∗ says that r∗ has at least the domain of r and they agree on their common

domain.
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3.2. Semantics of expressions and commands

A number of notations are needed. For typing contexts we write x : T to express that x is mapped to T , and [Γ , x : T ]
indicates the extension of Γ with a binding for xwhichmust not occur in the domain of Γ . In the semantics we use a similar
notation, e.g., [s, x : v] extends store s to map x to v, where x is not in dom(s). We write [s | x : v] to update s in case x is in
dom(s). Note that extension of a map is distinguished from update by use of comma versus |. We abbreviate nested updates
to object fields: [h | o.f : v] is short for [h | o : [h(o) | f : v]]. Application binds most tightly, e.g., [s, x : s1(x)] extends s to
map x to the value of s1(x). To remove an element from the domain of a function we use the minus sign, e.g., if s is a store
then s− x is the same store but with x removed from its domain.

In addition to working directly with states in the form (r, h, s), it is sometimes convenient to use a single identifier σ .
For σ = (r, h, s)we write σ(x) for s(x) and we write σ(x.f ) for h(s(x))(f ).

Let-expressions in the metalanguage are⊥-strict. That is, if α is⊥ then let x = α in β is⊥; otherwise the value is that
of β under the binding of x as usual.

Semantics of expressions and commands. For a well-formed expression in context, i.e., a derivable judgment Γ ⊢ e : T , the
semantics [[Γ ⊢ e : T ]] is in

Menv→ SemExpr(Γ , T ).

The semantics [[Γ ⊢ e : T ]] gets applied to a method environment η to yield a state transformer [[Γ ⊢ e : T ]](η) that in turn
is applied to a state σ in State(Γ ). Finally, [[Γ ⊢ e : T ]](η)(σ ) yields either⊥ or an element of State([res : T ]). The semantic
definitions for expressions are in Fig. 4.

The semantics is given in terms of an arbitrary allocator, i.e., a total function fresh : RefCtx× ClassName→ Ref such that
fresh(r, K) /∈ dom(r) for all ref contexts r . Parameter K is present so that later we can impose an additional assumption that
streamlines the treatment of simulations.

Definition 2 (Parametric Allocator). We say fresh is parametric if

fresh(r1, K) = fresh(r2, K)

for any r1, r2 such that {o | r1(o) = K} = {o | r2(o) = K}.

It is not difficult to define a set Ref and allocator fresh that is parametric, but allocators in practice are typically not
parametric. See discussion near the beginning of Section 5.2. (The term ‘parametric’ is from [5] and is succinct but perhaps
not informative.)

The initial state of a new object of class K is given by defaultFieldRcrd(K) defined as follows. First, define default(T ) for
each type T : default(int) = 0, default(bool) = false, and default(K) = null for K ∈ ClassName. Then defaultFieldRcrd(K) is
just the mapping of fields(K) to the default values for their types, so that defaultFieldRcrd(K) is in FieldRcrd(K , r) for all ref
contexts r .

The last case in Fig. 4, for method call, deserves some explanation. Because s(x) is the receiver of the call, r(s(x)) is the
dynamic type of the receiver, so η(r(s(x)),m) is the method meaning to be applied. It is applied to state (r, h, s1)where the
store s1 provides the arguments. Owing to the well-formedness of the class table, the parameters z can be obtained from
the static type of the receiver.

For any well-formed command in context Γ ⊢ c and method environment η, we define [[Γ ⊢ c]](η) and observe that it
is an element of SemCommand(Γ ). The semantics of commands is in Fig. 5.

3.3. Domain orderings

A class table denotes a method environment obtained as the least upper bound of a chain of approximations. For
this purpose each semantic domain is given a partial ordering. The sets Val(T , r), Store(Γ , r), Heap(r), and State(Γ ) are
considered to be ordered by the discrete order, i.e., equality. For state transformers ϕ andψ in STrans(Γ1,Γ2) define ϕ ≤ ψ
iff for all states σ , if ϕ(σ) ≠ ⊥ then ϕ(σ) = ψ(σ). Put differently, this is the pointwise ordering: ϕ ≤ ψ iff ϕ(σ) ≤ ψ(σ),
for all σ . Finally, for method environments, define η ≤ η′ iff η(K ,m) ≤ η′(K ,m) for all K ,m.

Each of these sets is a complete partial order, that is, every ascending chain has a least upper bound. The everywhere-
⊥ function is the least element in STrans(Γ1,Γ2). The least method environment, η0, is defined so that η0(K ,m) is the
everywhere-⊥ function for all K ,m. The least upper bound of method environments has a simple characterization.

Lemma 3 (Least Upper Bounds for Method Environments). Suppose η is an ascending chain of method environments, i.e., ηi ≤
ηi+1, for all natural i. Then for any K , m, σ , there is some j such that

lub(η)(K ,m)(σ ) = ηk(K ,m)(σ ) for all k ≥ j.

This follows from a similar property for ascending chains of state transformers of a fixed type.
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[[Γ ⊢ x : T ]](η)(r, h, s) = (r, h, [res : s(x)])
[[Γ ⊢ true : bool]](η)(r, h, s) = (r, h, [res : true]) and similarly for other literals
[[Γ ⊢ x = y : bool]](η)(r, h, s) =

let v = (if s(x) = s(y) then true else false) in (r, h, [res : v])
[[Γ ⊢ new K : K ]](η)(r, h, s) =

let o = fresh(r, K) in let r0 = [r, o : K ] in
let h0 = [h, o : defaultFieldRcrd(K)] in (r0, h0, [res : o])

[[Γ ⊢ x.f : T ]](η)(r, h, s) = if s(x) ≠ null then (r, h, [res : h(s(x))(f )]) else ⊥
[[Γ ⊢ (K) x : K ]](η)(r, h, s) =

if s(x) = null ∨ r(s(x)) ≤ K then (r, h, [res : s(x)]) else ⊥
[[Γ ⊢ x is K : bool]](η)(r, h, s) =

let v = (if s(x) ≠ null ∧ r(s(x)) ≤ K then true else false) in (r, h, [res : v])
[[Γ ⊢ let x be e in e1 :U]](η)(r, h, s) =

let (r0, h0, s0) = [[Γ ⊢ e : T ]](η)(r, h, s) in
let s1 = [s, x : s0(res)] in [[Γ ⊢ e1 :U]](η)(r0, h0, s1)
[[Γ ⊢ x.m(y) :U]](η)(r, h, s) =

if s(x) = null then⊥ else let s1 = [self : s(x), z : s(y)] in η(r(s(x)),m)(r, h, s1)
where z : T→U = mtype(K ,m)

Fig. 4. Semantics of expressions.

[[Γ ⊢ x := e]](η)(r, h, s) =
let (r1, h1, s1) = [[Γ ⊢ e : T ]](η)(r, h, s) in (r1, h1, [s | x : s1(res)])
[[Γ ⊢ x.f := y]](η)(r, h, s) =

if s(x) = null then⊥ else let o = s(x) in (r, [h | o.f : s(y)], s)
[[Γ ⊢ if x then c1 else c2]](η)(r, h, s) =

if s(x) = true then [[Γ ⊢ c1]](η)(r, h, s) else [[Γ ⊢ c2]](η)(r, h, s)
[[Γ ⊢ var x : T in c]](η)(r, h, s) =

let (r1, h1, s1) = [[Γ , x : T ⊢ c]](η)(r, h, [s, x : default T ]) in (r1, h1, s1 − x)
[[Γ ⊢ c1; c2]](η)(r, h, s) =

let (r1, h1, s1) = [[Γ ⊢ c1]](η)(r, h, s) in [[Γ ⊢ c2]](η)(r1, h1, s1)

Fig. 5. Semantics of commands.

3.4. Semantics of method declarations and class tables

To define the semantics of a class table we need to obtain the semantics of each method declaration from the semantics
of its body. Suppose class K has declaration

methm(x : T ) :U {c} (2)

Itsmeaning is a state transformer of type [self : K , x : T ] [res :U], and themeaning of c is a state transformer of typeΓ  Γ
with Γ = [self : K , x : T , res :U]. Basically, the method meaning is obtained from the denotation of c by initializing res and
then projecting out of the final state.

Formally, suppose η is a method environment and K declares m by Eq. (2). Then [[K ,m]](η) is the element of
SemMeth(K ,m) defined by

[[K ,m]](η)(r, h, s) = let s0 = [s, res : default(U)] in
let (r1, h1, s1) = [[x : T , self : K , res :U ⊢ c]](η)(r, h, s0) in
(r1, h1, [res : (s1(res))]).

Definition 4 (Semantics of Class Table). The semantics of a class table cds, written [[cds]], is the least upper bound of the
ascending chain η defined as follows, for each K and everym declared or inherited6 in K :
η0(K ,m) = λσ • ⊥
ηj+1(K ,m) = [[K ,m]](ηj) ifm is declared in K
ηj+1(K ,m) = ηj+1(L,m) ifm is inherited from L in K .

6 To be very precise for an inherited method, if mtype(K ,m) = x : T→U then ηj+1(K ,m) should apply to stores for [x : T , self : K ] whereas ηj+1(L,m)
applies to stores for [x : T , self : L]. But the latter contains the former, owing to Eq. (1).



68 D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97

To show that the chain η defined above is ascending, we need [[K ,m]] to be a monotonic function on method
environments. This in turn relies on the same property for command semantics, [[Γ ⊢ c]].7

Definition 5 (Semantics of Complete Program). Let cds • c be a program where the implicit context for c is Γ . Its semantics,
written [[cds • c]], is the transformer of Γ -states defined by [[cds • c]] = [[Γ ⊢ c]]([[cds]]).

3.5. Program equivalence

We consider that the inputs and outputs of a main program are given in its global variables, i.e., the heap is not directly
observable. The primitive type int of unbounded integers is suitable for input/output (e.g., it can encode strings), whereas
reference values are not interesting without the heap. However, for simplicity we compare the entire store of global
variables, including values of all types including references. The key point is to be able to compare states for two different
class tables, where private fields may differ in the heap but stores remain comparable.

The initial heap ought to be empty, but we are not modeling static methods so a main program has self :Void, and the
value of self is always non-null. For the sake of the following definition, we say a Void-only state is a state (r, h, s) such that
for every o ∈ dom(r)we have r(o) = Void.

Definition 6 (Visible Equivalence of State Transformers). Consider class tables cds and cds′ and contexts Γ and Γ ∗ that only
involve types present both cds and in cds′. Let ϕ be a state transformer of type Γ  Γ ∗ for cds and ϕ′ a state transformer of
type Γ  Γ ∗ for cds′. Define ϕ .

= ϕ′ iff for all Γ -states σ that are Void-only, either ϕ(σ) = ⊥ = ϕ′(σ ) or both are non-⊥
and ϕ(σ)(x) = ϕ′(σ )(x) for all x ∈ dom(Γ ).

This definition is designed to cater for the situation where ϕ and ϕ′ are acting on states associated with different class
tables cds and cds′. In that situation, the Γ -states for cds are different from those for cds′ since different type objects may
exist and have different fields, and thus the sets ofΓ -states are slightly different. However, if the types in rng(Γ ) are present
in both cds and cds′ then the stores can be compared (they contain references and values of primitive type, e.g., integers)
and the Void-only states of cds are the same as the Void-only states of cds′.

For the equation ϕ(σ)(x) = ϕ′(σ )(x) to hold for all variables amounts to saying the two stores are equal as functions.
Equality for references is sensible provided that the allocator is parametric (Definition 2).

Our main concern is with comparing two different class tables. For that purpose, if we have comparable class tables cds
and cds′ wewrite⊢,⊢′ for the typing relations determined by cds, cds′ respectively, and similarly for the auxiliary functions,
such asmtype,mtype′.We alsowrite [[−]], [[−]]′ for the respective semantics, and omit the dash on⊢ inside [[−]]′.We assume
that the same allocator, fresh, is used for both [[−]] and [[−]]′.

Definition 7 (Program and Class Equivalence). Let cds • c and cds′ • c ′ be well-formed and suppose c and c ′ are typable in
context Γ . Define

cds • c = cds′ • c ′

iff [[Γ ⊢ c]](η) .
= [[Γ ⊢ c ′]]′(η′)where η = [[cds]] and η′ = [[cds′]]′.

4. Ownership confinement

The purpose of confinement is to restrict possible dependences via pointers, to facilitate local reasoning. In factwe restrict
dependency by disallowing the existence of certain pointers. We consider an instance-oriented notion of confinement: a
single object can ‘‘own’’ some others – called its reps – that may not be pointed to except by each other and by the owner.

Two class names determine the confinement policy. The name Own is supposed to be some class for which certain other
objects are to be encapsulated. More precisely, each instance of any type K , K ≤ Own, has some associated objects that it
‘‘owns’’. A second class name, say Rep, is designated, and owned objects are instances of Rep or its subclasses.8 A confined
programmaintains an all-states invariant that amounts to ‘‘owners as dominators’’: all paths to an owned object go through
its owner. This is the usual property enforced by ownership type systems [11]. Becausewe are not concernedwith ownership
hierarchy in general, but only ownership by instances of the designated class Own, we formulate the all-states invariant
differently, using partitions instead of paths.9

The all-states invariant is that objects in the heap can be partitioned into disjoint regions, depicted in Fig. 6. Each owner
is in a region by itself, say Ohi, with an associated region Rhi that consists of its owned reps. Aside from owners and their
reps, all other objects are termed ‘‘clients’’. Their part of the heap is partitioned into a region CRh consisting of instances of
type≤ Rep, and a region Ch of all remaining objects.10

7 For a very similar semantics, the straightforward but tedious proofs have been machine checked in PVS [25,27].
8 This could easily be generalized to several class names, or to an interface type if that feature were included in the language.
9 Our notion imposes a slight additional restriction, that un-owned instances of class≤ Rep are not directly referenced by owned reps.

10 For readers familiar with [5], we note that by distinguishing CRh from Ch we gain important flexibility in the use of library classes.
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Fig. 6. Confinement scheme for island i. Dashed boxes are partition blocks. Dotted lines indicate prohibited references.

It is convenient but slightly misleading to use the term ‘‘free reps’’ for objects in CRh: whereas objects of Rhi are the
encapsulated representation of the owner in Ohi, objects in CRh are no different from other clients except that they happen
to have type≤ Rep.

The formalization designates that all instances in CRh and Rhi regions have type ≤ Rep, each Ohi is a single instance of
type≤ Own, and Ch has no instance of type≤ Rep or≤ Own. Given a partition of this form, confinement disallows certain
references between regions. Specifically: (a) clients (i.e., Ch and CRh) do not point to owned reps (in the Rhi); (b) the owner
and reps in one island, say Ohi and Rhi, do not point to reps that are free or in another island (say Rhj with j ≠ i); and (c) the
references from an owner to its reps are private or protected fields declared in class Own or a subclass of Own.11 References
from reps to owners and to clients are allowed.

A command is confined provided that itmaintains the confinement invariant and a class table is confined provided that its
methods all maintain confinement. The details are slightly delicate; the rest of this section is devoted to their formalization.

4.1. Confinement of states

Wewrite K >≰ L to abbreviate K � L ∧ L � K . We assume that class names Own and Rep are given, such that Own >≰ Rep
and thus Val(Own, r) ∩ Val(Rep, r) = {null}, for all r . Moreover, we assume that Own ≠ Void and Rep ≠ Void (so these
classes are mutually incomparable).

We say pre-heaps h1 and h2 are disjoint if dom(h1)∩dom(h2) = ∅. Let h1∗h2 be the union of h1 and h2 if they are disjoint,
and undefined otherwise. The following notations are used to express the absence of certain references between objects in
different pre-heaps.

Definition 8 (❀̸,❀̸g ). Given two pre-heaps h1 and h2, to say that no object in h1 contains a reference to an object in h2, we
define❀̸ by

h1 ❀̸ h2 iff ∀o ∈ dom(h1) • ∀f ∈ dom(h1(o)) • h1(o)(f ) /∈ dom(h2).

To say that no object in h1 contains a reference to an object in h2 except via a field in g , we define❀̸g by

h1 ❀̸
g h2 iff ∀o ∈ dom(h1) • ∀f ∈ dom(h1(o)) • h1(o)(f ) ∈ dom(h2) ⇒ f ∈ g. �

We shall partition the heap h as Ch∗CRh∗· · ·where Ch∗CRh contains client objects and the rest is partitioned into islands
of the formOh∗Rh consisting of a singleton pre-heapOhwith an owner object and a pre-heap Rh of its representation objects.
The ‘‘mainland’’ Ch ∗ CRh is partitioned to separate those instances of Rep (and its subclasses) that are used in clients from
those owned. In such a partition, the pre-heaps Ch, CRh,Oh, and Rh need not be closed (i.e., they are not self-contained heaps).
Moreover, some of the sub-heaps may be empty, so we are slightly abusing the term ‘‘partition’’.

Definition 9 (Admissible Partition). An admissible partition (with k islands) for ref context r is a set P of pairwise disjoint
pre-heaps for r

P = {Ch, CRh,Oh1, Rh1, ...,Ohk, Rhk}

with k ≥ 0, that partition r in the sense that12

dom(r) = dom(Ch) ∪ dom(CRh) ∪ (∪i dom(Ohi ∗ Rhi)).

Furthermore, the following must hold for all i with 1 ≤ i ≤ k:

• dom(Ohi) ⊆ refs(Own, r) and size(dom(Ohi)) = 1 (owners)
• dom(Rhi) ⊆ refs(Rep, r) (owned reps)
• dom(CRh) ⊆ refs(Rep, r) (free reps)
• dom(Ch) ∩ refs(Own, r) = ∅ and dom(Ch) ∩ refs(Rep, r) = ∅ (clients) �

11 Item (c) is different from [5] and caters for changing the implementation of the entire hierarchy of classes≤ Own rather than just Own.
12 Note that we allow Rhi to be empty and moreover k may be 0; there may be only Ch and CRh, and these too may be empty.
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Having established enough notation, we can finally formulate the key notion. In terms of partitions, we can express the
sense in which reps belong to a particular owner: the absence of certain references crossing the boundaries of islands, as
indicated in Fig. 6.

Definition 10 (Confined by Partition). Heap h and ref context r are confined by partition P , written conf (r, h, P), iff there is
k such that

• h is in Heap(r)
• P is an admissible partition for r with k islands
• h = Ch ∗ CRh ∗ Oh1 ∗ Rh1 ∗ · · · ∗ Ohk ∗ Rhk
• The following conditions hold for all j, i with j ≠ i.

1. Ch❀̸ Rhj (clients do not point to owned reps)
2. Ohj ❀̸ Rhi and Ohj ❀̸ CRh (owners do not share reps)
3. Ohj ❀̸

g Rhj (owned reps are private and protected to Own)
where g = {f | ∃K ≤ Own • f ∈ dfields(K) ∧ visib(f ) ∈ {pri, prot}}

4. Rhj ❀̸ Rhi and CRh❀̸ Rhi and Rhj ❀̸ CRh (reps are confined to their islands) �

Aside from the condition Rhj ❀̸ CRh, the conditions enforce ‘‘owner as dominator’’ with each Ohi owning Rhi. The condition
Rhj ❀̸ CRh does not seem onerous and streamlines our formalization.

A heap may be partitioned in several ways, because there is no inherent order on islands and because unreachable reps
can be put in any island. The definitions and results do not depend on choice of partition.

Definition 11 (Extension of a Partition, ✂). Let P be an admissible partition for r , with k islands. Define P✂P∗ iff there is a ref
context r∗ such that r ⊆ r∗ and P∗ is admissible for r∗; moreover, it is an extension in the sense of the following conditions,
where P∗ = {Ch∗, CRh∗,Oh∗1, Rh

∗

1, . . . ,Oh
∗
n, Rh

∗
n}.

• n ≥ k
• dom(Ch) ⊆ dom(Ch∗) and dom(CRh) ⊆ dom(CRh∗)
• dom(Ohj) ⊆ dom(Oh∗j ) and dom(Rhj) ⊆ dom(Rh∗j ), for all j ≤ k. �

For a state to be confined means that its heap is confined and its store is suitably restricted in terms of the type of some
object. That object is typically the receiver of the current method invocation. The restriction on the store treats locals like
the fields of the receiver.

Definition 12 (Confined State). A state σ = (r, h, s) is confined for object o ∈ dom(r) and partition P , written conf (σ , o, P),
iff

• conf (r, h, P)
• o ∈ dom(Ch ∗ CRh) ⇒ rng(s) ∩ refs(Rep, r) ⊆ dom(CRh)
• ∀i • o ∈ dom(Ohi ∗ Rhi) ⇒ rng(s) ∩ refs(Rep, r) ⊆ Rhi.

In case self ∈ dom(Γ ) and σ ∈ State(Γ ), we write conf (σ ) iff there is some P such that conf (σ , σ (self), P).

Note that conf (r, h, P) implies that P is admissible for r .

Lemma 13 (Void-Only Confined). If σ is Void-only then it is confined for any o and any admissible partition P.

This is a straightforward consequence of definitions; note that there is a unique admissible partition for a Void-only state.

Lemma 14 (None State Confined). If Rep is None then every state is confined.

This is because, by semantics, no instances ofNone exist. There is a unique partition in this case, for any state and regardless
of what Own is.

4.2. Confinement of commands, expressions and methods

Our main results apply to programs for which confinement is an invariant. In keeping with the compositional structure
of the semantics, we formulate this invariance for each of the semantic notions.

A state transformerψ of type Γ  Γ ∗ is confined iff for all σ , σ ∗, P, o, if o = σ(self), conf (σ , o, P), and σ ∗ = ψ(σ), then
∃P∗ • P ✂ P∗ ∧ conf (σ ∗, o, P∗). Observe that there is no constraint in case ψ(σ) = ⊥. Also, Γ ∗ need not include self. But
the definition only makes sense in case self ∈ dom(Γ ) (in which case σ(self) is non-null). This is indeed the case for all Γ
used in the semantics.

For a method environment to be confined, each method meaning should be confined, and moreover public methods of
Own subclasses should not return reps. The latter condition we express in terms of types, as follows.
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Method environment η is confined, written conf (η), if and only if η(K ,m) is a confined state transformer for all K and all
m ∈ Meths(K). Moreover, if K ≤ Own and mtype(K ,m) = x : T→U then U >≰ Rep. The latter condition ensures that owned
reps are not returned to clients; it would be slightly awkward to phrase that semantically.

Confinement of arguments means that the store passed in the semantics of method call is confined for the callee.13
That is, owned reps are not passed to clients. Formally, a call Γ ⊢ x.m(y) has confined arguments provided the following
holds. For all σ , P, if conf (σ , σ (self), P) and σ(x) ≠ null and σ1 is the argument state with store [self : σ(x), z : σ(y)] then
conf (σ1, σ (x), P).

Expression Γ ⊢ E : T is confined iff [[Γ ⊢ E : T ]](η) is a confined state transformer, for all confined η, and moreover its
subexpressions are confined, and if it is a method call then it has confined arguments.

CommandΓ ⊢ c is confined iff [[Γ ⊢ c]](η) is a confined state transformer, for all confinedη, andmoreover all constituent
commands and expressions of c are confined.

A class table cds is confined if [[cds]] is a confined method environment and so are the approximants ηi used to define
[[cds]] (see Definition 4).

A program cds • c is confined if cds is confined and Γ ⊢ c is confined (where Γ declares the globals of c).
It can be proved that a program is confined provided that its method bodies are confined, plus some restrictions on the

parameter and return types of methods (see [5] for a similar proof). It should be straightforward to adapt the static analysis
in [5] to enforce confinement as we have defined it here; but we have not checked the details.

Lemma 15 (None Confined). For any Own, if Rep is None then every expression, command, class table, and program is confined.

This is an easy consequence of Lemma 14.

5. Representation independence

This section formulates and proves the abstraction theorem. First, wemake precise the idea of comparing two class tables
that differ only in their implementation of the hierarchy of classes K such that K ≤ Own for some designated class Own.
Then we define local coupling: a relation between single instances of classes ≤ Own for the two implementations. This
lifts to relations on states, state transformers, and method environments. The abstraction theorem says that if methods of
subclasses of Own preserve the coupling then so do all methods of all classes.

5.1. Comparing class tables

We compare two implementations of a hierarchy of classes, namely all the subclasses of the designated Own. They can
have completely different declarations, so long asmethods of the same signatures are present in both. They can use different
reps, distinguished by class name Rep for one implementation and Rep′ for the other. We allow Rep = Rep′. For simplicity,
we assume that both Rep and Rep′ are declared in each of the two compared class tables.

Definition 16 (Comparable Class Tables, Non-Rep Class). Consider the following class names Own, Rep, Rep′, such that
Own >≰ Rep and Own >≰ Rep′. We say K is a non-rep class iff K � Rep and K � Rep′. Well formed class tables cds and
cds′ are comparable provided the following conditions hold.

1. cds and cds′ are identical except for their values on all K , K ≤ Own. (In particular, cds(Rep) = cds′(Rep) and cds(Rep′) =
cds′(Rep′).)

2. super = super ′ (In particular super(K) = super′(K), for all K ≤ Own.)
3. mtype = mtype′ (In particular, for anym and any K ≤ Own, eithermtype(K ,m) andmtype′(K ,m) are both undefined or

both are defined and equal.)
4. The public fields of cds(K) and cds′(K) are the same, for all K , K ≤ Own. �

The notation for confinement has Own and Rep implicit, so we write conf ′ for confinement with respect to Own and Rep′.
Note that the typing relations Γ ⊢ − and Γ ⊢′ − are the same unless Γ (self) ≤ Own. Similarly, dfields(K) = dfields′(K)

unless K ≤ Own.
The following straightforward consequence of condition (3) is needed.

Lemma 17 (Depth Agree). If mtype(K ,m) is defined then depth(K ,m) = depth′(K ,m), for all K and all m in Meths(K).

This may seem a rather strong requirement, since all the methods, with the same signature, have to be present in
both versions of the class K . (Though a method may be declared in one version of the class and inherited in the other.)
Nevertheless, this is required only for refactoring transformations that involve data refinement, and hence confinement.
It does not preclude the definition of refactorings that capture, for instance, method elimination, which can be applied in
contexts where confinement is not required.

13 We formalize a condition that is simple and satisfactory for our purposes. But it is unnecessarily strong: it would suffice for it to be true for reachable
states, e.g., if we had an assert before the call.



72 D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97

5.2. Coupling relations and simulations

In this section we assume given comparable class tables cds and cds′. The definitions are organized as follows. A local
coupling R is a suitable relation on islands. This induces a family of lifted coupling relations R̂, for heaps, for states, for state
transformers, etc. Then comes the definition of simulation, a coupling that is preserved by all methods of classes K , K ≤ Own,
and established by their constructors.

For precision, the notation distinguishes between the different kinds of relations, e.g., R̂ Γ σ σ ′ says states σ , σ ′ are
coupled, and R̂ (Γ  Γ ∗) ϕ ϕ′ is used for state transformers of the indicated type. For clarity, however, we write R̂σσ ′ or
R̂ϕϕ′ when there seems to be no risk of confusion.

The definitions to follow are suitable under the assumption that the semantics uses a parametric allocator (Definition 2).
The point is that two comparable programs can have different allocation behavior on owned reps, without influence on
allocation for other types. So coupling relations can be defined making heavy use of equality of references. For practical
purposes, the parametricity assumption is unrealistic. Instead, the technical development can be changed: in place of
equality of references one can use partial equivalence relations based on bijective renamings of references. In [5], the
simplifying assumption is used for expository purposes, and then the version with partial equivalence relations is worked
out fully. Here, we do only the simplified version, because the generalization to partial equivalence relations does not pose
additional difficulties.

Definition 18 (Local Coupling, R). A local coupling is a binary relation R on pairs (r, h) with h ∈ PreHeap(r), that is local
to an island, in the following sense: For any r, h, r ′, h′, if R(r, h)(r ′, h′) then there is a reference o with r(o) ≤ Own and
r(o) = r ′(o) and there are partitions h = Oh ∗ Rh and h′ = Oh′ ∗ Rh′ such that

1. dom(Oh) = {o} = dom(Oh′)
2. dom(Rh) ⊆ refs(Rep, r) and dom(Rh′) ⊆ refs(Rep′, r ′)
3. h(o)(f ) = h′(o)(f ) for all f ∈ dom(fields(r(o))) such that either f is public or there is K such that Own < K and f is a

private or protected field declared in K . �

The last condition says that only the private and protected fields declared within classes≤ Own are exempt from being
equated. These are exactly the fields that are allowed to differ between cds and cds′ according to Definition 16.

Two implementations of Own and its subclasses may preserve the coupling while making quite different use of owned
reps. For this reason, we need to make an exception for owned reps in the following definition. To this end, we define ‘‘non-
rep and confined’’ as follows:

nrconf (σ , o, P) iff conf (σ , o, P) and¬∃i • o ∈ dom(Rhi)

nrconf (σ ) iff ∃P • nrconf (σ , σ (self), P).

Definition 19 (Coupling Relations, R̂). Suppose R is a local coupling.
For heaps h ∈ Heap(r) and h′ ∈ Heap(r ′), we define R̂(r, h)(r ′, h′) iff there are partitions P, P ′ with the same number, k,

of islands, such that

• conf (r, h, P) and conf ′(r ′, h′, P ′)
• R (r,Ohi ∗ Rhi) (r ′,Oh′i ∗ Rh

′

i) for all i in 1..k
• Ch ∗ CRh = Ch′ ∗ CRh′

Given typing context Γ and states σ = (r, h, s) and σ ′ = (r ′, h′, s′)with σ ∈ State(Γ ) and σ ′ ∈ State′(Γ ), we define
R̂ Γ σ σ ′ iff R̂(r, h)(r ′, h′) and s = s′, i.e., s(x) = s′(x) for all x in dom(Γ ).

For Γ -outcomes α, i.e., α is either⊥ or a Γ -state, we define
R̂ Γ α α′ iff α = ⊥ = α′ or both are non-⊥ and relate as states.

For state transformers ϕ,ψ of type Γ  Γ ∗ (with self ∈ dom(Γ )) we define

R̂ (Γ  Γ ∗) ϕ ψ iff
∀σ , σ ′ • R̂ Γ σ σ ′ ∧ nrconf (σ ) ∧ nrconf ′(σ ′) ⇒ R̂ Γ ∗ (ϕ(σ )) (ψ(σ ′)).

For methods environments η, η′, we define

R̂ η η′ iff R̂ ([self : K , x : T ] [res :U]) (η(K ,m)) (η′(K ,m))
for all K ,m such that mtype(K ,m) = x : T → U . �

Note that the condition R̂ Γ σ σ ′ is defined even in case Γ (self) ≤ Own. This is appropriate for the initial state for
a call to a method of Own or a subclass thereof. But it is not always appropriate for intermediate states of two different
implementations of such a method. In general, two commands that denote related state transformers may go through
intermediate states that are quite different, and a proof that the two commands denote related state transformers may
involve quite separate reasoning about those two commands.
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Apropos the definition of R̂ for state transformers, note that the antecedent R̂ Γ σ σ ′ implies confinement of the heaps;
the antecedents nrconf (σ ) and nrconf ′(σ ′) add that the store is confined for self and moreover self is not an owned rep.14

If R̂ Γ (r, h, s) (r ′, h′, s′) then the ref contexts agree on all except owned reps. Let us make this precise.

Lemma 20 (Ref Context Agree). Suppose R̂ Γ (r, h, s) (r ′, h′, s′). Then we have (a) if o is in dom(r)−dom(r ′) then r(o) ≤ Rep
and if o is in dom(r ′)− dom(r) then r ′(o) ≤ Rep′. And (b) if o is in dom(r) ∩ dom(r ′) then r(o) = r ′(o).

The following two properties hold for any Γ , even if Γ (self) ≤ Own. Like Lemma 20, they are direct consequences of the
definitions.

Lemma 21 (Identity Extension). For any σ , if the heap of σ is Void-only then R̂ Γ σ σ .

Lemma 22 (Identity Relation). For any σ , σ ′, if R̂ Γ σ σ ′ then σ(x) = σ ′(x) for all x ∈ dom(Γ ).

Finally we are ready to define the notion of simulation. To do so, we need to express that the corresponding
implementations of the constructors in classes ≤ Own establish the local coupling for their initial islands. However, the
semantics is defined in terms of heaps, not pre-heaps, and construction of a new owner object can involve interaction with
other Own instances and client objects. In effect, item 1 below spells out part of the semantics of new in order to precisely
say what it means for constructors to establish R.

Definition 23 (Simulation). Let η ∈ N→ [[Menv]] (resp. η′ ∈ N→ [[Menv]]′) be the approximation chain in the definition
of [[cds]] (resp. [[cds′]]′). Local coupling R is a simulation iff the following conditions hold for every i.

1. (constructors establish R) For any r, h, r ′, h′, o, K , suppose K ≤ Own and mtype(K , ctor) = z : T→K . Suppose that
R̂(r, h)(r ′, h′) and o /∈ dom(r ∪ r ′) and v ∈ Val(T , r ∩ r ′) and let

r0 = [r, o : K ] and h0 = [h, o : defaultFieldRcrd(K)]
r ′0 = [r

′, o : K ] and h′0 = [h
′, o : defaultFieldRcrd′(K)]

σ = (r0, h0, [self : o, z : v])
σ ′ = (r ′0, h

′

0, [self : o, z : v])
α = ηi(K , ctor)(σ )
α′ = η′i(K , ctor)(σ

′)

If conf (σ ) and conf (σ ′) then R̂ [res : K ] α α′.
2. (methods preserve R̂) For every K ≤ Own and every non-ctor method m in Meths(K), let mtype(K ,m) = x : T → U in

the conditions
(a) R̂ ηi η

′

i ⇒ R̂ ([self : K , x : T ] [res :U]) ([[K ,m]](ηi)) ([[K ,m]]′(η′i)) ifm is declared in cds(K) and in cds′(K)
(b) R̂ ηi η

′

i ⇒ R̂ ([self : K , x : T ] [res :U]) ([[K ,m]](ηi)) ([[L,m]]′(η′i)) if m is declared cds(K) and is inherited from L
in cds′(K)

(c) the condition symmetric to (2b), ifm is inherited in cds(K) but declared in cds′(K). �

The gist of the theorem is that if the methods of subclasses of Own are related by R̂ then all methods are. We can now
express this conclusion as R̂ [[cds]] [[cds′]]′.

Theorem 24 (Abstraction). Suppose cds and cds′ are confined (for Own, Rep and Own, Rep′ respectively),R is a simulation, and
the allocator is parametric. Then R̂ [[cds]] [[cds′]]′.

The proof is based on the following Lemmas. In the following, we confine attention to method environments in the
approximation chains for class tables cds and cds′. This is only needed for the case: new L with L ≤ Own, for which we use
the assumption that R is a simulation — specifically, the condition in Definition 23 that the constructor establishes R̂. The
other condition in Definition 23, that methods preserve R̂, is used in the proof of Theorem 24.

Lemma 25 (Preservation by Expressions). Suppose that the following hold:

• R is a simulation
• cds and cds′ are confined, for Own, Rep and Own, Rep′ respectively
• ηi and η′i are method environments at the same level, i, in the approximation chain defining the semantics of cds and cds′
respectively
• R̂ ηi η

′

i
• Γ (self) � Own
• Γ ⊢ e : T is confined

Then we have R̂ (Γ  [res : T ]) ([[Γ ⊢ e : T ]](ηi)) ([[Γ ⊢′ e : T ]]′(η′i)).

14 By contrast, the definition for state transformers in [5] does not impose an ownership condition on self. Instead, the definition formethod environments
excludes classes K ≤ Rep. That works because all instances of Rep are treated as owned.
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Proof. Note that the hypotheses imply that ηi and η′i are confined. We drop the subscripts and write η and η′ in the proof.
We use induction on the derivation of Γ ⊢ e : T . In each case, we assume σ = (r, h, s) and σ ′ = (r ′, h′, s′), with

σ ∈ State(Γ ) and σ ′ ∈ State′(Γ ′). We assume that R̂ Γ σ σ ′ and nrconf (σ ) and nrconf ′(σ ′). We must show that
R̂ [res : T ] α α′ where α and α′ are the corresponding outcomes, i.e.,α = [[Γ ⊢ e : T ]](η)(σ ) and α′ = [[Γ ⊢ e : T ]]′(η′)(σ ′).

Case Γ ⊢ (L) x : L. From R̂ Γ σ σ ′ we have s(x) = s′(x). Let o = s(x). By hypothesis of the Lemma, Γ (self) is not≤ Own.
Also, σ(self) is not owned, by hypotheses nrconf (σ ). So, by conf (σ ), o is not an owned rep in σ . For the same reasons, o is
not an owned rep in σ ′. Thus by R̂ σ σ ′ we have r(o) = r ′(o). By semantics, if r(o) � L then the outcomes are both ⊥.
Otherwise, α is (r, h, [res : o]) and α′ is (r ′, h′, [res : o]). So R̂ [res : L] α α′ follows from R̂ Γ σ σ ′ by definition of R̂.

Cases Γ ⊢ x is L : bool and Γ ⊢ x = y : bool. Similar to the preceding case.

Case Γ ⊢ x.f : T . As above, we have s(x) = s′(x). If s(x) = null then both outcomes are ⊥. Otherwise, note first that for
the same reasons as in the case of cast above, by confinement s(x) is not an owned rep. Thus by definition of R̂ we have
σ(x.f ) = σ ′(x.f ). So by semantics α is (r, h, [res : σ(x.f )]) and α′ is (r ′, h′, [res : σ(x.f )]) and we have R̂ [res : L] α α′.

Case x.m(y). From R̂ Γ σ σ ′wehave s(x) = s′(x) and s(y) = s′(y). If s(x) = null then both outcomes are⊥. Otherwise, let
o = s(x). By hypothesis of the Lemma, Γ (self) � Own and σ(self) is not an owned rep, so by confinement o is not an owned
rep. Thus R̂ Γ σ σ ′ implies r(o) = r ′(o). Let L = r(o) and suppose mtype(L,m) is z : T→U . Let s1 = [self : o, z : s(y)]. We
have R̂ [self : L, z : T ] (r, h, s1) (r ′, h′, s1). Moreover, the states (r, h, s1) and (r ′, h′, s1) are confined, because by hypothesis
of the Lemma Γ ⊢ e : T is confined which includes the confinement of arguments. Now α is η(L,m)(r, h, s1) and α′ is
η′(L,m)(r ′, h′, s1). So by R̂ η η′ we get R̂ α α′.

Case let x be e in e1. By induction on e and e1; details are omitted.

Case new L. For this case, we will distinguish sub-cases on whether L ≤ Own. But first, recall that according to definition
of well formed class table in Section 2, this only occurs in the form let x be new L in x.ctor(y).

For sub-case L � Own, we argue as follows. Let o = fresh(r, L) and o′ = fresh(r ′, L). Using Lemma 20, we have
{o | r(o) = L} = {o | r ′(o) = L}, so by parametricity of the allocator we have o = o′. Let r0 = [r, o : L] and
h0 = [h, o : defaultFieldRcrd(L)]; mutatis mutandis for r ′0 and h′0. Note that R̂ [self : L] (r0, h0, [self : o]) (r ′0, h

′

0, [self : o]),
and thus the interpretations of new L in these two states are related. That is,

R̂ (Γ  [res : L]) ([[new L]](η)(r0, h0, [self : o])) ([[new L]]′(η′)(r ′0, h
′

0, [self : o])).

Weobtain a confining partition by extending the given ones (suppose they are Ch∗CRh∗Oh1∗Rh1∗· · · and Ch∗∗CRh∗∗Oh∗1 ∗
Rh∗1 ∗ · · · respectively). For r0, h0, we add the new object to Ch or to CRh depending on whether L ≤ Rep. For r ′0, h

′

0, we add
the new object to Ch∗ or to CRh∗ depending on whether L ≤ Rep′. It follows that conf (σ0) and conf ′(σ ′0). Using preservation
by method call (an earlier case in this proof) and unfolding the semantics of let expressions, we get that the outcomes from
let x be new L in x.ctor(y) are related.

For sub-case L ≤ Own, we exploit that new L occurs in the let expression with its constructor invocation. Let
o, o′, r0, r ′0, h0, h′0 be as in the preceding paragraph. Let v = s(y) and note that v = s′(y) from R̂ Γ σ σ ′. Let
σ0 = (r0, h0, [self : o, z : v]) (where z are the parameters of ctor for class L) and let σ ′0 = (r

′

0, h
′

0, [self : o, z : v]). We extend
the given confining partitions by adding a new owner island. By hypothesis, the arguments are confined, i.e., conf (σ0) and
conf ′(σ ′0). Now σ0, σ

′

0 satisfy the conditions on σ , σ ′ in Definition 23(1) of simulation. So by Definition 23(1) and using
R̂ η η′ we get R̂ [res : L] (η(L, ctor)(σ0)) (η′(L, ctor)(σ ′0)) and then by semantics of let we get that the outcomes from
let x be new L in x.ctor(y) are related. �

Lemma 26 (Preservation by Commands). Suppose that the following hold:

• R is a simulation
• cds and cds′ are confined, for Own, Rep and Own, Rep′ respectively
• ηi and η′i are method environments at the same level, i, in the approximation chain defining the semantics of cds and cds′
respectively
• R̂ ηi η

′

i
• Γ (self) � Own
• Γ ⊢ c is confined

Then we have R̂ (Γ  Γ ) ([[Γ ⊢ c]](ηi)) ([[Γ ⊢′ c]]′(η′i)).

Proof. By structural induction on the derivation of Γ ⊢ c . As in the proof of Lemma 25, we assume σ , σ ′ are related, with
nrconf (σ ) and nrconf ′(σ ′), to prove that the corresponding outcomes α and α′ are related. And we drop subscripts on ηi, η′i .

Case x := e. By hypothesis e is confined. By Lemma 25 we have

R̂ (Γ  [res : T ]) ([[Γ ⊢ e : T ]](η)) ([[Γ ⊢′ e : T ]]′(η′)).
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Hence R̂ [res : T ] β β ′ where β = [[Γ ⊢ e : T ]](η)(σ ) and β ′ = [[Γ ⊢ e : T ]]′(η′)(σ ′). Either both are⊥ are both are states
with the same values for res. Either way, the semantics of x := e gives related outcomes.

Case x.f := y. From R̂ Γ σ σ ′ we have s(x) = s′(x) and s(y) = s′(y). If s(x) = null then both outcomes are⊥. Otherwise,
note first that by hypothesis of the Lemma, Γ (self) � Own. By antecedent in the definition of R̂, σ(self) is not an owned
rep. So by confinement s(x) is not an owned rep. Similarly, s′(x) is not an owned rep. So by semantics [h | s(x).f : s(y)] is
related to [h′ | s(x).f : s(y)] as required.

Case if x then c1 else c2. From R̂ Γ σ σ ′ we have s(x) = s′(x). If s(x) is true, we use the induction hypothesis for c1;
otherwise we use induction on c2.

Case c1; c2. By induction on c1 we get related outcomes; if not⊥, then these are related states and we can use induction
on c2.

The remaining cases are straightforward. �
Now we return to the abstraction Theorem.

Proof (of Theorem 24). We show that the relation holds for each step in the approximation chain in the semantics of class
tables. That is, we show by induction on j that

R̂ ηj η
′

j for every j ∈ N.

The result R̂ [[cds]] [[cds′]]′ then follows by fixpoint induction, as [[cds]] and [[cds′]]′ are defined to be the fixpoints of these
ascending chains.

For the base case, we have R̂ ([self : K , x : T ] [res :U]) (η0(K ,m)) (η′0(K ,m)) for every (K ,m) because λσ •⊥ relates
to itself. Hence R̂ η0 η

′

0.
For the induction step, suppose

R̂ ηj η
′

j . (∗)

We must show R̂ ηj+1 η
′

j+1, that is, for every mwith mtype(K ,m) defined:

R̂ ([self : K , x : T ] [res :U]) (ηj+1(K ,m)) (η′j+1(K ,m)) (Ď)

where mtype(K ,m) = x : T→U . For arbitrary m we show (Ď) for all K with mtype(K ,m) defined, using a nested induction
on depth(K ,m). Note that we have depth′(K ,m) = depth(K ,m) from Lemma 17.

The base case of the nested induction is the unique K with depth(K ,m) = 0; here m is declared in both cds(K) and
cds′(K). We go by cases on K . If K ≤ Own, we get (Ď) from the assumption that R̂ is a simulation. In detail: Using (∗) and
Definition 23(2a) we get

R̂ ([self : K , x : T ] [res :U]) ([[K ,m]](ηj)) ([[K ,m]]′(η′j))
whence we have (Ď) by definition of ηj+1 and η′j+1. The other case is that K � Own. Then by Definition 16(1) of comparable
class tables we have cds(K) = cds′(K) and in particular both class tables have the same declaration

meth m(x : T ) :U {c}.

To show (Ď), let Γ = [self : K , res :U, x : T ]. Then by Lemma 26, considering that R̂ ηj η
′

j , we get that

R̂ (Γ  Γ ) ([[Γ ⊢ c]](ηj)) ([[Γ ⊢′ c]]′(η′j)).

It follows from the semantics and definition of R̂ that
R̂ ([self : K , x : T ] [res :U]) ([[K ,m]](ηj)) ([[K ,m]]′(η′j))

and so (Ď) holds by definition of ηj+1 and η′j+1. This concludes the base case of the nested induction. The appeal to Lemma 26
depends on conf (ηi) and conf ′(η′i)which holds by the hypothesis of the Theorem that cds and cds′ are confined.

For the induction step of the nested induction, suppose depth(K ,m) > 0. Using the definition of depth, the induction
hypothesis is

R̂ ([self : L, x : T ] [res :U]) (ηj+1(L,m)) (η′j+1(L,m)) (Ě)

where L = super(K). If m is declared in both cds(K) and cds′(K) then the argument is the same as in the base case of
the nested induction. If m is inherited in both cds(K) and cds′(K) then (Ď) follows from (Ě) because the semantics defines
ηj+1(K ,m) to be ηj+1(L,m). (And by definition R̂ [self : L, x : T ] is the same as R̂ [self : K , x : T ] on state-pairs where both
are defined.) The remaining possibility is thatm is declared in cds(K) and inherited in cds′(K) from some L (or the other way
around, in which case the argument is symmetric). Then K ≤ Own, by comparability of cds and cds′ (Definition 16). Using
the simulation property Definition 23(2b) and (∗)we get

R̂ ([self : T , x : T ] [res :U]) ([[K ,m]](ηj)) ([[L,m]]′(η′j))
and thus (Ď) by definition of ηj+1 and η′j+1. That concludes the proof. �
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One would like to combine Theorem 24 and Lemma 26 to conclude that the meaning of a command c outside class Own
relates to itself, in the environments [[cds]] and [[cds′]]′, but this is not immediate because Lemma 26 only applies to the
approximating environments. So we need a separate result.

Theorem 27 (Preservation for Complete Program). Suppose R is a simulation and cds and cds′ are confined. Consider any class
K ≰ Own and any confined Γ ⊢ c with Γ (self) = K. Then

R̂ (Γ  Γ ) ([[Γ ⊢ c]]([[cds]])) ([[Γ ⊢′ c]]′([[cds′]]′)).

Proof. From Lemma 26 by fixpoint induction, similar to the proof of Theorem 24. �

These results allow us to prove a data refinement law for an inheritance hierarchy, as well as some representative
refactorings that also impact on entire class trees.

6. Laws and refactorings

Equivalence of programs can be proved using a transformational approach based on algebraic laws. In this section we
present some algebraic laws and refactorings that may be used to prove equivalence of object-oriented programs. Broadly,
in this context, refactorings can be regarded as algebraic rules, which have a larger granularity than laws, expressing a
more robust transformation. Refactorings can be proved by the application of several laws, possibly including change
of data representation. Nevertheless, there is no precise technical difference between laws and refactorings. Here we
keep consistency with previous work [8,10], where laws form a comprehensive set that is complete in the sense of
being expressive enough to reduce an arbitrary program to an imperative normal form; refactorings are restructuring
transformations as proposed by Fowler [18] and others. We are not concerned with completeness here; we present some
general laws and refactorings that illustrate both applications of the confinement theory presented in previous sections and
(as shown in the next section) the development of a representative case study.

The laws and refactorings in our previous work [8,10] are defined in the context of copy semantics. Furthermore, apart
from the inherent limitation of adopting copy semantics, transformations involving change of data representation of class
hierarchies were not formalized; a data refinement law in this context was only postulated. Our simulation theory [13]
justifies a data refinement law only for a single class and its private fields. As an initial effort to promote the algebraic laws
to a reference semantics context, we have analyzed the validity of these laws [37] based on the rCOS framework [20]. As
aliasing occurs at the level of commands, through assignments and parameter passing mechanisms, laws that involve only
transformation in the structure of the classes, like the ones in Section 6.1, are valid on both copy and reference semantics,
and the proofs of these laws on both semantics follow similar reasoning. In this paper we do not prove the laws of classes
in our semantics.

The main contributions of this section are the formalization of the data refinement law (in Section 6.1) and the new
refactorings that ensure the behavior preserving transformation of data representation in entire class trees (in Section 6.2).
The refactorings are proved by using the data refinement law, some laws of classes and the semantics of our language.

Preliminaries. Laws and refactorings are stated as equivalences of the form:

cds • c = cds′ • c ′.

In general, classes can be introduced, removed or modified, and the main program can also be affected, as a consequence of
the transformation. In most cases, however, a single or only a few class declarations, say cds1, are affected, in which case we
write the equation

cds1 =cds,c cds′1 (3)

as an abbreviation of cds1 cds • c = cds′1 cds • c (for which see Definition 7).
All laws and refactorings in this section have side conditions that must be satisfied to allow the law (refactoring)

application. We use the arrow→ to express the side conditions necessary to apply the law (refactoring) from left to right.
The arrow← has the same purpose, but concerning a right to left application.When the condition applies in both directions
we use↔. Class, attribute andmethod declarations of class K are denoted by cdk, adsk andmtsk, respectively. The conditions
are formulated in terms of well formed code as defined in Figs. 2 and 3.

In the refactorings, though not the laws, we use the substitution notation W [α/β], meaning that a phrase β is replaced
by phrase α in the contextW . Owing to the A-normal form of our syntax (Fig. 1), the transformationswe need do not involve
bound variables and capture avoidance. We replace

• class names, as in [K/L]
• attribute and method names, as in [u.x/u.y] and [u.m/u.n]where u is a variable, x, y are attributes,m, n are methods
• method calls for attribute reads and writes, in particular: changing a field update u.x := v to u.set X(v) and field access

expression u.x to u.get X().

The last case yields code that is sugared, so it abbreviates transformations using the desugarings. Further clarification about
our use of substitution appears just before Refactoring 1 ⟨pull up field⟩.
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6.1. Laws of classes

The purpose of Law 1 ⟨class elimination⟩ is to introduce (from right to left) or to eliminate (from left to right) a
class declaration, provided the side conditions shown below are satisfied. In this law, cd1 is the class declaration being
eliminated/introduced, cds is the remaining set of class declarations of the program, and c is the main command.

Law 1 (Class Elimination).

cds cd1 • c = cds • c

(→) 1. The class declared in cd1 is not referred to in cds or c;

(←) 1. The name of the class declared in cd1 is distinct from those of all classes declared in cds;
2. the superclass appearing in cd1 is either Object or declared in cds;
3. the attribute and method names declared by cd1 are not declared by its superclasses in cds, except in the case

of ctor and method redefinitions.

The following law is also a simple one: it is used to introduce new private attributes or to eliminate unused ones.

Law 2 (Attribute Elimination).

class K ext L {
pri x : T ; adsk
mtsk
}

=cds,c

class K ext L {
adsk
mtsk
}

(→) 1. attribute x does not appear in mtsk;

(←) 1. x is not declared in adsk nor as an attribute by a superclass or subclass of K in cds.

The following law allows us to move a protected attribute x from a class K to a superclass L, and vice-versa. To move the
attribute up to L, it is required that this does not generate a name conflict: no subclass of L, other than K , can declare an
attribute with the same name.

Observe that the second proviso precludes an expression such as self.x from appearing in mtsl, but does not preclude
self.z.x (which is sugar for let y be self.z in y.x), for an attribute z : K declared in L. The latter expression is valid in mtsl no
matter whether x is declared in K or in L.

Law 3 (Move Attribute to Superclass).

class L ext N {
adsl
mtsl
}

class K ext L {
prot x : T ; adsk
mtsk
}

=cds,c

class L ext N {
prot x : T ; adsl
mtsl
}

class K ext L {
adsk
mtsk
}

(→) 1. The attribute name x is not declared by the subclasses of L in cds;

(←) 1. attribute x does not appear in mtsl nor in declarations of subclasses of L, other than K , in cds, as part of any
expression of the form y.x, where y is a variable of type M, for any M ≤ L and M ≰ K.

A method that is not called can be eliminated. Conversely, we can always introduce a new method in a class, provided
we avoid naming conflicts.

Law 4 (Method Elimination).

class K ext L {
adsk
methm(y : v) :U{c1};
mtsk
}

=cds,c

class K ext L {
adsk
mtsk
}

(→) 1. a method call u.m, with u of type M, such that M ≤ K, cannot occur in cds, c nor in mtsk;

(←) 1. m is not declared in mtsk nor in any superclass or subclass of K in cds, in case that m is not a ctor.
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The next law changes the superclass of a class, from Object to an existing class, or vice-versa. The side conditions are
numerous, but easy to follow.

Law 5 (Change Superclass: From Object to Any Class).

class K ext Object {
adsk
mtsk
}

=cds,c

class K ext L {
adsk
mtsk
}

(→) 1. Class L is declared in cds and all attributes in adsk and in subclasses of K are distinct from those declared in L
and in superclasses of L;

2. K ≠ Void and L is not be subclass of K ;
3. Methods in mtsk and in subclasses of K that have the same name must have the same parameter declaration

of methods declared or inherited by L;

(←) 1. K or any of its subclasses in cds is not used in type casts or tests involving any expression of type L or of any
supertype of L;

2. There are no assignments of the form x := e, for any x whose declared type is L or any superclass of L and any
e whose type is K or any subclass of K ;

3. Expressions of type K or of any subclass of K are not used as value arguments in calls with a corresponding
formal parameter whose type is L or any superclass of L;

4. Expressions whose declared type is L or any of its superclasses are not assigned to the result variable res of
methods whose declared result is of type K or any subclass of K ;

5. w.x, for any w : K, does not appear in cdk, cds or c for any public or protected attribute x of L or of any of its
superclasses;

6. There is no call u.m, for any u of type M, M ≤ K , and any m, such that m is declared in L or in any of its
superclasses, but not redefined in M, M ≤ K.

The following law is an important contribution of this section. It considers changing data representation in a hierarchy
of classes. It allows us to relate two versions of the private and protected attributes in a hierarchy of classes, by means of
a local coupling R. The law requires that the coupling relation is a simulation: it is preserved by corresponding versions of
methods (Definition 23).

Law 6 (Data Refinement).

cs =cds,c cs′

(↔) 1. cs and cs′ are hierarchies with root Own, and cds has no subclasses of Own;
2. class tables cds, cs and cds, cs′ are comparable for class Own;
3. cds, cs is confined for Own, Rep;
4. cds, cs′ is confined for Own, Rep′;
5. Γ ⊢ c and Γ ⊢′ c;
6. c is confined in cds, cs and also in cds, cs′;
7. R is a simulation.

Proof. As class tables cds, cs and cds, cs′ are confined and R is a simulation, then by Theorem 24 we have R̂ η η′ where
η = [[cds cs]] and η′ = [[cds cs′]]. According to Definition 7 (program and class equivalence) and abbreviation (3), we must
show [[Γ ⊢ c]](η) .

= [[Γ ⊢′ c]]′(η′), so consider any σ that is void-only. By Lemma 21we have R̂ Γ σ σ . In amain program,
self has type Void (Section 2.2), so we have Γ (self) ≰ Own and Γ (self) is non-rep. Thus we can appeal to Theorem 27,
whence by Definition 19 (coupling relation), we get R̂ Γ α α′, where α = [[Γ ⊢ c]](η)(σ ), α′ = [[Γ ⊢′ c]]′(η′)(σ ). By
Lemma 22we haveα(x) = α′(x) for every variable in scope. Thus, by Definition 6 (visible equivalence of state transformers),
we have [[Γ ⊢ c]](η) .

= [[Γ ⊢′ c]]′(η′). �

6.2. Refactoring rules

In this section we present representative refactorings that illustrate systematic transformations in the context of
complete class hierarchies. In some refactorings, like the first one in the sequel, only fields of the owner class are changed;
no other object is affected. In such cases, to fit the confinement theory, we choose for Rep the class None that is never
instantiated, so that the confinement conditions are vacuously true (Lemma 15).

Subclasses developed independently can have attributes with the same purpose. These attributes may have different
names, but if they have the same type and are used in a similar way, they can be unified, eliminating duplication. This
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is the purpose of Refactoring 1 ⟨pull up field⟩. As the laws and refactorings are presented as equations, each one actually
corresponds to two transformations. For example, Refactoring ⟨pull up field⟩, when applied from right to left, corresponds
to ⟨push down field⟩ [18]. The names we have chosen capture the left to right transformation.

On the left-hand side of the rule, the classes L and K are subclasses ofM . The class L declares an attribute x, whereas the
class K declares an attribute named y. Both attributes have the same type. The sequence of class declaration cds1 contains
the subclasses of M other than K and L. On the right-hand side, attributes x and y are unified as attribute z. Occurrences of
x and y in mts′k,mts′l and cds′1 are renamed to z.

The transformation of cds1 is schematic: the attribute x can occur in field reference expressions u.x and assignments
u.x := . . . for many different variables u. Rather than using special notation for schematic variables, we simply use the
phrase ‘‘for every variable u’’, meaning that the schema is applied simultaneously for all u.

Refactoring 1 (Pull up Field).

class M ext N{
adsm;
mtsm
}

class L ext M{
prot x : T ; adsl;
mtsl
}

class K ext M{
prot y : T ; adsk;
mtsk
}

cds1

=cds,c

class M ext N{
prot z : T ; adsm;
mtsm
}

class L ext M{
adsl;
mts′l
}

class K ext M{
adsk;
mts′k
}

cds′1

where

mts′k = mtsk[u.z, v.z/u.x, v.y], for every variable u of type L1, L1 ≤ L and every variable v of type K1, K1 ≤ K;
mts′l = mtsl[u.z, v.z/u.x, v.y], for every variable u of type L1, L1 ≤ L and every variable v of type K1, K1 ≤ K;
cds′1 = cds1[u.z, v.z/u.x, v.y], for every variable u of type L1, L1 ≤ L and every variable v of type K1, K1 ≤ K.

(↔) 1. cds contains no subclasses of M;

(→) 1. z is not declared in cdm, cdl, cdk, nor in any subclass or superclass of M in cds and cds1;

(←) 1. x (resp., y) is not declared in adsm, adsl (resp., adsk), nor in any subclass or superclass of L (resp., K ) in cds and
cds′1;

2. z does not occur in mtsm.

Proof. We begin by transforming the left-hand side of the rule, by applying Law 3 ⟨move attribute to superclass⟩ twice (from
left to right) to move attributes x and y to class M , reaching the following intermediate program. Observe that all methods
are the same as in the program on the left-hand side; the only change is the promotion of attributes x and y to classM .

class M ext N{
prot x : T ;
prot y : T ;
adsm;
mtsm
}

class L ext M{
adsl;
mtsl
}

class K ext M{
adsk;
mtsk
}

cds1

We proceed by relating this intermediate program to the right-hand side of the rule, by instantiating Law 6
⟨data refinement⟩ by [(cdm cdl cdk cds1)/cs], [(cd′m cd′l cd

′

k cds
′

1)/cs
′
], and [M,None,None/Own, Rep, Rep′]. Clearly, cs and cs′
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are hierarchies with root Own and, by hypothesis, cds has no subclasses of Own. By Definition 16 (comparable class tables),
cds, cs and cds, cs′ are comparable. We define a local coupling R as follows. For clarity we write it as a formula over self :M
and self′ :M (i.e., instances of the old and new versions):

type(self) = type(self′) ∧ (self is L⇒ self′.z = self.x)
∧ (self is K ⇒ self′.z = self.y)

∧∀f ∈ fields(type(self)) • f ≠ x ∧ f ≠ y ⇒ self′.f = self.f .
This depends only on fields ofM , so there are no rep objects that need to be confined. In order to use Law6, however, we need
to designate Rep and Rep′ for which the classes and c are confined. We choose None for both of them; then the programs
are both confined according to Lemma 15. To prove that R is a simulation, we prove a stronger claim:

For every sub-expression e of the original code (i.e., anymethod in the hierarchy rooted inM:mtsm,mtsl,mtsk, or cds1),
if e′ is the transformed version (mtsm, mts′l , mts′k, cds

′

1) then [[e]](η) relates to [[e
′
]](η′) via R̂, for all η, η′ with R̂ηη′.

Furthermore, we prove a corresponding claim for commands. The proofs go by structural induction and rely on particular
conditions in R. To be precise, we need to consider expressions in context, noting that if Γ ⊢ e :U for some Γ and U then
Γ ⊢ e′ :U .

Note that the claims are similar to Lemmas 25 and 26. There are two differences: here we consider in addition the case
that Γ (self) ≤ Own, and in general e′ here is not identical to e. We consider the interesting cases, sketching themain points
and omitting routine use of the definitions as these should be clear to readers familiar with the proofs of Lemmas 25 and
26. In each case we suppose R̂ Γ σ σ ′ and R̂ηη′.

Consider the case of field access to x, i.e., e isw.x for some variablew. Thus e′ isw.z. By semantics and R̂ Γ σ σ ′, either
σ(w) andσ ′(w) are both null or neither is. In case both are null, the outcomes [[w.x]] and [[w.z]] are both⊥ and hence related
by R̂. If neither is null then using R̂ Γ σ σ ′ we have σ(w) = o = σ ′(w) for some o of type≤ M , and there is some i such
that o references the objects inOhi andOh′i , using the partitions obtained in accordwith R̂ Γ σ σ ′. MoreoverOhi andOh′i are
connected by R. By definition of R we get σ(o.x) = σ ′(o.z), concluding the proof that R̂ ([[w.x]](η)(σ )) ([[w.z]](η′)(σ ′)) .

The case of field access to y is similar to that of x. In case e isw.f for f distinct from x and y, e′ isw.f . Using R̂ Γ σ σ ′ we
get in the non-null case that σ(w) = o = σ ′(w) for some o. Now we distinguish two sub-cases, in both of which the values
σ(o.f ) and σ ′(o.f ) are the same: If o has type≤ M then we rely on the specific definition of R as in the previous paragraph;
otherwise, o is not in an island and we rely on the general definition of R̂ (Definition 19).

For other expression forms the argument is straightforward, using induction on e for let expressions.
For commands, the interesting cases are w.x := v and w.y := v. These are transformed to w.z := v. As in the case

of field access w.x, σ(w) and σ ′(w) may be null, in which case both commands yield ⊥. Otherwise, there is some o with
σ(w) = o = σ ′(w) and i with o referencing the objects in Ohi and Oh′i . We have σ(v) = σ ′(v) so the update of σ(o.x)
to σ(v) and σ ′(o.z) to σ ′(v) is just what is required to maintain R on Ohi and Oh′i , whence the updated states are related
by R̂. �

Methodnamesplay an important role concerning the legibility of object-oriented systems. Refactoring 2 ⟨renamemethod⟩
allows us to change the name of amethod. On the left-hand side of this refactoring, there is amethod namedm. This method
can be called at any point in thewhole program. Applying this refactoring the name ofm is changed to n. Renaming amethod
inside a class affects not only the clients of such class, but also the classes in the same hierarchy in which the method is
present.

Refactoring 2 (Rename Method).

class K ext L {
adsk;
methm(z : T ) :U{c1}
mtsk
}

cds1 cds2 • c

=

class K ext L {
adsk;
meth n(z : T ) :U{c ′1}
mts′k
}

cds′1 cds
′

2 • c
′

where

cds1 contains all the declarations of subclasses of K ;
cds2 contains all other class declarations than those in cds1, and might include calls to m;
for all x :M,M ≤ K the following substitutions hold:
c ′1 = c1[x.n/x.m];
cds′1 = cds1 [meth n(z : T ) :U {c1[x.n/x.m]}, x.n/

methm(z : T ) :U {c1}, x.m]
;

cds′2 = cds2[x.n/x.m];
mts′k = mtsk[x.n/x.m];
c ′ = c[x.n/x.m].
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(→) 1. L does not declare or inherit a method named m;
2. n is not declared in mtsk nor in any subclass or superclass of K in cds1 and cds2;

(←) 1. L does not declare or inherit a method named n;
2. m is not declared in mts′k nor in any subclass or superclass of K in cds′1 and cds′2.

Proof. For pairs M, p of a class name and method name, let ∼ be the bijection with M,m ∼ M, n in case M ≤ K , and
otherwiseM, p ∼ M, q iff p = q. Let η = [[cds1 cds2]] and η′ = [[cds′1 cds

′

2]]. We claim that for everyM, p, qwithM, p ∼ M, q
we have η(M, p) = η(M, q), i.e., they are identical state transformers. Using the claim, we can show [[c]](η) = [[c ′]](η′) by
structural induction on c. The point is that c ′ is just c except for using from η′ the method named n that has the same
denotation as the one named m in η. Note that we show c and c ′ denote identical state transformers, which implies the
visible equivalence [[c]](η) .

= [[c ′]](η′) required by Definition 7 for this refactoring.
The claim is proved by fixpoint induction, based on a second claim: that ηi(M, p) = ηi(M, q) for each i, where these

are the environments in the approximation chains defining [[cds1 cds2]] and [[cds′1 cds
′

2]] (Definition 4). To prove the second
claim, consider any M, p, q with M, p ∼ M, q. If M declares p with body d (in cds1 cds2) then the body of M, q is d′ with m
renamed to n, and we get [[d]](ηi) = [[d′]](η′i) by structural induction on d as for c above. �

In a class hierarchy, methods having the same body, in different branches of the hierarchy, may be condensed in a single
method of the common superclass. This is the purpose of Refactoring 3 ⟨pull upmethod⟩. When applying this rule from left to
right, we move methods with the same definition to the superclass of the classes. In practice, the most common use of this
rule involves its application for pulling up methods. On the other hand, if a method is called just on objects of a particular
subclass, we can push themethod down and then remove it from classes whose objects are not target of calls to themethod.

Refactoring 3 (Pull up Method).

class M ext N {
adsm;
mtsm
}

class L ext M{
adsl;
methm(z : T ) :U{c1}
mtsl
}

class K ext M{
adsk;
methm(z : T ) :U{c1}
mtsk
}

=cds,c

class M ext N{
adsm;
methm(z : T ) :U{c1}
mtsm
}

class L ext M{
adsl;
mtsl
}

class K ext M{
adsk;
mtsk
}

(↔) private attributes do not appear in c1;
(→) 1. m is not declared in any superclass of M in cds;

2. m is not declared in mtsm, and can only be declared in a class M1, for any M1 ≤ M, if it has parameters z : T ;
3. protected attributes declared in adsl and in adsk do not appear in c1;

(←) 1. m is not declared in mtsk or mtsl;
2. u.m, for any expression u of type M1,M1 ≤ M,M1 ≰ K ,M1 ≰ L, does not appear in cds, c,mtsm,mtsk or

mtsl.

Proof. Let η = [[cds cdk cdl cdm]] and η′ = [[cds cd′k cd
′

l cd
′
m]] where cd′k is the version of K on the right (and similarly for L

and M). Note that η′ is defined on M,m whereas η is not. We claim that for every class J and every p ∈ Meths(J), except
for J = M and p = m, we have η(J, p) = η′(J, p). From the claim it follows that [[c]](η) is identical to [[c]](η′), because the
provisos ensure that the semantics of the main program c does not depend on the meaning ofm in M .

The claim is proved by fixpoint induction, based on a similar claim for the approximate method environments. To prove
the second claim, for approximants ηi and η′i , the key point is that ηi+1(L,m) is defined to be [[c1]](ηi), but in turn η′i+1(L,m)
is defined to be η′i+1(M,m) where η′i+1(M,m) is defined to be [[c1]](η′i). Similarly for K ,m. For other classes/methods, the
declarations are identical. �

Refactoring 4 ⟨encapsulate field⟩ hides a public attribute and provides get and set methods for it. In the original version of
this refactoring, as presented in [18], the attribute visibility is changed to private. As with other refactorings, we generalize
this transformation to consider protected attributes instead.

The class K on the left-hand side of the refactoring includes a public attribute x. The context for this class is the sequence
of classes cds1, cds2 and the command c. In class K , on the right-hand side, the attribute x is protected and get and set
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methods are declared. The context for class K is the sequence of classes cds′1, cds
′

2 and the command c ′. Direct accesses to x
by client classes are replaced with calls to get and set methods on the right-hand side. Nevertheless, for subclasses of K ,
direct accesses to x are still allowed.

To apply this refactoring from left to right, the methods get X and set X must not be already declared in K nor in any of
its superclasses or subclasses.

This refactoring leads to changes in the context of the class to which the refactoring is applied since all direct accesses by
clients to a previously public, and now protected, attributemust now be indirect, by using get and setmethods. Assignments
of the form w.x := u, with w : K1 for K1 ≤ K , are replaced by w.set X(u). Assignments of the form u := w.x are replaced
with calls u := w.get X(). More generally field accessesw.x on the right side of a variable assignment u := . . . are replaced
by w.get X(), which we express schematically: the substitution of u := e[w.get X()] for u := e[w.x] is intended to mean
that every subexpressionw.x of e becomesw.get X().

For clarity, we give the substitutions using syntax sugar (the call w.set X(u) as a command), so the complete
transformation includes a desugaring not shown. As always, the substitution is to be applied to un-sugared code.

Refactoring 4 (Encapsulate Field).

class K ext L {
pub x : T ; adsk;
mtsk
}

cds1 cds2 • c

=

class K ext L {
prot x : T ; adsk;
meth get X() : T {res := self.x}
meth set X(v : T ){self.x := v}
mtsk
}

cds1 cds′2 • c
′

where
cds1 contains the declarations of the subclasses of K , and cds2 the remaining classes.
For allw : K1, such that K1 � K , and all e and u we have:
cds′2 = cds2[w.set X(u), u := e[w.get X()] / w.x := u, u := e[w.x]];
c ′ = c[w.set X(u), u := e[w.get X()] / w.x := u, u := e[w.x]].

(→) get X and set X are not declared in K nor in any superclass or subclass of K .

Proof. In this situation, the semantic domains are the same for the two versions: attribute x is present in objects of type
K regardless of its visibility. Let η = [[cdk cds1 cds2]] and η′ = [[cd′k cds1 cds

′

2]]. We claim that η(M,m) = η′(M,m) for all
classes M and all methods m ∈ Meths(M) except get X and set X in M ≤ K . Observe also that the denotations of get X and
set X in classes M ≤ K do nothing more or less than getting and setting the value of x, as the code is stipulated explicitly
in cd′k and by proviso there are no overrides in subclasses. The proof of the claim uses a similar claim for the approximate
method environments. That in turn uses the observation, fromwhich it follows that the transformed versions have identical
denotations to the originals.

Finally, from the claimweget [[c]](η) = [[c ′]](η′), as c does not use get X or set X in c ′ andwe can again use the observation
to connect calls to get X and set X in c ′ to accesses/updates in c. �

After moving attributes and methods up or down in a hierarchy, a class may end up not adding any valuable feature.
Such a class can be merged with another class, resulting in an empty class that can then be removed. This is the purpose of
Refactoring 5 ⟨collapse hierarchy – subclass⟩. In this refactoring the attributes andmethods of a class L aremoved to a subclass
K in the hierarchy, according to some conditions. In a richer language, the command b in class K would be a super call.

Refactoring 5 (Collapse Hierarchy – Subclass).

class L ext M {
prot x : T ;
meth ctor() : L
{b; res := self}

methm(u : V ) :U{c1}
}

class K ext L
adsk;
meth ctor() : K
{b; d; res := self}

mtsk
}

=cds,c

class K ext M {
prot x : T ; adsk;
meth ctor() : K
{b; d; res := self}

methm(u : V ′) :U ′{c ′1}
mts′k
}
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where
mts′k = mtsk[K/L]; V

′
= V [K/L]; U ′ = U[K/L]; c ′1 = c1[K/L]

(→) 1. m is not declared in mtsk;
2. Class L is not referenced anywhere in cds, c or inside cdk;

(←) 1. Class L is not declared in cds.

Proof. Let cd′k be the declaration of K on the right side. Note that the semantic domains for cds cdk cdl are slightly different
from the domains for cds cd′k, because the states in the latter do not include references of type L. The provisos ensure that the
programs do not create objects of type L. Butwewant to reason compositionally. Amethod, say p, inmtsk (and its subclasses)
denotes a state transformer where the values for self (and parameters of type ≤ K ) include references of (exactly) type L,
and the heap contains objects of (exactly) type L. So it cannot be directly comparedwith the denotation of p in the class table
of the right side.

What we can do is define a suitable inclusion of states. For example, let Γ0 = [self : K ] and define inc to be the inclusion
of State′(Γ0) into State(Γ0).

Let η = [[cds cdk cdl]] and η′ = [[cds cd′k]]
′. We claim that η(K , p) ◦ inc = η′(K , p) for every method p in K (including

p = m). Indeed, we define suitable inclusion functions for all contexts Γ and claim η(J, p) ◦ inc = η′(J, p) for every class J
and method p in Meths(J). From the claim it follows that [[c]](η) = [[c]](η′) by the proviso on c.

Of course, to prove the claim we need a similar claim for the approximate method environments. The argument then
goes by structural induction onmethod bodies, using that in the version cds cdk cdl objects of type L are never created owing
to provisos of the law. �

A common and crucial practice in object-oriented software development is the identification of hidden abstractions inside
a model (typically a class), and the proper representation of such abstractions as independent units (other classes). This is
the purpose of Refactoring 6 ⟨extract class⟩. When applied from left to right, this refactoring creates a new class Lwith some
attributes and methods from an original class K , which is then transformed to include an attribute of type L. In K , original
direct accesses to attributes that are now in L are replaced with calls to the get and set methods of L. Original methods of K
that act on the attributes that were moved to L are moved to L as well; in K we keep delegating methods: they just call the
corresponding methods of L. Particularly, the method m1 acts only on the attribute x, indicating that it is an operation on
the attribute x. Therefore, it is part of the interface of L.

As in the previous refactoring, both on the left- and on the right-hand side of this refactoring we single out the subclasses
of K that might also be affected by these changes, since x is a protected attribute, unlike in the original version proposed by
Fowler where it is a private field. The modifications in the subclasses are the same as those in the methods of class K .

As in Refactoring ⟨encapsulate field⟩, note that we use a schematic substitution: to say every subexpression v.x in
expression e gets replaced by v.w.get X() we write [u := e[v.w.get X()]/u := e[v.x]. Furthermore, we use the sugared
expression v.w.get X() for clarity, but the transformation also includes desugaring.

Without the restriction on parameter types, d could mention say z.x, which would not make sense in class L. The
restriction can be dropped by insisting that K declare set X and get X methods, and d would be rewritten using them.

This rule is unusual in that, in one direction, we need to impose confinement as an explicit proviso.
Refactoring 6 (Extract Class).

class K ext M{
prot x : T ; adsk;
meth ctor(y : u) : K
{b; res := self}

methm1(z : V ) :U
{d}

mtsk
}

cds1

=cds,c

class K ext M{
prot w : L; adsk;
meth ctor(y : u) : K
{self.w := new L.ctor();
b′; res := self}

methm1(z : V ) :U
{self.w.m1(z)}

mts′k
}

class L ext Object{
pri x : T ;
meth ctor() : L
{res := self}

meth get X() : T
{res := self.x}

meth set X(v : T )
{self.x := v}

methm1(z : V ) :U
{d}

}

cds′1
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where for every u, v we replace
mts′k = mtsk[u := e[v.w.get X()], v.w.set X(u) / u := e[v.x], v.x := u]
cds′1 = cds1[u := e[v.w.get X()], v.w.set X(u) / u := e[v.x], v.x := u]
b′ = b[u := e[v.w.get X()], v.w.set X(u) / u := e[v.x], v.x := u]
and in addition, in cds′1 every ctor has the following prefixed to the beginning of its body: self.w := new L.ctor();

(↔) 1. None of the parameter types V is a subtype of K ;

(→) 1. The class L is not declared in cds, nor in cds1;
2. The attributew is not declared in adsk nor in any subclass or superclass of K ;
3. Except for x, no attribute of K occurs in d;

(←) 1. The name L does not occur in cds or c;
2. cds cds′1 cdk cdl • c is confined for [K , L/Own, Rep].

Proof. Begin with the left-hand side and apply Law 1 ⟨class elimination⟩ to add the declaration cdl of class L. Now we
have comparable class tables and we can use Law 6 ⟨data refinement⟩, which we instantiate by [(cdk, cdl, cds1)/cs],
[(cd′k, cdl, cds

′

1)/cs
′
], [K ,None, L/Own, Rep, Rep′]. Confinement of the left-hand side for K ,None holds by Lemma 15. Con-

finement of the right-hand side for K , L holds for the following reasons. If the law is applied right-to-left, it is an explicit
proviso. If the law is applied left-to-right, it should be clear that the transformed version maintains the invariant that the
object referenced fromw is never shared.15 We define a local coupling R as follows:

self = self′ ∧ type(self) = type′(self′)
∧ self.x = self′.w.x ∧ type′(self′.w) = L
∧∀f ∈ fields(K) • f ≠ x ⇒ self.f = self′.f .

Notice that this depends on16 the value of self.w.x, so confinement is necessary. It remains to prove that this is a simulation.
To this endwe consider any ηi, η′i in the semantic approximation chains17 and assume R̂ ηi, η

′

i . We consider fourmain cases,
as the transformation acts differently on different methods.

The first main case is for the methods of class L. These are identical on both sides (see the definition of cs and cs′), and
moreover the type of self is � Own (i.e., � K ). So we obtain the simulation condition directly by Lemma 26.

The second main case is for method m1 in class K . Consider related states σ , σ ′. Owing to the provisos, in the left-hand
version the body d only accesses the x field of self (but not other instances of K ), and no other fields of self. The right-hand
version of m1 in K consists of the invocation self.w.m1(z) of method m1 in L, and that method has the same body d but
interpreted so that self.x refers to attribute x of L. So the effect on self.x and z in the left version is the same as the effect on
self.w.x and z in the right version, as needed to preserve the relation.

The third main case is for constructors. We transform

meth ctor(y : u) : K{b; res := self}

in class K to

meth ctor(y : u) : K{self.w := new L.ctor(); b′; res := self}

where b′ is bwith x replaced byw.get X() orw.set X(. . .) as appropriate. Constructors of subclasses of K are transformed fol-
lowing the same pattern. For the simulation property we must show that the constructors establish R̂. In states σ , σ ′ with
R̂ σσ ′, consider the states τ and τ ′ extending σ , σ ′ with a fresh reference o mapped to new K objects. Extend the given
confining partitions with a new pair of islands for o. Let τ ′′ be obtained from τ ′ by applying self.w := new L.ctor(). By
definition of R we get R̂ τ τ ′′. From these states we execute b, respectively b′. To complete the argument that the outcomes
are related, we proceed just as in the fourth main case.

The fourth main case is for methods of classes other than L, aside from constructors and aside from m1. We claim that
for every sub-expression e of one of these methods, we have R̂ ([[e]](ηi))([[e′]](η′i)

′) and similarly for commands. The claim
is proved by induction on the typing derivation of the expression or command, as is the similar claim used to prove ⟨pull up
field⟩. The interesting cases are those where the transformation changes the code. We consider these in turn, in initial states
σ , σ ′ with R̂ σσ ′.

• For an assignment u.x := e, the transformed version is u.w.set X(e). Owing to the condition type′(self′.w) = L in the
coupling, the call set X(e) dispatches in σ ′ to the method declared in class L, which sets the x field to the value of e,
whereas in σ the assignment u.x := e sets x to the value of e. So R̂ holds on the final states.

15 One way to prove this formally would be via a static analysis adapted from the one in [5] and then show by structural induction on the left-hand
program that the transformed version satisfies the constraints of that analysis.
16 As well as the type of self′.w, though that is immutable and so not a confinement issue.
17 Unlike in the proof of ⟨pull up field⟩, where we can consider any environments, here we rely on the specific semantics of some method calls.
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• For an expression u.x, the transformed version is u.w.get X(). The call get X() dispatches in σ ′ to the method declared in
class L, which retrieves the value of field x, which is according to R̂ the value of u.x in σ . �

In order to support type reuse, it should be possible to change the type of an attributewith another structurally equivalent
one, but with a different name. This is the purpose of Refactoring 7 ⟨change name of attribute type⟩. When applied from left
to right, its effect is to change the type of attribute x, in class K , from M to M ′; occurrences of M in the methods of class
K are also replaced with M ′. As with other refactorings, we state this transformation for protected attributes, and so the
replacement of M with M ′ is performed on subclasses cds1 of class K as well. Although this refactoring is of more general
utility, it is a particular useful complement to ⟨extract class⟩ when the class to be extracted already exists, as illustrated in
two circumstances in the case study developed in the next section.

The side conditions ensure that the transformation is valid by carrying out a simple replacement of M with M ′ (or the
other way round, for the reverse application). The idea is that attribute x can be initialized but not otherwise written. Its
fields can be read andwritten, andmethods invoked on it, but its value does not flow to other variables, fields, or parameters.
For example, assuming that y has type M , an assignment like self.y := x in class K , on the left-hand side of the refactoring,
might not be well-typed on the right-hand side, where x has typeM ′.

In reading the provisos, please keep in mind that in our syntax (Fig. 1) the attribute x only occurs after a dot as in u.x. It
cannot occur as a bare identifier as in equality test x = y, nor type test or cast on x, nor in a bare assignment x := y.

Refactoring 7 (Change Name of Attribute Type).

class K ext L {
prot x :M; adsk
mtsk
}

classM ext N {
adsm
mtsm
}

classM ′ ext N {
adsm
mtsm
}

cds1

=cds,c

class K ext L {
prot x :M ′; adsk
mtsk[M ′/M]
}

classM ext N {
adsm
mtsm
}

classM ′ ext N {
adsm
mtsm
}

cds1[M ′/M]

(→) 1. cds has no subclass of K and N is not a subclass of K ;
2. The only occurrences of M in mtsk and cds1 are in initializations w.x := (new M).ctor(. . .) of x and in the

variable declarations for assignments to fields, item 5 below. In our syntax, the initializations take the form
var y :M in y := (new M).ctor(. . .);w.x := y for somew, y;

3. There is no occurrence of M in adsk;
4. Initialization of x is restricted to objects of the exact type M; objects of subclasses of M are not allowed;
5. The only occurrences of x in mtsk and cds1 are
• assignments to fields a, which in our desugared syntax take the form var y :M in y := w.x; y.a := u for

some y, w, u;
• reading of fields a; in our syntax, reads occur in expressions of the form let y bew.x in y.a, for some y, w;
• invocation of methods; in our syntax, calls occur in expressions of the form let y bew.x in y.m(z), for some

y, w, z.

(←) 1. Same conditions as above, replacing M with M ′.

Proof. We instantiate Law 6 ⟨data refinement⟩ by [K ,M,M ′/Own, Rep, Rep′]. The provisos above impose strong restrictions
on the use of field x; as a result, it is a unique reference in the sense that there is no sharing in the heap and moreover the
value of x (i.e., of some o.x) is never stored in a variable except in local blocks of the form var y :M in y := w.x; y.a := u
where it is used only to access attribute a. A consequence is that the left-hand side program is confined for K ,M and the
right for K ,M ′.

We define a local coupling R by

self = self′ ∧ type(self) = type′(self′) ∧ ∀f ∈ adsm • self.x.f = self′.x.f
∧ type(self.x) = M ∧ type′(self′.x) = M ′.

Note that we do not require self.x = self′.x. It remains to prove that this is a simulation. To this end we consider any η, η′

such that R̂ η η′. We must show, for any method declaration mt in mtsk or cds1 that the semantics of mt is related to the



86 D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97

semantics ofmt[M ′/M]. We claim that for every sub-expression e of one of these methods, we have R̂ ([[e]](ηi))([[e′]](η′i)
′),

where e′ is the transformed version, and similarly for commands. The claim is proved by induction on the typing derivation
of the expression or command, as is the similar claim used to prove ⟨pull up field⟩. The interesting cases are those where x or
M is involved. We consider these, in initial states σ , σ ′ with R̂ σσ ′, to show R̂ ([[e]](ηi)(σ ))([[e′]](η′i)

′(σ ′)) for expressions
and R̂ ([[c]](ηi)(σ ))([[c ′]](η′i)

′(σ ′)) for commands.
An initialization var y :M in y := (newM).ctor(. . .);w.x := y inmtsk or cds1 is transformed by renamingM toM ′. This

establishes the coupling forw.x, as the new object has typeM orM ′ accordingly. The constructors ofM andM ′ are identical,
so the field values are equated as required by R.

Initialization of x to a subtype of M would be problematic but is disallowed by proviso 4. Moreover, item 2 disallows M
used in casts or type tests inmtsk and cds1.

A field assignment var y :M in y := w.x; y.a := u in mtsk or cds1 gets M changed to M ′ but this does not affect the
semantics, and the value of y.a ends up the same because σ and σ ′ agree on the value of u.

Invocation of some method m on x, written let y be w.x in y.m(z), is not transformed. The two semantics are related
because, by R̂ σ σ ′ the types of x areM,M ′ respectively, and these two classes provide identical code form.

For code not in subclasses of K , we appeal to Theorem 27. �

We presented some representative laws and refactorings, as well as addressed soundness of the data refinement law and
of the refactorings. These can then be used for program transformation in an algebraic style.

7. Case study

To illustrate a sequence of program transformations involving change of data representation in class hierarchies, we
refactor a simple bank account application, particularly focused on transactions log and statement generation. The first
subsection presents the initial version of the program. The second one shows the target program we aim to systematically
obtain. The final sections give the development steps in detail.

7.1. Original version

Consider the program below, called here original version. The description is sugared for readability. In this example, a
bank application has two separated parts dealing with transactions. The CreditTrans transaction increments the balance of
an account when a value is deposited, whereas PayCardTrans transaction decrements the balancewhen a value is drawn out.
Both transactions register the date and time the transaction is performed. In CreditTrans there are two public attributes
for doing that, whereas in PayCardTrans this information is encapsulated as an object of class LogDate; and PayCardTrans
has methods get and set to access this information. Attributes cbal and pbal store the balance before the transaction in
CreditTrans and PayCardTrans, respectively. Attributes cvalue and pvalue store the amount of money to be deposited or
drawn out, respectively. All classes have a constructor, named ctor.

Moreover, consider class Statement that uses lists of transactions CreditTrans and PayCardTrans to construct the
statement of an account. We assume that these lists are ordered by date and time. These lists are constructed by invoking
the method addTrans, which itself calls addCreditTrans or addPayCardTrans, depending on the transaction type.

The statement is recorded as a list of objects LObject, comprising transactions of type CreditTrans and PayCardTrans.
Transactions in the statement are ordered by date and time and the method merge is responsible to merge the ordered lists.
It uses the method leqDateTime to determine the order of occurrence of two transactions. Moreover, we assume that there
exists a built-in function toString that prints the elements of list LObject. For simplicity, we omit the code ofmethods merge,
addCreditTrans and addPayCardTrans.

The main program creates an instance of class Statement and iteratively stores the relevant transactions, by calling the
method addTrans. As a final action it invokes the method showStatement of class Statement.

class CreditTrans ext Object {
prot cbal : int;
prot cvalue : int;
pub cdate : Date;
pub ctime : Time;
meth ctor() : CreditTrans {res : = self}
meth finalBal() : int {res : = self.cbal + self.cvalue}

}
class PayCardTrans ext Object {

prot pbal : int;
prot pvalue : int;
prot pld : LogDate;
meth ctor() : PayCardTrans {

self.pld : = (new LogDate).ctor(); res : = self }
meth getDatePay() : Date {res : = self.pld.getD()}
meth getTimePay() : Time {res : = self.pld.getT()}
meth setDatePay(d : Date) {self.pld.setD(d)}
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meth setTimePay(t : Time) {self.pld.setT(t)}
meth finalBal() : int {res : = self.pbal - self.pvalue}

}
class LogDate ext Object {

pri dd : Date;
pri tt : Time;
meth ctor() : LogDate {res : = self}
meth getD() : Date {res : = self.dd}
meth getT() : int {res : = self.tt}
meth setD(d : Date) {self.dd : = d}
meth setT(t : Time) {self.tt : = t}

}
class ListCredit ext LObject {

pri ct : CreditTrans;
meth ctor() : ListCredit {res : = self}
meth getCT() : CreditTrans {res : = self.ct}
meth setCT(ct1 : CreditTrans) {self.ct : = ct1}

}
class ListPayCard ext LObject {

pri pc : PayCardTrans;
meth ctor() : ListPayCard {res : = self};
meth getPC() : PayCardTrans {res : = self.pc)}
meth setPC(pc1 : PayCardTrans) {self.pc : = pc1}

}
class LObject ext Object {

prot next : LObject;
meth ctor() : Lobject {res : = self}
meth getNext() : LObject {res : = self.next}
meth setNext(n1 : LObject) {self.next : = n1}

}
class Statement ext Object{

pri lc : ListCredit;
pri lp : ListPayCard;
meth ctor () : Statement {res : =self}
meth addCreditTrans(ct : CreditTrans){

/* add an element in lc ordered by date and time */
}
meth addPayCardTrans(pc : PayCardTrans){

/* add an element in lp ordered by date and time */
}
meth addTrans(t : Object){

if (t is CreditTrans)
then self.addCreditTrans((CreditTrans) t)
else if (t is PayCardTrans)

then self.addPayCardTrans((PayCardTrans) t)
else // some error message

}
meth leqDateTime : bool (l1 : ListCredit , l2 : ListPayCard) {

/* returns true if l1 occurs earlier than l2 */
res : = false;
if (l1.getCT().cdate < l2.getPC().getDatePay()) or

(l1.getCT().cdate = l2.getPC().getDatePay() and
l1.getCT().ctime ≤ l2.getPC().getTimePay()) then
res : = true

}
meth merge : LObject (l1 : ListCredit , l2 : ListPayCard) {

/* returns the merge of l1 and l2 in res */
}
meth showStatement() : primString {

res : = self.merge(lc,lp).toString()
}

}
// Main program skeleton
var st : Statement in
var t : Object in

st : = (new Statement).ctor();
while /* there are transactions */ do

t : = /* get a new transaction */
st.addTransactions(t);

od
st.showStatement()

Here we use a loop for clarity. For brevity, our formal theory allows recursive methods but does not include loops.
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7.2. Final version

Our aim is to improve the design to reach the final program shown next, called final version. By applying sound laws
and refactorings from the previous section, we progressively justify that, despite the several structural changes, the main
program in the final version has the same behavior as the original one.

In this program, classes CreditTrans and PayCardTrans are subclasses of class Transaction. The original attributes of
classes CreditTrans and PayCardTrans are now unified as attributes of class Transaction. Transaction also has methods set
and get to provide access to the date and time elements of dt.

Note that the balance and value attributes now have type FValue, which encapsulates a financial value with addition and
subtraction operations. FValue keeps the internal representation of a value as an integer, for simplicity. The homonymous
methods named finalBal of CreditTrans and of PayCardTrans are then implemented in terms of operations provided by
FValue. In practice, this class could be implemented using, for instance, Java’s BigDecimal.

Lists of CreditTrans and PayCardTrans are replaced by a single list of Transaction, ordered by date and time as the
previous ones. Class Statement is modified to reflect the unification of these lists, as the mergemethod is no longer necessary.
The methods addCreditTrans and addPayCardTrans in class Statement are also eliminated, as transactions are now treated
uniformly in the new design. Themain program remained intact, but themethods it invokes from class Statement have been
modified. So the preservation of behavior must be ensured.

Our formalization does not include the super construct. But in the case study, we use super() in constructors, as an
abbreviation for copying the code from the superclass constructor, excluding its trailing assignment res:= self.

class Transaction ext Object{
prot bal : FValue;
prot value : FValue;
prot dt : LogDate;
meth ctor() : Transaction {

self.bal : = (new FValue).ctor();
self.value : = (new FValue).ctor();
self.dt : = (new LogDate).ctor();
res : = self}

meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}

}
class FValue ext Object{

pri value : int;
meth ctor() : FValue {res : = self}
meth getValue() : int {res : = self.value}
meth setValue(v : int) {self.value : = v}
meth add(fv : FValue) {self.value : = self.value + fv.getValue()}
meth sub(fv : FValue) {self.value : = self.value - fv.getValue()}

}
class CreditTrans ext Transaction {

meth ctor() : CreditTrans {super(); res : = self}
meth finalBal() : int {var fv : FValue in fv = new FValue().ctor();

fv.setValue(self.bal.getValue())
fv.add(self.value); res : = fv.getValue()}

}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth finalBal() : int {var fv : FValue in fv = new FValue().ctor();

fv.setValue(self.bal.getValue())
fv.sub(self.value); res : = fv.getValue()}

}
class LogDate ext Object {

pri dd : Date;
pri tt : Time;
meth ctor() : LogDate {res : = self}
meth getD() : Date {res : = self.dd}
meth getT() : int {res : = self.tt}
meth setD(d : Date) {self.dd : = d}
meth setT(t : Time) {self.tt : = t}

}
class ListTransaction ext Object {

// list of Transactions ordered by date and time
pri tr : Transaction;
pri next : LTransaction
meth ctor() : ListTransaction {res : = self}
meth getTR() : Transaction {res : = self.tr)}
meth setTR(tr1 : Transaction) {self.tr : = tr1}
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meth getNext() : LTransaction {res : =self.next}
meth setNext(n1 : LTransaction) {self.next : = n1}

}
class Statement ext Object{

pri lt : ListTransaction;
meth ctor () : Statement {res : =self}
meth addTrans(t : Object){

/* add an element in lt ordered by date and time */
}
meth showStatement () primString {

res : =self.lt.toString()
}

}

We omit the main program because it is exactly as in the original version.

7.3. Transforming the original version to the final one: first steps

To guarantee that themain program in both designs have the same behavior, we perform a series of code transformations,
based on the laws and refactorings presented in Section 6.

Beginning with the original version, first we transform class CreditTrans to encapsulate date and time fields, achieving
a configuration similar to class PayCardTrans; see below. To perform this transformation we apply twice Refactoring 4
⟨encapsulate field⟩ to transform cdate and ctime into protected attributes and to provide get and set methods to access
these fields from client classes. Observe that the code of method leqDateTime in the client class Statement also changes to
reflect this transformation. The rest of the program remains the same.

When describing the transformations we show only the pieces of the program that have been modified.

class CreditTrans ext Object {
prot cbal : int;
prot cvalue : int;
prot cdate : Date;
prot ctime : Time;
meth ctor() : CreditTrans {res : = self}
meth getDateCr() : Date {res : = self.cdate}
meth getTimeCr() : Time {res : = self.ctime}
meth setDateCr(d : Date) {self.cdate : = d}
meth setTimeCr(t : Time) {self.ctime : = t}
meth finalBal() : int {res : = self.cbal + self.cvalue}

}
...
class Statement ext Object{

pri lc : ListCredit;
pri lp : ListPayCard;
meth ctor () : Statement {res : =self}
... // same code
meth leqDateTime(l1 : ListCredit , l2 : ListPayCard) : bool {

/* returns true if l1 occurs earlier than l2 */
res : =false;
if (l1.getCT().getDateCr() < l2.getPC().getDatePay()) or

(l1.getCT().getDateCr() = l2.getPC().getDatePay() and
l1.getCT().getTimeCr() ≤ l2.getPC().getTimePay()) then
res : = true;}

... // the rest of the class is unchanged

Next we apply Refactoring 6 ⟨extract class⟩ to perform a data refinement in class CreditTrans. In this transformation,
fields cdate and ctime are mapped to a new field cld, which is of a new type, say LogDate’, that includes attributes of types
Date and Time. Strictly, we are using a slight generalization of ⟨extract class⟩, since, as formulated, for simplicity, it handles a
single field x. Note also that we are applying the refactoring from left to right.

Werewe to be applying the refactoring from right to left, wewould need to establish the confinement proviso (for owner
class CreditTranswith rep class LogDate). Confinement in this case would mean that the LogDate objects referenced by field
cld are not shared, as indeed they are not in the transformed program.

The new type LogDate’ has the same structure as LogDate, but a new name since Refactoring ⟨extract class⟩ generates
a new class. To reuse class LogDate we next apply Refactoring 7 ⟨change name of attribute type⟩ to change the type of
cld from LogDate’ to LogDate. The class LogDate’ is not referenced any longer and thus can be eliminated using Law
1 ⟨class elimination⟩. Observe that, by using this refactoring we are separating concerns in class CreditTrans, as fields related
to date fits better in a separate class.

class CreditTrans ext Object {
prot cbal : int;
prot cvalue : int;



90 D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97

prot cld : LogDate;
meth ctor() : CreditTrans {

self.cld : = (new LogDate).ctor(); res : = self}
meth getDateCr() : Date {res : = self.cld.getD()}
meth getTimeCr() : Time {res : = self.cld.getT()}
meth setDateCr(d : Date) {self.cld.setD(d)}
meth setTimeCr(t : Time) {self.cld.setT(t)}
meth finalBal() : int {res : = self.cbal + self.cvalue}

}
class LogDate ext Object {

pri dd : Date;
pri tt : Time;
meth ctor() : LogDate {res : = self}
meth getD() : Date {res : = self.dd}
meth getT() : int {res : = self.tt}
meth setD(d : Date) {self.dd : = d}
meth setT(t : Time) {self.tt : = t}

} ...

The next step is to apply Refactoring 2 ⟨rename method⟩ to rename methods getDateCr, getTimeCr, setDateCr and
setTimeCr to, respectively, getDate, getTime, setDate and setTime. The same procedure is applied to rename methods in
class PayCardTrans. Observe that the application of this refactoring replaces all occurrences of the older get and set methods
in class Statement.

class CreditTrans ext Object {
prot cbal : int;
prot cvalue : int;
prot cld : LogDate;
meth ctor() : CreditTrans {

self.cld : = (new LogDate).ctor(); res : = self}
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}
meth finalBal() : int {res : = self.bal + self.value}

}
class PayCardTrans ext Object {

prot pbal : int;
prot pvalue : int;
prot pld : LogDate;
meth ctor() : PayCardTrans {

self.pld : = (new LogDate).ctor(); res : = self }
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}
meth finalBal() {res : = self.bal - self.value}

}...
class Statement ext Object{

pri lc : ListCredit;
pri lp : ListPayCard;
meth ctor () : Statement {res : =self};
... // same code
meth leqDateTime(l1 : ListCredit , l2 : ListPayCard) : bool {

/* returns true if l1 occurs earlier than l2 */
res : =false;
if (l1.getCT().getDate() < l2.getPC.getDate()) or

(l1.getCT().getDate() = l2.getPC.getDate() and
l1.getCT().getTime() ≤ l2.getPC().getTime()) then
res : = true;}

... // the rest of the class is unchanged
}

Then we introduce class Transaction and make CreditTrans and PayCardTrans inherit from Transaction. So, we apply
Law 1 ⟨class elimination⟩, from right to left, to introduce class Transaction. After that, in order to introduce the inheritance
relationship, we apply twice Law 5 ⟨change superclass⟩.

class Transaction ext Object {}

class CreditTrans ext Transaction {
prot cbal : int;
prot cvalue : int;
prot cld : LogDate;
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meth ctor() : CreditTrans {
self.cld : = (new LogDate).ctor(); res : = self}

meth getDate() : Date {res : = self.cld.getD()}
meth getTime() : Time {res : = self.cld.getT()}
meth setDate(d : Date) {self.cld.setD(d)}
meth setTime(t : Time) {self.cld.setT(t)}
meth finalBal() : int {res : = self.cbal + self.cvalue}

}
class PayCardTrans ext Transaction {

prot pbal : int;
prot pvalue : int;
prot pld : LogDate;
meth ctor() : PayCardTrans {

self.pld : = (new LogDate).ctor(); res : = self}
meth getDate() : Date {res : = self.pld.getD()}
meth getTime() : Time {res : = self.pld.getT()}
meth setDate(d : Date) {self.pld.setD(d)}
meth setTime(t : Time) {self.pld.setT(t)}
meth finalBal() : int {res : = self.pbal - self.pvalue}

} ...

To unify the attributes of classes CreditTrans and PayCardTrans by moving them to class Transaction, we apply three
times Refactoring 1 ⟨pull up field⟩, from left to right. Observe that at this point data refinements are performed and all
occurrences of the old fields are now replaced by the new fields.

The next step is to apply Law 4 ⟨method elimination⟩ from right to left to introduce method ctor in class Transaction.

class Transaction ext Object {
prot bal : int;
prot value : int;
prot dt : LogDate;
meth ctor() : Transaction {

self.dt : = (new LogDate).ctor(); res : = self}
}
class CreditTrans ext Transaction {

meth ctor() : CreditTrans {super(); res : = self}
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}
meth finalBal() : int {res : = self.bal + self.value}

}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}
meth finalBal() : int {res : = self.bal - self.value}

}...

Thenwemovemethods get and set of both classes to class Transaction. This is performed by applying Refactoring 3 ⟨pull
up method⟩ four times, reaching the following program.

class Transaction ext Object {
prot bal : int;
prot value : int;
prot dt : LogDate;
meth ctor() : Transaction {

self.dt : = (new LogDate).ctor(); res : = self}
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}

}
class CreditTrans ext Transaction {

meth ctor() : CreditTrans {super(); res : = self}
meth finalBal() : int {res : = self.bal + self.value}

}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth finalBal() : int {res : = self.bal - self.value}

}
...



92 D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97

7.4. Transforming the original version to the final one: data refinement and remaining steps

The next step is to apply Law 1 ⟨class elimination⟩ in order to introduce class ListTransaction. This yields the following.

class ListTransaction ext LObject {
// list of Transactions ordered by date and time
pri tr : Transaction;
meth ctor() : ListTransaction {res : = self}
meth getTR() : Transaction {res : = self.tr)}
meth setTR(tr1 : Transaction) {self.tr : = tr1}

}

Next, we directly apply Law 6 ⟨data refinement⟩. We revise class Statement by replacing fields lc and lp with field lt,
which is a list of transactions ordered by date. Thus lt contains what in the original version is obtained from lc and
lp by method merge. Moreover we eliminate the methods addCreditTrans and addPayCardTrans, by applying twice Law 4
⟨method elimination⟩, since the method addTrans now directly include transactions in lt, and does not call addCreditTrans
or addPayCardTrans anymore.

In what follows we give a fragment of the new class Statement.

class Statement ext Object{
pri lt : ListTransaction;
meth ctor() : Statement {res : =self}
meth addTrans ...
meth leqDateTime ...
meth merge ...
meth showStatement() : primString {

res : =self.lt.toString()}
}

To apply the data refinement law, we first check the confinement conditions: the lists are owned and not shared between
instances of Statement, which is Own. Let Rep = LObject and Rep′ = ListTransaction. Moreover, we define a local coupling
that relates fields of both classes Statement, and the contents of their respective lists. Let us write it as a formula where
variables self and self’ refer to instances of the old and new versions of Statement, respectively:

merge(list(self.lc), list(self.lp)) = list(self’.lt)
∧ asc(list(self.lc)) ∧ asc(list(self.lp)). (4)

Here list gives the abstract list represented by a pointer, asc says the list is sorted, and merge is the mathematical function
that merges sorted lists. Equal lists implies that corresponding elements of the lists have same data. That is, if l and l′ are
lists of the same length then

∀i • l[i] = l′[i] ⇒ l′.toString() = l′.toString(). (5)

Note that the first conjunct implies that list(self’.lt) is ascending.
We have to show that this relation – extended to complete states – is preserved by the corresponding implementations

of methods of Statement. For example, in related states, the strings returned by the two versions of showStatement are equal.
Without confinement separating owners from each other, it would not be enough to reason in terms of a coupling like

(4) defined in terms of a single instance of Statement. Without confinement keeping clients separate from the internal
representation, it would not suffice to check preservation only for the methods of Statement.

To prove the coupling is preserved, we have that, by definition of merge, l[0] is the first element of lc or lp, considering
date and time. Thus, by assert of lt , l[0] = l′[0]. So, the initial states σ and σ ′ are related (R̂ σ σ ′ ). Let τ and τ ′
be the final states after applying method showStatement. Thus, list(τ (tmp)) = merge(list(σ (self.lc)), list(σ (self.lp)))
and list(τ ′(tmp)) = list(σ ′(tmp)) = list(σ ′(self.lt)). Note that the following equation holds: list(σ ′(self.lt)) =
merge(list(σ (self.lc)), list(σ (self.lp))). Then, as R̂ σ σ ′ , list(τ (tmp)) = list(τ (tmp′)). By Eq. (5), the results of both
versions of class Statement are the same. After applying the law, we have:

class Transaction ext Object {
prot bal : int;
prot value : int;
prot dt : LogDate;
meth ctor() : Transaction {

self.dt : = (new LogDate).ctor(); res : = self}
meth getDate() : Date {res : = self.dt.getD()}
meth getTime() : Time {res : = self.dt.getT()}
meth setDate(d : Date) {self.dt.setD(d)}
meth setTime(t : Time) {self.dt.setT(t)}

}
class CreditTrans ext Transaction {

meth ctor() : CreditTrans{super(); res : = self}
meth finalBal() : int {res : = self.bal + self.value}



D.A. Naumann et al. / Theoretical Computer Science 433 (2012) 60–97 93

}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth finalBal() : int {res : = self.bal - self.value}

}
class LogDate ext Object {

pri dd : Date;
pri tt : Time;
meth ctor() : LogDate {res : = self}
meth getD() : Date {res : = self.dd}
meth getT() : int {res : = self.tt}
meth setD(d : Date) {self.dd : = d}
meth setT(t : Time) {self.tt : = t}

}
class ListCredit ext LObject {

pri ct : CreditTrans;
meth ctor() : ListCredit {res : = self}
meth getCT() : CreditTrans {res : = self.ct}
meth setCT(ct1 : CreditTrans) {self.ct : = ct1}

}
class ListPayCard ext LObject {

pri pc : PayCardTrans;
meth ctor() : ListPayCard {res : = self}
meth getPC() : PayCardTrans {res : = self.pc)}
meth setPC(pc1 : PayCardTrans) {self.pc : = pc1}

}
class ListTransaction ext LObject {

//list of transactions ordered by date and time
pri tr : Transaction;
meth ctor() : ListTransaction {res : = self}
meth getTR() : Transaction {res : = self.tr)}
meth setTR(tr1 : Transaction) {self.lt : = tr1};

}
class LObject ext Object {

meth ctor() : Lobject {res : = self}
pri next : LObject
meth getNext() : LObject {res : =self.next}
meth setNext(n1 : LObject) {self.next : = n1}

}
class Statement ext Object{

pri lt : ListTransaction;
meth ctor() : Statement {res : =self}
meth addTrans ...
meth leqDateTime ...
meth merge ...
meth showStatement() : primString {

res : =self.lt.toString()}
}

We can eliminate method merge because it is no longer used, by applying Law 4 ⟨method elimination⟩. Analogously, we
can eliminate leqDateTime. Moreover, classes ListCredit and ListPayCard are no longer referenced, so we can eliminate
these classes by applying twice Law 1 ⟨class elimination⟩.

At this stage, LObject does not occur anywhere except as the superclass of ListTransaction. Using Refactoring 5 ⟨collapse
hierarchy – subclass⟩, we can collapse the hierarchy. The result is now close to the final intended design of our case study,
as presented early in this section. The only missing step is to represent financial values (with respect to the attributes bal
and value of class Transaction) as a separate abstraction, captured by the class FValue. Note that the application of the
⟨extract class⟩ refactoring affects the subclasses CreditTrans and PayCardTrans of Transaction. Particularly, the homonymous
methods finalBal() of these classes are modified to reflect the new representation of financial values. This complete
transformation is achieved by the following sequence of steps:

• First we consider the value attribute. Using Refactoring 6 ⟨extract class⟩, we extract an initial version of class FValue, and
modify the subclasses of Transaction as a consequence of changing the type of value from int to FValue. Class Transaction
is modified only concerning the type of the attribute value and the constructor method ctor, which now needs to create
an instance of FValue.

class Transaction ext Object {
prot bal : int;
prot value : FValue;
prot dt : LogDate;
meth ctor() : Transaction {

self.dt : = (new LogDate).ctor();
self.value : = (new FValue).ctor(); res : = self}
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\\ all other methods as before
}
class FValue ext Object{

pri value : int;
meth ctor(int v) : FValue {value : = v; res : = self}
meth getValue() : int {res : = self.value}
meth setValue(v : int) {self.value : = v}

}
class CreditTrans ext Transaction {

meth ctor() : CreditTrans {super(); res : = self}
meth finalBal() : int {res : = self.bal + self.value.getValue()}

}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth finalBal() : int {res : = self.bal - self.value.getValue()}

}

• We then carry out a similar transformation considering the bal attribute, also applying Refactoring 6 ⟨extract class⟩. This
generates a class with the same structure as FValue, but with a different name, say BValue. So we apply Refactoring 7
⟨change name of attribute type⟩ to change the type of bal to be FValue. The class BValue is not referenced any longer and
thus can be eliminated using Law 1 ⟨class elimination⟩. The subclasses of Transaction are modified accordingly.

class Transaction ext Object {
prot bal : FValue;
prot value : FValue;
prot dt : LogDate;
meth ctor() : Transaction {

self.dt : = (new LogDate).ctor();
self.bal : = (new FValue).ctor();
self.value : = (new FValue).ctor(); res : = self}

\\ all other methods are as before
}
class FValue ext Object { /* same as before */ }

class CreditTrans ext Transaction {
meth ctor() : CreditTrans {super(); res : = self}
meth finalBal() : int

{res : = self.bal.getValue() + self.value.getValue()}
}
class PayCardTrans ext Transaction {

meth ctor() : PayCardTrans {super(); res : = self}
meth finalBal() : int

{res : = self.bal.Value() - self.value.getValue()}
}

• The final step involves introducing methods add and sub to class FValue, using Law 4 ⟨method elimination⟩. With this we
achieve the final form of class FValue, as presented early in this section:

class FValue ext Object{
pri value : int;
meth ctor() : FValue {res : = self}
meth getValue() : int {res : = self.value}
meth setValue(v : int){self.value : = v}
meth add(fv : FValue){self.value : = self.value + fv.getValue()}
meth sub(fv : FValue){self.value : = self.value - fv.getValue()}

}

Now it is necessary some algorithm refinement to show that the bodies of the homonymous methods finalBal in
classes CreditTrans and PayCardTrans can be transformed to use methods add and sub. For instance, taking the class
CreditTrans as illustration, we need to prove it can be transformed into:

class CreditTrans ext Transaction {
meth ctor() : CreditTrans {super(); res : = self}
meth finalBal() : int

{var fv : FValue in fv : = (new FValue).ctor();
fv.setValue(self.bal.getValue())
fv.add(self.value); res : = fv.getValue()}

}

The program fragment that defines the body of the method finalBal introduces a local variable fv that stores the
output of the method finalBal in class CreditTrans. The initial value stored in the freshly created FValue object assigned
to fv is the value of the field bal. Then the method add is used to increment the value stored in fvwith the integer stored
in attribute value. Finally, the resulting value is yielded by themethod, which is precisely that previously returned by the
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statement res:= self.bal.getValue() + self.value.getValue(). The fact that the behavior of the body of the method
finalBal is preserved can be easily proved using some laws of commands andmethod calls, but this detailed proof is not
relevant in the context of this work.

This concludes the development of our case study. At this stage it has the form presented in Section 7.2, which is the
intended target of our successive series of refactoring applications embodying transformations that impact class hierarchies.

8. Conclusion

Object oriented languages feature a notion of protected scope whereby a declaration in one class K is visible in the
entire hierarchy of subclasses of K . The feature is extensively used due to both performance considerations and software
engineering considerations, as in the context of extensible frameworks. As with private visibility, protected visibility does
not itself provide a strong encapsulation boundary due to the possibility of sharing. Some form of alias control is also
needed. To provide sufficient encapsulation for correctness-preserving transformations, we defined a notion of ownership
confinement suited to class hierarchies. On this basis we defined local coupling relations and proved an abstraction theorem
which says the simulation property for methods within a class hierarchy extends to simulation for a complete program.
We used the simulation theorem to prove a data refinement law by which the implementation of a class hierarchy can
be transformed to a different implementation, using different protected (and private) attributes and different method
implementations. We proved a number of refactoring transformations and illustrated their application in an extended case
study. Particularly, we propose a generalization of Refactoring ⟨extract class⟩, which is among the complex refactorings that
have been dubbed a Rubicon for refactoring tools to cross [3].

Although our primary goal is to ensure correctness of refactorings, our insistence on formality in dealingwith case studies
has led us to improve on the informal refactorings in the literature. Another benefit is that we reduce the number of rules
by explicitly treating them as conditional equivalences. For instance, Fowler distinguishes between ⟨pull up field⟩ and ⟨push
down field⟩, whereas in our case this is captured by a single equation.

Most of our refactoring rules do not impose confinement as an explicit proviso, although the general Law 6 of
⟨data refinement⟩ and Refactoring 6 ⟨extract class⟩ do. In using data refinement to prove Refactoring 1 ⟨pull up field⟩wemust
satisfy the confinement conditions but the refactoring is only concerned with the fields of a single object so confinement is
merely a technicality in the proof. On the other hand, Refactoring 6 ⟨extract class⟩ involves multiple objects and is not sound
without confinement. Confinement in this case is not a consequence of the other provisos, when the refactoring is used in
the direction of un-extracting; so we made it an explicit proviso. The proof of Refactoring 7 ⟨change name of attribute type⟩
also relies on non-trivial confinement, but in this case confinement is a consequence of the other provisos. In our case study,
we needed to explicitly use the data refinement law only once, for a very specific data refinement. Otherwise we applied
laws and refactorings, which are of more general use.

In this paper we used program semantics and in some cases laws, including data refinement, to prove a number of
refactorings. Ideally, program semantics and data refinement are used to prove a core set of laws and refactorings, from
whichmore elaborate ones are derived in an algebraic style, as has been done in earlier work [10]. The laws and refactorings
can then be used to prove more elaborate transformations involving design and architectural patterns.

The basic laws and many refactorings have been formally justified in previous work that was based on ‘‘copy semantics’’
and so applicable to programs that use cloning but never shared references. The fact that our language includes object
references, as opposed to copy semantics, has allowed us to avoid some restrictions imposed as side conditions on the
refactorings presented in [10]. For example, the version of the ⟨extract class⟩ refactoring in [10] forbids objects as parameters
to the methodm1(), since, for instance, passing self as parameter would cause inconsistencies in the refactorings presented
there; here we have no such restrictions.

In summary, the distinguishing features of our approach to refactorings are:

• focus on refactoring programs with potential effects on arbitrary inheritance hierarchies;
• algebraic presentation of rules as complete programs, with explicit side conditions on other classes or on the main

program, ensuring soundness of the transformations; and
• reference semantics that allows sharing of objects, but controlled by a confinement discipline.

Related work addresses one aspect or another but, to our knowledge, our work is the first attempt to formalize and
systematize algebraic transformations involving arbitrary class trees.

For instance, rCOS [20] presents a mathematical characterization of object-oriented concepts together with a calculus
that supports both structural and behavioral refinement of object-oriented designs, in the context of reference semantics.
However, the proposed laws are stated in terms of equivalences in all (main program) contexts. Also, despite the definitions
and theorems on data refinement, rCOS does not address algebraic laws or refactorings for data refinement in the context
of inheritance.

We follow Opdyke [28] in formulating laws with syntactic applicability conditions (often called ‘‘preconditions’’ in
the refactoring literature). In contrast, Shäfer and de Moor [30] advocate applicability conditions of a different form: a
refactoring consists of a pattern of transformation, that the codemustmatch, and specified structural properties like binding
relationships, that must be preserved. (In [40] these are termed ‘‘invariants’’ but this is dropped in the later paper.) They
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argue that syntactic provisos are doomed to be overly restrictive or wrong in dealing with the full complications of Java. Our
language is much simpler but even so it is difficult to find satisfactory provisos. Shäfer et al [40,31,30] also observe that the
properties they identify, e.g., binding, control, and dataflow structure, are usually necessary if not sufficient for behavioral
equivalence. Their work provides refactorings that are more often correct than those implemented by other tools, but for
critical software behavioral equivalence remains the goal.We leave it as important futurework to find techniques for proving
correctness of refactorings specified in the manner of Shäfer et al.

A few works prove refactoring laws in the setting of very simple languages without object-oriented features. Sultana
and Thompson [38] prove refactorings for simple lambda calculi; indeed, they use the Isabelle/HOL proof assistant to
mechanically check the proofs. In [25,27], we have mechanized the semantics of a language similar to the one used here, in
the PVS proof assistant. A natural path to explore would be to build on that work to formalize our confinement theory and
the refactorings, and to check all the proofs. In previouswork [15], we explored the use of the term rewriting system CafeOBJ
for the refactorings proposed in [10], restricted to copy semantics. In that work, the syntax of the languagewas encoded, and
some basic laws postulated as axioms. Proofs of some refactorings were derived from the basic laws, in an algebraic style.

Ownership confinement has been formalized in class based languages using annotated types [11], ghost state [24],
and separation logic [7,34]. Here we used a somewhat restrictive notion of confinement, adapted from [5], enforced by
constraints expressed in terms of ordinary types (in a nominal type system like that of Java). This notion suffices in cases
like Refactoring 7 ⟨change name of attribute type⟩where natural provisos suffice to ensure confinement. On the other hand,
confinement is an explicit proviso in Refactoring 6 ⟨extract class⟩, which is probably sound under less restrictive confinement
disciplines than the one formalized here.

Simulation theories for much more sophisticated languages are a topic of current interest (e.g., [36,21,9,2,39,17,16]).
Refactoring transformations for object-oriented and other programming languages provide interesting and important
challenges for semantic models and simulation techniques.

In the future we plan to consider protected methods as well, since these are also extensively used in framework design;
however, they are much simpler than protected fields, since the impact on transformations is restricted to algorithmic
(control) refinement, in opposition to data refinement. We also plan to develop further case studies and to explore the
derivation of architectural patterns from the laws and refactorings. As a complementary work, we are investigating a
comprehensive set of command laws in the context of reference semantics. An ultimate goal for the refactoring tools in
software development environments is to provide transformations that are sound for the full programming language and
with respect to the program semantics implemented by the compiler, runtime, and hardware. We envision a verified or
verifying refactorer, to complement a verifying or verified compiler [19,23].
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