
Computational
Geomet ry

Theory and Applications
ELSEVIER Computational Geometry l l (1998) 157-173

Dynamic motion planning in low obstacle density environments"

Robert-Paul Berretty, Mark H. Overmars *, A. Frank van der Stappen
Department of Computer Science, Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands

Communicated by J.-R. Sack; submitted 23 July 1997; accepted 7 May 1998

Abstract

A fundamental task for an autonomous robot is to plan its own motions. Exact approaches to the solution of this
motion planning problem suffer from high worst-case running times. The weak and realistic low obstacle density
(L.O.D.) assumption results in linear complexity in the number of obstacles of the free space (Van der Stappen
et al., 1997). In this paper we address the dynamic version of the motion planning problem in which a robot
moves among polygonal obstacles which move along polylines. The obstacles are assumed to move along constant
complexity polylines, and to respect the low density property at any given time. We will show that in this situation
a cell decomposition of the free space of size O(n2ot(n) log 2 n) can be computed in O(n2ot(n) log 2 n) time. The
dynamic motion planning problem is then solved in O(n2a(n)log 3 n) time. We also show that these results are
close to optimal. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Motion planning; Low obstacle density; Moving obstacles; Cell decomposition

1. Introduction

Robot motion planning concerns the problem of finding a collision-free path for a robot /3 in a
workspace W with a set of obstacles C from an initial placement Z0 to a final placement Z1. The
parameters required to specify a placement of the robot are referred to as the degrees of freedom (DOF)
of the robot. The motion planning problem is often studied as a problem in the configuration space C,
which is the set of parametric representations of the placements of the robot/3. The free space FP is the
sub-space of C of placements for which the robot does not intersect any obstacle in E. A feasible motion
for the robot corresponds to a curve from Z0 to Z~ in FP (or its closure).

Motion planning is a difficult problem. In general, many instances of the robot motion planning
problem are P-SPACE-complete, even if the obstacles are stationary [8]. For a constant-complexity robot
moving amidst stationary obstacles polynomial time algorithms have been shown to exist. Schwartz and
Sharir [10] give an algorithm which solves the general motion planning problem. For a robot with f

Reseach is partially supported by the Dutch Organization for Scientific Research (N.W.O.).
* Corresponding author. E-mail: markov@cs.uu.nl.

0925-7721/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved.
PII: S0925-7721 (98)00026-1

158 R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173

degrees of freedom and constant complexity amidst obstacles with cumulative complexity n the running
time of Schwartz and Sharir's algorithm is O(n2/+6). In general, for an f -DOF robot, the complexity of
the free space can be as high as f2 (n f) and the motion planning problem will, therefore, in general have
a worst case running time close to f2 (nf).

We address the motion planning problem for a robot operating in an environment with moving
obstacles. This problem is also referred to as the dynamic motion planning problem. In general, when
the obstacles in the workspace are allowed to move, the motion planning problem becomes even more
complicated. For example, Reif and Sharir [9] showed that, when obstacles in a 3-dimensional workspace
are allowed to rotate, the motion planning problem is PSPACE-hard if the velocity modulus is bounded,
and NP-hard otherwise. (A similar result was obtained by Sutner and Maass [11].) Canny and Reif [4]
showed that dynamic motion planning for a point in the plane, with a bounded velocity modulus and
an arbitrary number of convex polygonal obstacles, is NP-hard, even when the obstacles are convex and
translate at constant linear velocities. Reif and Shafir also showed that the 2-dimensional dynamic motion
planning problem for a translating robot/3 with bounded velocity modulus, among polygonal obstacles
£ that translate at fixed linear velocity, can be solved using an algorithm that is polynomial in the total
number of vertices of /3 and £, if the number of obstacles is bounded by a constant. However, their
algorithm takes exponential time in the number of moving obstacles.

Van der Stappen et al. [14] (see also [13]) showed that modelling robots in realistic workspaces has a
profound influence on the complexity of solving the static motion planning problem, mainly independent
of the number of degrees of freedom of the robot. They gave a description of environments with a so-
called low obstacle density which leads to a surprising gain in efficiency for several instances of the
motion planning problem. An environment has the low obstacle density property if any region in the
workspace intersects a constant number of constant complexity obstacles that are larger than the size of
the region. (See below for a more precise definition.) Under the low obstacle density assumption, the
exact motion planning problem for an f -DOF robot was efficiently solved, using the cell decomposition
approach (see, e.g., [7]). The low obstacle density of the workspace implies a linear combinatorial
complexity of the free space, even for f -DOF robots. For a robot/3 moving amidst n stationary obstacles
the cell decomposition of the free space has O(n) size and is computable in O(n logn) time. Aronov et
al. [1] extended these results to multiple robots simultaneously operating in the same workspace. De Berg
et al. [3] gave an overview of several realistic input models and gave experimental results on scenes based
on real input data, which showed that the "hidden" constant in the low obstacle density assumption was
indeed low.

We demonstrate that the low obstacle density property can also be used to efficiently plan a motion
for a robot /3 with f degrees of freedom moving in a 2-dimensional workspace with non-stationary
obstacles. The obstacles are allowed to translate in the workspace along polyline trajectories, with a fixed
speed per segment. The motion planning problem is then solved in O(n2a(n) log 3 n) time, using a cell
decomposition of size O(n2ot(n)log 2 n). Note that these bounds do not depend on f (assuming f is
constant). We also show that this result is close to optimal, by giving an example where the robot has to
perform f2 (n 2) simple motions to get from its start to its goal position.

In this paper we will first present an overview of the method used in the paper of van der Stappen
et al. [14]. The computation of the cell decomposition for the dynamic low obstacle density motion
planning problem is treated in Sections 3 and 4; the algorithm to compute a feasible path through the cell
decomposition is presented in Section 5. Section 6 concludes the paper.

R.-P Berretty et al. / Computational Geometry 11 (1998) 157-173 159

2. Low obstacle density

In this section we recall some of the definitions and results from the paper by Van der Stappen et
al. [14] on motion planning in low density environments. The authors focus in particular on the large
class of motion planning problems with configuration spaces of the form C = W x D, where W is the
d-dimensional workspace and D is some (f - d)-dimensional rest space. Let us use the reach of a robot
as a measure for its maximum size; the reach Pt~ of/3 is defined as the maximum radius that the minimal
enclosing hyper-sphere of the robot, centered at its reference point, can ever have (in any placement
of 13). The reach of the robot is assumed to be comparable to the size of the smallest obstacle. The robot
is a collection of closed rigid bodies of constant total complexity and moves in a workspace with closed
constant-complexity obstacles. 1 The obstacles do not change shape. The workspace satisfies the static
low obstacle density property which is defined as follows.

Proposition 1. Let IR d be a space with a set C of non-intersecting obstacles. Then R d is said to be a
static low (obstacle) density space if for any region R C IR d with minimal enclosing hyper-sphere radius
p, the number of obstacles E ~ C with minimal enclosing hyper-sphere radius at least p intersecting R
is bounded by a constant.

Van der Stappen et al. [14] showed that, under the circumstances outlined above, the complexity of the
free space is linear in the number of obstacles.

The configuration space contains hyper-surfaces of the form f¢,~, consisting of placements of the
robot/3 in which a robot feature ~b is in contact with an obstacle feature ~ . We shall denote the fact that

is a feature of some object or object set X by ~ Ef X. The (constant-complexity) constraint hyper-
surfaces f~,~ (4~ Ef /3, qb Ef ~) divide the higher-dimensional configuration space into free cells and
forbidden cells. Van der Stappen et al. [14] considered so-called cylindrifiable configuration spaces
C = B × D which have the property that the subspace B--referred to as the base space--can be
partitioned into constant complexity regions R satisfying

I{f~,~ I q~ Ef /3 A @ Ef EA f~,~ fq (R × D) • O}I = O(1).

A partition that satisfies this constraint is called a cylindrical partition. In words, the lifting of the
region R into the configuration space is intersected by a constant number of constraint hyper-surfaces.
These hyper-surfaces subdivide the cylinder R × D into O(1) constant-complexity free and forbidden
cells. The cylindrical partition of B therefore almost immediately gives us a cell decomposition of the
free portion FP of C. Theorem 2 states that the transformation of a cylindrical partition of the base space
into a cell decomposition of the free space can be accomplished in time proportional to the size of the
cylindrical partition.

Theorem 2 (Van der Stappen et al. [14]). Let V be the set of regions of a cylindrical partition of a
base space B and let E be the set of region adjacencies. Let the regions of B be of constant complexity.
Then the cell decomposition of the free space calculated by lifting the regions R of the base partition
into the configuration space consists of constant complexity subcells. Furthermore, the complexity of the
decomposition and the time to compute it is O(r VI + IEI).

I A constant-complexity set is a semialgebraic set of which the describing polynomials have bounded degree.

160 R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173

Note that the size of the cylindrical partition determines the size of the cell decomposition. The
low obstacle density motion planning problem outlined above was shown to yield a cylindrifiable
configuration space, in which the workspace W is a valid base space. Small and efficiently computable
cylindrical partitions of W have led to optimal cell decompositions and thus efficient solutions to the
motion planning problem (see [14] for details).

In this paper, we show that the configuration space of the dynamic version of the low obstacle density
motion planning problem is cylindrifiable as well. We find a cylindrical partition of an appropriate base
space that leads to an almost optimal size cell decomposition.

3. A dynamic base space

3.1. Problem statement

We now focus on the dynamic robot motion planning problem, subjected to low obstacle density. We
show that the framework outlined in Section 2 can be used to plan a motion for a robot B with f degrees
of freedom, moving in a 2-dimensional workspace with non-stationary obstacles. The obstacles translate
in the workspace, and can only change speed or direction a constant number of times. We will use a
cell-decomposition based on a cylindrical partition, similar to Section 2. Since dynamic motion planning
is tedious to deal with, we split the problem into subproblems. We first formally define the problem and
state some useful properties of the base space for the dynamic motion planning problem. In Section 4,
we construct a cylindrical decomposition, and in Section 5, we compute the actual path for the robot.

The dynamic low obstacle density motion planning problem is defined as follows.

• The workspace W of the robot B is the 2-dimensional Euclidean space R 2 and contains a collection of
n obstacles E ¢ g, each moving along a polyline at constant speed per line segment.

• The robot B has constant complexity and its reach is bounded by Pt3 <, bp, where b >~ 0 is a constant
and p is a lower bound on the minimal enclosing hyper-sphere radius of any obstacles E e £.

• Each obstacle E e £ is polygonal and has constant complexity.
• Any constraint hyper-surface in the configuration space corresponding to the set of robot placements

in which a certain robot feature is in contact with a certain obstacle, is algebraic of bounded degree.
• The robot is placed at the initial placement Z0 at time to and has to be at the goal placement Z1 at

time ft.
• At any time between to and tl, the workspace with obstacles satisfies the low obstacle density property.

A standard approach when dealing with moving obstacles is to augment the stationary configuration
space with an extra time dimension T. In this manner, we obtain the configuration-time space. When
planning the motion of our robot through the configuration-time space, we have to make sure that the
path is time-monotone--the robot is not allowed to move back in time. The first objective in solving the
dynamic low obstacle density motion planning problem is to obtain a cylindrical partition that consists
of constant complexity regions. An appropriate choice for a base space B is the Cartesian product of the
2-dimensional workspace and time. This way, the configuration time space is of the form

C T = W x T x D = I R 2 × R x D (= ~ 3 x D),

where D is some (f - 2)-dimensional rest space.

R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173 161

3.2. Characteristics of the base space

The base space B = W x T can be considered as a 3-dimensional Euclidean space. In our dynamic
motion planning setting, we only consider the work-time space slice ~2 × [to, tl]. We first look at the
situation where each obstacle moves along a line in the workspace. Later, we extend the result to the
polyline case.

Definition 3. Let S ___ W and let y be a curve in W × T. Then the column coly (S) is defined by
col×(S) = {(x, y, 0) I (x, y) 6 S} @ y, where @ denotes the Minkowski sum operator.

The column coly (S) is the volume swept by S in the work-time space as its reference point O follows
the curve Y. In our application, the curve Y describes the translational motion of an obstacle and is
therefore time-monotone. A point (x, y, t) belongs to col× (S) if and only if S covers the point (x, y) at
time t.

Definition 4. Let Qo.p~ be a square centered at the origin, having side lenght 2pB. Then H(E) =
E ® Qo,p~.

The Minkowski sum H(E) encloses E. No point in H(E) has a distance larger than ~¢~Pu to E. We
denote the arrangement 2 of the boundaries acoly (H(E)) of the grown obstacle columns by ,A(col o H).
We will show that this arrangement is of O(n 2) complexity.

Let us for a moment consider a fixed obstacle E at a fixed time ti. We consider the boundary of the
grown obtacle H(E). Now, if the reference point of the robot is placed outside H(E), the robot cannot
collide with the obstacle. If the reference point of the robot is inside the grown obstacle, there might
be configurations in which the robot intersects the obstacle. Since both the robot and the obstacles have
constant complexity, the arrangement of constraint hypersurfaces in H(E) at time ti, when lifted into the
configuration space, has constant complexity as well, We exploit this observation to build a partition of
the base space.

We say that an obstacle E is in the proximity of another obstacle E' if H(E) and H(E') intersect,
hence col z (H (E)) and col×,(H (E')) intersect.

Theorem 5. The complexity of the arrangement ¢4(col o H) of the boundaries of the grown obstacle
columns is O(n2).

Proof. The complexity of the arrangement is determined by the number of vertices. The asymptotic
number of vertices resulting from an intersection of three columns establishes an upper bound on the
asymptotic complexity of the arrangement. A necessary condition for three columns to intersect is that
the corresponding obstacles are less than 2V'2pt~ apart at some moment in time. We show that the number
of such triples is O(n2). We charge each such triple to a pair of obstacles. For this we choose the smallest
obstacle E of the three and the one (of the remaining two) that last entered E's proximity. Assume that an
obstacle E' enters the proximity of E. (Note that E' can enter E 's proximity at most O(1) times because
E and E' have constant complexity and both move along line paths.) A third obstacle E" involved in a

2 The arrangement of a set is the subdivision of space into connected pieces of any dimension induced by that set.

162 R.-P. Berretty et al. /Computational Geometry 11 (1998) 157-173

triple (E, E', E") must already be in the proximity of E at the time of arrival of E' in order to be charged
to the pair (E, E'). By Property 1, there are only O(1) larger obstacles in E's proximity at any time, so
E" is chosen from a set of O(1) size. As a result, only O(1) triples are charged to each of the O(n 2) pairs
(E, E'). Each of these O(n 2) triples (E, E', E") contribute a constant number of vertices to) , (col o H)
because the obstacles E, E' and E" have constant complexity and move along line paths. Therefore, the
complexity of) , (col o H) is bounded by O(n2). []

It is easy to see that a 2-face of a column in the final arrangement is divided into a number of parts, of
which some are non-convex. The following theorem states that the 2-faces of the arrangement) , (col o H)
are polygons without holes. This property turns out to be important in the sequel.

Theorem 6. The faces of) , (col o H) are polygonal and have no holes.

Proof. The faces of) , (col o H) are formed by the possibly intersecting faces of the columns coly (H (E))
(E e g). Since the columns are polyhedra, the arrangement) , (col o H) has polygonal faces. It remains
to prove that the faces do not contain holes. A face of the arrangement has a hole if and only if a column
penetrates the interior of this face without intersecting its boundary. We distinguish the bottom and top
faces and the side faces of the columns. The bottom and top faces of the columns, i.e., the intersections
of the columns with t = to and t = tl, are the boundaries of the Minkowski sums of the obstacles at their
positions at to and tl and Qo,p~. A grown obstacle cannot be fully contained in another grown obstacle,
otherwise the obstacles would also intersect, which is not the case. Therefore, the top and bottom faces
of columns are faces without holes.
The side faces of the columns are the possibly intersecting walls that connect the top and bottom faces
of the columns. Assume, for a contradiction, that (a part of) some side face f of co l×(H(E)) has a
hole. There must be another column col×, (H (E ')) which intersects this face. We call the smallest time
coordinate of the hole ta, and the largest time coordinate tb. Note that to < ta < tb < tl. Without loss
of generality, we fix object E, such that its speed becomes zero, and adjust the speed of the other
objects accordingly. After this transformation, we consider the 2-dimensional vertical projection onto the
workspace of c o l y (H (E)) and col×,(H(E')) fq {ta, tb} (i.e., H (E ~) at ta and tb, respectively; see Fig. 1).
Note that E and E' are grown using the same square Q o.p~. Given that the moving grown obstacle H (E')
touches the projection of f either at t = ta or at t ----- tb, the obstacle E' itself must intersect E either at
t = ta or t = tb which is impossible by assumption (see Fig. 1). So, the faces of) , (col o H) are polygonal
and have no holes. []

Note that although the obstacles are not allowed to intersect, the grown obstacles can indeed (partially)
intersect, introducing concavities in the faces of) , (co l o H) . If we extend the setting to the case in which
obstacles E e E translate along polylines, the complexity of the arrangement) , (co lo H) does not increase
asymptotically--in the proof of Theorem 5, the chargings to the obstacle pair (E, E') caused by obstacle
E" are, in the worst case, multiplied by a constant factor. Unfortunately, the 2-faces of) , (co l o H) are no
longer polygons without holes. We can resolve this by adding extra faces to the arrangement. For every
time ti at which one of the obstacles changes speed, we add a plane t --- ti. This way, the area between
two successive planes is a work-time space slice where all obstacles move in a fixed direction with a fixed
speed. The arrangements on the newly introduced planes are cross sections of the work-time space. They
are arrangements of possibly intersecting grown obstacle boundaries and have linear complexity because

R.-P. Berretty et aL /Computational Geometry 11 (1998) 157-173 163

coLy,(H(E'))

direction of motion of E'

f = f N t b

col~,(H(E')) n q,

col~(H(E)) N to, = colT(H(E)) n h,

Fig. 1. The projection onto the 2-dimensional workspace of the stationary grown obstacle H(E) and the moving
grown obstacle H(U) at ta and tb. The black area depicts the implied intersection of E and E' at t = tb.

the obstacles statisfy the low obstacle density property at any time [14]. We compute a triangulation of
these 2-dimensional arrangements to assure that their faces have no holes. Since we have O(n) polyline
vertices, the total added complexity is O(n2).

We will show that every cylinder R × D, defined by a 3-cell R of the arrangement, is intersected by a
constant number of constraint hyper-surfaces. We define the coverage of a region R c_ B = W x T.

Definition 7. Cov(R) : {E ~ C I R N coly(H(E)) • 0}.

In words, the coverage of a region is the set of obstacles whose columns, which are computed after
growing the obstacles, intersect the region. The following result follows from the low density property
and the observation that all points p in a single 3-cell of the arrangement of column boundaries lie in
exactly the same collection of columns.

Lemma 8. The regions R, defined by the cells of A(col o H) have]Cov(R)] = O(1).

Lemma 9 shows that the partition of the base space into regions R with ICov(R)] = O(1) is a
cylindrical partition. The proof is very similar to the proof of Lemma 3.6 of Van der Stappen et al. [14]
and has been omitted.

Lemma 9. Let R c__ B be such that ICov(R)l = O(1). Then

[{/¢,~ I ¢ ~ f / 3 A qb E f E A f ¢ , ¢ N (R x D)5~ 0}] = O(1).

The only problem is that the complexity of the cells of .A(col o H) is not necessarily constant. So, we
must refine the partition to create constant complexity subcells. This is discussed in Section 4.

3.3. Complexity o f the free space

In the previous subsection we showed that the work-time space of the robot can be partitioned into
regions with total combinatorial complexity O(n2). Furthermore, by Lemmas 8 and 9, each region, when

164 R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173

m
m

m obstacles

gadget with m fences

Zo

Fig. 2. The quadratic lower bound construction.

m obstacles

N
Z1

lifted into the configuration-time space is intersected by at most a constant number of constraint hyper-
surfaces of bounded algebraic degree. Therefore, a decomposition of the configuration space into free
and forbidden cells of combinatorial complexity O(n 2) exists. Obviously, this O(n 2) bound is an upper
bound on the complexity of the free space for our dynamic motion planning setting,

Theorem 10. The complexity of the free space of the dynamic low obstacle density motion planning
problem is O(n2).

We will now demonstrate that this bound is worst-case optimal, even in the situation where the robot is
only allowed to translate and the obstacles move along lines. To this end, we give a problem instance with
n obstacles, for which any path for the robot/3 has f2 (n 2) complexity. Consider the workspace in Fig. 2.
The grey rectangular robot must translate from position Z0 to Z1. The gadget in the middle forces the
robot to make f2 (m) moves to move from left to fight. It can easily be constructed from O(m) stationary
obstacles. The big black obstacle at the bottom right moves very slowly to the right. So it takes a long
time before the robot can actually get out of the gadget to go to its goal. Now a small obstacle moves from
the left to the right, through the gaps in the middle of the gadget. This forces the robot to go to the right
as well. Only there can it move slightly further up to let the obstacle pass. But then a new obstacle comes
from the fight through the gaps, forcing the robot to move to the left of the gadget to let the obstacle pass
above it. This is repeated m times after which the big obstacle is finally gone and the robot can move to
its goal. The robot has to move 2m times through the gadget, each time making f2 (m) moves, leading
to a total of ~2 (m 2) moves. As m = S2 (n), the total number of moves is f2 (n2). At any moment, the low
obstacle density property is satisfied.

Theorem 11. The complexity of the free space of the dynamic low obstacle density motion planning
problem for a translating robot is f2 (n2).

Actually, the example shows a much stronger result. Not only does it give a bound on the complexity
of the free space, but also on the complexity of a single cell in the free space and on the complexity of
any dynamic motion planning algorithm.

Theorem 12. The complexity of any algorithm for the dynamic low obstacle density motion planning
problem (even for a translating robot) is lower bounded by f2 (n2).

R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173 165

4. Decomposing the base space

We still need to decompose the arrangement of columns coly (H(E)) , E 6 g, into constant complexity
subcells. To this end, we construct a vertical decomposition of the arrangement. Since the vertical decom-
position refines the cells of the arrangement, the subcells of the final decomposition still have constant-
size coverage. The approach we use [2] requires that the columns in the work-time space, as described in
Section 3.2, are in general position. This can be achieved by an appropriate perturbation of the vertices of
the columns. Before we can calculate a vertical decomposition we have to triangulate the 2-faces of the
columns. Triangulation does not increase the asymptotic complexity of the arrangement. After triangula-
tion, the 2-faces of the arrangement might coincide, though. It is easily verified that the vertical decompo-
sition algorithm still works with these introduced degeneracies. To bound the space we add two horizontal
planes at time to and tl (the start and goal time) and only consider the area in between. To bound the space
in the x- and y-direction we also add a triangular prism far around the relevant region of the work-time
space.

4.1. The vertical decomposition

Let S = {sl sn } be a set of n possibly intersecting triangles in 3 spaces. The vertical decomposition
of the arrangement A(S) decomposes each cell of A(S) into subcells, and is defined as follows
(see [2]): from every point on an edge of ,A(S)----~is can be a part of a triangle edge or of the
intersection of two triangles--we extend a vertical ray in positive and negative x3-direction to the
first triangle above and the first triangle below this point. This way we create a vertical wall for
every edge, which we call a primary wall. We obtain a multi-prismatic decomposition of A(S) into
subcells, the multi-prisms, with a unique polygonal bottom and top face; the vertical projections of
both faces are exactly the same. However, the number of vertical walls of a cylinder need not be
constant and the cylinder may not be simply connected. We triangulate the bottom face as in the
planar case. The added segments are extended upward vertically until they meet the top face. The
walls thus erected are the secondary walls. Each subcell of the vertical decomposition is now a prism
with a triangular base and top, connected by vertical walls. (Note that, for navigation purpose, our
notion of vertical decomposition is slightly different from other notions of vertical decomposition that
construct secondary walls using a planar vertical decomposition of the projections of the top and bottom
faces.)

Theorem 13. The vertical decomposition of the arrangement ,A(col o H) in the work-time consists of
O(n2c~(n) logn) constant complexity subcells, and can be computed in time O(n2ot (n) log 2 n).

Proof. Tagansky [12] proved that the vertical decomposition of the entire arrangement of a set of n
triangles in ~3 consists of O(K + n2ot(n)logn) subcells where K is the complexity of the arrangement.
Application of this result to the arrangement of grown obstacle column boundaries A(col o H), which
satisfies K = O(n2), yields the complexity bound.

We can compute the vertical decomposition using an algorithm by De Berg et al. [2]. This
algorithm runs in time O(n 2 log n + V log n), where V is the combinatorial complexity of the vertical
decomposition. As V = O(n2ot(n) logn), the bound follows. []

166 R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173

To restrain the size of the cell decomposition of the robot's free space, Theorem 2 demands an
appropriate bound on the number of pairs of neighboring subcells. To faciliate navigation, we ensure
each subcell to have a constant number of neighbors. The common boundary of a subcell ~ and one of
its neighbors can be a secondary wall, or a 2-face of the arrangement ,A(col o H). Obviously, the number
of neighbors sharing a primary or a secondary wall with x is bounded by a constant. Let us now consider
the maximum number of neighbors, sharing a part of a triangle of .A(col o H) with x. Unfortunately the
arrangements of walls ending on the top and bottom side of the triangle can be very different, and can
in general be as complex as the complexity of the full decomposition which is only upper-bounded by
O(nZot(n)logn). Simply connecting the subcells at the top of the triangle to the subcells at the bottom
of the triangle could result in a number of neighbors that is hard to bound by anything better than
O(n2ot(n) logn) for each subcell x. However, as we will show, we can connect the subcells at the top and
bottom of a face by a symbolic, infinitely thin tetrahedralization. This tetrahedralization will increase the
combinatorial complexity of the vertical decomposition by a factor of at most O(log n), but assures that
the number of neighbors per subcell is bounded by a constant. Since this method is quite complicated,
we dedicate the following subsection to it. This will lead to the following result.

Theorem 14. There exists a cylindrical decomposition of the base space B for the dynamic low obstacle
density motion planning problem consisting of O(n2ot(n)log2n) constant complexity subcells and a
constant number of neighbors per subcell. This decomposition can be computed in O(n2ot (n) log 2 n) time.

4.2. Tetrahedralizing between polygons

To reduce the number of neighbors of the subcells we will extend the vertical decomposition
with a symbolic connecting structure, that increases the total combinatorial complexity of the vertical
decomposition by a factor of O(log n). As a result, the number of neighbors per subcell of the cell
decomposition with the connecting structure will be bounded by a constant. For each face of the
arrangement .A(colo H), this structure connects the subcells at the top side with the subcells at the bottom
side. The structure we use is a symbolic, infinitely thin tetrahedralization. To simplify the discussion,
we assume that the face for which we construct the connecting structure is horizontal. (This is not a
constraint, but just a matter of definition.) Throughout this section the vertical direction is parallel to the
normal of the face.

Both the top and the bottom side of the face contain a triangulated 2-dimensional arrangement, say
Tt and Tb, created by the intersecting faces and the walls that end on it. Such triangulations with extra
vertices in their interior are referred to as Steiner triangulations; the extra vertices are called Steiner
points [5]. The arrangements Tt and Tb are normally different; they do not share Steiner points. We
separate the top and bottom of every face in the arrangement. Imagine that the top of the face is at height
1.0 and the bottom at height 0.0. We tetrahedralize the space between the top and bottom arrangement,
by adding a number of Steiner points between the top and bottom face. (Remember that this is only done
in a symbolic way. In reality, the top and bottom face lie in the same plane. The vertical distance is only
used to define the adjacencies of the added (flat) subcells.)

We distinguish between the convex and the non-convex faces. Note that non-convex faces indeed exist,
since a column can cut out a part of another column. Theorem 6 gives us that the cut out parts are never
strictly included in the open interior of a 2-face of a column. We first show how to tetrahedralize the
space between two different Steiner triangulations Tt and Tb of the same convex simple polygon P.

R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173 167

Ttt
h = 1.0

%

h = 0 . 5

h=O.O

f~

(a) (b)

Fig. 3. (a) The construction of the pyramid of tetrahedra between p and the triangles of Tb. (The added edges are
bold.) (b) The tetrahedra created in the second step between boundary face fi and the pyramid.

Our tetrahedralization has two layers joined at height 0.5 by a Steiner triangulation of P. This
triangulation Tm has one Steiner point p: P is triangulated using a star of edges from p to all vertices
of P. Both T,, and Tb are different Steiner triangulations of the same polygon P, therefore the vertical
projections of the boundaries of Tb and Tm are equivalent. We tetrahedralize between Tm and Tb by
adding a face from every edge of Tb to p. The result is a tetrahedralized pyramid where each tetrahedron
corresponds to a triangle of ~ .

To triangulate the complement of this pyramid in the layer between Tb and 7"m, we connect the
boundaries of Tb and T,n by vertical faces between the boundary edges. For every face fi introduced
by connecting the boundaries, we add a Steiner point qi in the middle of ft. We connect qi to all vertices
on fi and connect each resulting triangle to p (see Fig. 3). These triangles complete the tetrahedralization
of the space between Tb and T~. The tetrahedralization between Tt and T,, is constructed in the same way.
It is not hard to see that the number of tetrahedra created is linear in the complexity of the triangulations
Tb and Tt.

Unfortunately, faces need not be convex. So we must also show how to tetrahedralize the space between
two different Steiner triangulations of the same non-convex simple polygon P. (As indicated above we
know that the polygon has no holes. This is crucial here.) We again add a Steiner triangulation Tm of P
between Tt and Tb. In the non-convex case we have to use a more sophisticated Steiner triangulation.
For this we use a triangulation by Hershberger and Suri [6] that was originally designed for ray shooting
in simple polygons. This triangulation tm has three important properties. Let k be the number of edges
of P:

(1) It introduces O(k) Steiner points with each Steiner point directly connected to the boundary of P by
at least one triangulation edge;

(2) Every line segment that lies inside P intersects at most O(log k) triangles of Tin;
(3) The triangulation can be computed in O(k) time.

168 R.-P. Berretty et al, / Computational Geometry 11 (1998) 157-173

We can derive the following lemma from the properties of Tin.

Lemma 15. Let P be a polygon with k vertices and without holes. Let Tm be the triangulation of P as
described in [6]. Let A be a triangle inside P, and let ,AA be the arrangement of tm inside triangle A.
Then ,A~ has only O(logk) constant complexity faces.

Proof. Let v be a vertex of Tm inside A. Because, by property (1), every vertex of the triangulation T,n
is connected to the boundary of P by at least one edge, one outgoing edge from v must intersect the
boundary of A. By property (2), the boundary of A intersects at most O(logk) edges, and, hence, there
are also only O(logk) vertices inside A. Since each face of ,A~ is the intersection of a triangle from Tm
and the triangle A, it has constant complexity. It follows that the whole arrangement ,Aa has complexity
O(logk). []

This immediately results in the following corollary.

Corollary 16. Let P be a polygon without holes. Let 7"m be the triangulation described in [6]. Let ~ be
another triangulation of P with complexity m. The arrangement we obtain by overlaying 7-0 and Tm has
O(m log m) constant complexity faces.

Proofi Each triangle of T~ is divided into O(log k) <~ O(log m) constant complexity faces, by Lemma 15.
The resulting arrangement therefore has O(m log m) faces of O(1) complexity. []

Let Tb×m be the triangulation of P we obtain by overlaying Tb and Tm and triangulating the
resulting faces. Let mb denote the complexity of Tb. Corollary 16 shows that the complexity of Tb×m
is O(mb log mb). It can be computed in O(mb log mb) time. To connect Tb to Tm (at height 0.5) we place
'Zbx m between Tb and Tm at height 0.25. First we tetrahedralize the layer between Tb and Tb×m. We start
by adding vertical faces from every edge of Tb to its corresponding edge in Tb×m. This results in mb
prisms that have the triangles of Tb as their top and bottom faces. The top faces still contain a number
of other edges, that are part of Tin. We tetrahedralize each prism by adding a vertex in the center and
connecting it to top, bottom and sides, in the way described for the convex case. (Note that Steiner
points might exist on the edges of triangles of Tb×m. However, the triangles on the other side of these
edges shares these Steiner points, because they are the result of the intersection of two fully connected
arrangements. Therefore each tetrahedralized prism perfectly fits its neighboring prisms.) The number of
tetrahedra in this layer is O(mb log mb). We similarly tetrahedralize the layer between Tb×m and Tm. So
the total space between Tb and Tm can be filled with O(mb log mb) tetrahedra. In the same way we can fill
the area between Tt and Tm using the triangulation Tt×m. This tetrahedralization will have O(m t log mt)
tetrahedra, where mt is the complexity of Tt.

Summarizing, we can symbolically create a tetrahedralization between the top and the bottom side of
the faces of the arrangement. As the original arrangement has combinatorial complexity O(n2ot (n) log n)
(see Theorem 13), the extended arrangement has complexity O(n2c~(n)log 2 n). It can be computed in
o(neot(n) log 2 n) time. The subcells in this arrangement each have constant complexity and a constant
number of neighbors.

R.-P. Berretty et aL /Computational Geometry 11 (1998) 157-173 169

4.3. The decomposition of the free space

We constructed a decomposition of the work-time space with the following properties:

• The number of subcells is O(n2ot(n) log 2 n).
• Each subcell has constant combinatorial complexity.
• Each subcell has constant size coverage, i.e., each subcell is intersected by a constant number of

columns of grown obstacles.
• Each subcell has a constant number of neighboring subcells.

Since the boundaries of the columns form a subset of the subcell boundaries, the coverage of each subcell
is computed by simply traversing the subdivision of the work-time space. This can, for example, be
accomplished by a breadth first search. Now, we can use the same approach as in [14] to compute the
complete cell decomposition of the free space (Theorem 2). This result is a graph CG. Each node of CG
corresponds to a constant complexity subcell in the free part of the configuration-time space. Each edge
corresponds to an adjacency between two such subcells. Here two subcells are called adjacent if and only
if they share an f-dimensional face. (This is important because we want to compute free paths, rather
than semi-free paths, moving along which the robot is allowed to touch the obstacles.) The degree of the
nodes is bounded by a constant. The complexity of CG is the same as the complexity of the base space, so
it has O (n 2c~ (n) log 2 n) nodes and edges. The computation time of O (n 2or (n) log 2 n) for the base partition
dominates the computation time for CG.

5. Finding a path

In this section we show how to use the cell decomposition to compute a time-monotone path through
the free space. Since the path must be time-monotone we cannot do an arbitrary search through the
configuration-time space; we will use a space sweep algorithm in the time direction to keep track of the
reachable space, while time passes. We sweep with a hyper-plane 7 ~, orthogonal to the time direction,
from t = to to t = tl. Slightly abusing the notation, we will from now on use CG to denote both the
connectivity graph and the cell decomposition it represents.

5.1. Preprocessing the cell decomposition

To compute the parts of the configuration-time space reachable by time-monotone paths from the start
configuration of the robot, we cannot use the cell decomposition directly. The space is partitioned into
not necessarily convex constant complexity subcells. The subcells and their adjacencies are represented
by the graph CG; each subcell in CG has a constant number of neighbors. A problem with CG is
that the time-monotonicity restrictions are not incorporated in the graph. There can be a path between
two configurations according to CG, while there exists no time-monotone path between those two
configurations. Fig. 4 shows a 2-dimensional example in which time increases in the vertical upward
direction. Although the graph contains a path between the subcells ;q and K4 there exists no time-
monotone path from (any configuration in) ;q to (any configuration) in K4. Note also that there exists
a time-monotone path from tel to only some of the configurations in ;c3.

Since the subcells in the cell decomposition are not necessarily convex, there can even exist a pair of
configurations in the same subcell, that cannot be connected by a time-monotone path. In conclusion, the

170 R.-P. Berretty et al. /Computational Geometry 11 (1998) 157-173

T t
I; 2

K'I ~ Fv4

t~5

(a) (b)

Fig. 4. (a) A 2-dimensional space with four connected free subcells. (b) The connectivity graph CG. Although there
is no time-monotone path from Xl to x4, this fact is not represented by CG.

connectivity graph CG does not contain all necessary data to find a time-monotone path. It is possible,
however, to decompose the (f + D-dimensional subcells of CG into smaller subcells for which there
is a time-monotone path for every pair of configurations in the same subcell. If a hyper-plane 7 9, that
is orthogonal to the time direction, intersects a subcell x in a number of disconnected regions, then
there might be configurations in x that cannot be connected with a time-monotone path. We therefore
decompose each such subcell x into a constant number of smaller subcells, such that any cross-section
of the hyper-plane 79 with a subcell consists of one connected region. If for some t, 79 is tangent to a
feature of x, then 79 decomposes ~ into a constant number of constant complexity subceUs. Since x is of
constant complexity, there are O(1) of these tangencies. We decompose x into O(1) subcells generated
by all possible tangencies of 7 9 with features of x. To adapt CG, we replace the node of x by nodes
for the subcells of x with the appropriate adjacencies. This extension does not increase the asymptotic
combinatorial complexity of CG. Also the number of neighbors per subcell remains bounded by a (larger)
constant. It is not difficult to see that any pair of configurations in each resulting subcell can be connected
by a time-monotone path. In Fig. 4, for example, x5 is decomposed into three subcells by the dashed line.

5.2. Computing a path

We take the refined connectivity graph CG and note that each subcell x has the following property:
if (Z, r) ~ g is reachable by a time-monotone path, then all {(Z', r ') ~ x I r ' >~ r} are reachable by a
time-monotone path. In addition, all adjacent subcells x' for which the intersection x N x' A (t >/r) is an
f-dimensional face, are (at least partially) reachable through x.

Our objective is to label each subcell x with the earliest time r at which it can be reached from (Z0, to)
and with a link to the subcell from which it can be reached at time r. If the subcell xl 9 (Z1, h) receives
a label "rl < tl then (Z1, tl) is reachable from (Z0, to) by a time-monotone path. The sequence of subcells
containing this path can be found by tracing back the links from each subcell, starting from tq.

To obtain the labelling outlined above, we perform a sweep-like search of CG starting from x0
(Z0, to). An event occurs if a subcell r ' is reachable from another subcell K at some time r. We keep the
event (x, x', r) of the sweep in a priority queue Q-- the event with the smallest r is dequeued prior to
every other event.

R.-P. Berret~ et al. / Computational Geometry 11 (1998) 157-173 171

An event (x, to', r) is handled quite straightforwardly. Firstly, we add a link from x' to i< and label
x' with r. Secondly, we consider each neighbor x" of K' in CG for which x' (3 to" N {t ~> r} is an f -
dimensional face. Let

r' = min {t IK' nx "n (t >/r} -¢ 0}.

If x" is not yet stored in Q we add the event (x', x", r ') to Q. Otherwise, if the time of the event stored
for to" is later than r ' we replace the old event by the new one.

If the event queue Q is empty, we are done. We check if the subcell tel 9 (Z1, tl) received a label. If so,
we start in Xl and trace the links back to the starting subcell x0 ~ (Z0, to) to find the (reversed) sequence
of subcells that contains a time-monotone free path from (Z0, to) to (Z~, tl). If the subcell tel did not
receive a label, then (Z1, t~) is not reachable by a time-monotone path, and we report failure.

It remains to transform the sequence of subcells into a path. We want this path to lie in the free
space (not in its boundary) and we want it to be strictly time-monotone (otherwise the robot would need
infinite speed to traverse parts of the path). We call the sequence of connected subcells a channel. Because
adjacent subcells have an f-dimensional intersection, the interior of the channel will be connected. Also
the interior of the channel lies completely in the free space. Clearly, this interior must contain a strictly
time-monotone path. (It contains a time-monotone path by construction, and because the interior is an
open space this path can be made strictly monotone.)

In the following, we describe how to first create a semi-free and time-monotone path, and subsequently
transform this path into a free and strictly time-monotone path. Let t¢ and x' be two adjacent subcells in
the channel. We create a vertex of the path that lies on the boundary of x and x' at the time r stored
with x'. (r was the earliest moment at which we could reach x'.) Inside each subcell we connect the
two vertices created with a time-monotone path. Because the subcell has constant complexity this can be
done in constant time. The full path is time-monotone but not necessarily strictly time-monotone. Also, it
is only semi-free. We have to transform the computed path into a path that is strictly time-monotone and
lies completely in the free space. Firstly, we transform the channel into a channel which only consists of
subcells with non-zero volume, and contains the original path. This is done by tracing the semi-free path
and while doing this replacing flat tetrahedra by subcells of the original decomposition which contain
the path as well. We discard the symbolic coordinates on the fly. Secondly, we transform it into a strictly
time-monotone free path by piecewise slightly slanting it in the time direction.

Summarizing, in order to solve a dynamic low obstacle density motion planning problem, we perform
the following steps:

(1) COMPUTE vertical decomposition of A(col o H).
(2) for all faces f of ,A(col o H) do

COMPUTE a flat tetrahedralizafion between the top and the bottom side of f .
(3) TRANSFORM ,A(col o H) into a decomposition of the configuration-time space.
(4) COMPUTE a strictly t ime-monotone free path.

It remains to analyse the complexity of the algorithm. Let I CGI denote the size of the graph. Every subcell
of the decomposition has a constant number of neighbors and, thus, every subcell creates a constant
number of events. This sums up to O([CGI) events. So, the size of Q is O(ICGI) and enqueueing and
dequeueing an event takes O(log ICG]) time. Therefore, handling an event takes O(log ICGI) time. The
time for the sweep is, consequently, upper bounded by O(ICGI log ICGI). Since ICGI = O(n20t (n) log 2 n)

172 R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173

by Theorem 14, the computation of a time-monotone path takes O(n2ot(n)log 3 n) time. The following
theorem summarizes the result.

Theorem 17. The low obstacle density motion planning problem for a robot among a set of n obstacles
that move with constant speed along polylines, can be solved in O(n2ot(n) log 3 n) time.

6. Conclusion

In this paper we addressed a dynamic extension of the robot motion planning problem. We developed
an approach for the exact motion planning problem for a single robot in a low obstacle density
environment with multiple moving objects whose motion is represented by a constant complexity
polygonal line. We proved that the complexity of the free space of this motion planning problem is
® (n2). Our algorithm takes O(n2ot (n) log 3 n) time to compute a free, time-monotone path, for the robot.
We are able to construct low obstacle density workspaces, with moving obstacles, for which the path of
the robots is of combinatorial complexity f2 (n2), so our result is close to optimal. It remains to be seen
whether such a bound exists for a robot with bounded velocity modulus, or bounded acceleration.

It is an interesting question whether the results can be extended to a 3-dimensional workspace. We can
again define columns in the (now 4-dimensional) work-time space. Theorem 5 can be adapted, leading
again to a bound of O(n 2) on the complexity of the free space, like in the two-dimensional case. Also
the lower bound of f2 (n 2) easily carries over. The problem is to compute a constant-complexity partition
of the work-time space that has constant coverage. It is easy to obtain an O(n 4) partition by extending
the faces of the columns to hyper-planes, building the complete arrangement of these hyper-planes, and
subdividing the resulting cells into simplices. This leads to a close to O(n 4) algorithm for motion planning
in dynamic 3-dimensional low obstacle density environments. It is at the moment unclear how to improve
this result.

References

[1] B. Aronov, M. de Berg, A.E van der Stappen, R Svestka, J. Vleugels, Motion planning for multiple robots, in:
Proc. 14th Annual ACM Symposium on Computational Geometry, 1998, pp. 374-382.

[2] M. de Berg, L. Guibas, D. Halperin, Vertical decomposition for triangles in 3-space, Discrete Comput. Geom.
15 (1996) 35-61.

[3] M. de Berg, M. Katz, A.E van der Stappen, J. Vleugels, Realistic input models for geometric algorithms, in:
Proc. 13th Annual ACM Symposium on Computational Geometry, 1997, pp. 294-303.

[4] J. Canny, J. Reif, New lower bound techniques for robot motion planning problems, in: Proc. 28th IEEE Syrup.
on Foundations of Computer Science, Los Angeles, 1987, pp. 49-60.

[5] B. Chazelle, L. Palios, Triangulating a nonconvex polytope, Discrete Comput. Geom. 5 (1990) 505-526.
[6] J. Hershberger, S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk, J. Algorithms 18

(1995) 403-431.
[7] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.
[8] J. Reif, Complexity of the generalized mover's problem, in: J.T. Schwartz, M. Sharir, J. Hopcroft (Eds.),

Planning, Geometry and Complexity of Robot Motion, Ablex, Norwood, NJ, 1987, pp. 267-281.
[9] J. Reif, M. Sharir, Motion planning in the presence of moving obstacles, J. ACM 41 (4) (1994) 764-790.

R.-P. Berretty et al. / Computational Geometry 11 (1998) 157-173 173

[10] J. Schwartz, M. Sharir, On the piano mover's problem: II. general techniques for computing topological
properties of real algebraic manifolds, Adv. Appl. Math. 4 (1983) 289-351.

[11] K. Sutner, W. Maass, Motion planning among time dependent obstacles, Acta Inform. 26 (1988) 93-133.
[12] B. Tagansky, A new technique for analyzing substructures in arrangements of piecewise linear surfaces,

Discrete Comput. Geom. 16 (1996) 455-479.
[13] A.E van der Stappen, Motion planning amidst fat obstacles, Ph.D. Thesis, Department of Computer Science,

Utrecht University, 1994.
[14] A.E van der Stappen, M.H. Overmars, M. de Berg, J. Vleugels, Motion planning in environments with low

obstacle density, Discrete Comput. Geom. 20 (1998) 561-587.

