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A Lie coalgebra is a coalgebra whose comultiplication 4 : M - M @ M
satisfies the Lie conditions. Just as any algebra 4 whose multiplication
¢: A ® A — A is associative gives rise to an associated Lie algebra £(A4), so
any coalgebra C whose comultiplication 4 : C — C ® C is associative gives
rise to an associated Lie coalgebra £¢(C). The assignment C +» £4(C) is func-
torial. A universal coenveloping coalgebra U¢(M) is defined for any Lie coalgebra
M by asking for a right adjoint U* to £¢. This is analogous to defining a universal
enveloping algebra U(L) for any Lie algebra L by asking for a left adjoint U
to the functor £. In the case of Lie algebras, the unit (i.e., front adjunction)
1 — £ o U of the adjoint functor pair U — £ is always injective. This follows
from the Poincaré-Birkhoff-Witt theorem, and is equivalent to it in characteristic
zero (x = 0). It is, therefore, natural to inquire about the counit (i.e., back
adjunction) £¢ ¢ U¢ — 1 of the adjoint functor pair £t — Ue

THEOREM. For amy Lie coalgebra M, the natural map L(U‘M)— M is
surjective if and only if M is locally finite, (i.e., each element of M lies in a finite
dimensional sub Lie coalgebra of M).

An example is given of a non locally finite Lie coalgebra. The existence of
such an example is surprising since any coalgebra C whose diagonal 4 is associat-
ive is necessarily locally finite by a result of that theory. The present paper
concludes with a development of an analog of the Poincaré-Birkhoff-Witt
theorem for Lie algebras which we choose to call the Dual Poincaré-Birkhoff-
Witt Theorem and abbreviate by ‘“The Dual PBW#.” The constraints of the
present paper, however, allow only a sketch of this theorem. A complete proof
will appear in a subsequent paper. The reader may, however, consult [12], in
the meantime, for details. The Dual PBW8 shows for any locally finite Lie co-
algebra M the existence (in x = 0) of a natural isomorphism of the graded
Hopf algebras E(U°M) and E(S°M) associated to UM and to S°M =
Ue(Triv M) when U(M) and S9(M) are given the Lie filtrations. [Just as
U<(M) is the analog of the enveloping algebra U(L) of a Lie algebra L, so S(V)
is the analog of the symmetric algebra S(V) on a vector space V. Triv(M)
denotes the trivial Lie coalgebra structure on the underlying vector space of M
obtained by taking the comultiplication to be the zero map.]

* The present paper is an account of some of my investigations into Lie coalgebras.
These began in the spring of 1969 as an outgrowth of a seminar on Hopf algebras that
I was giving at the time at the University of Washington.
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1. INTRODUCTORY REMARKS, DEFINITIONS, EXAMPLES

Nonassociative algebras have been studied for some time. Among these,
the Lie algebras in particular have shown themselves to be fruitful objects
for research. In the case of coalgebras, however, attention has focused primarily
on those with an associative diagonal. In the present work, we study coalgebras
in which the diagonal satisfies the Lie conditions, the so-called Lie coalgebras.
Lie coalgebras have also been considered by Michel André (cf. [1, 2]); however,
the ones considered by him are graded and “reduced” (i.e., zero in degree
zero) whereas those considered by us are ungraded. As such a distinction
turns out to be significant, there is no overlap in our results,

As their name indicates, Lie coalgebras are defined dually to Lie algebras.
To display this duality, one proceeds as in the classical case. (cf. Jonah [9]).
Specifically, one considers Lie coalgebras (respectively, Lie algebras) to be
Lie coalgebras (respectively, Lie algebras) over the monoidal category (¥, ®)
where ¥~ denotes the category of vector spaces over a field Kand ®): ¥ X ¥ —>%"
the functor assigning to any ordered pair (¥, W) of vector spaces their tensor
product V@ W = V Xy Wover K. (For the definition of a monoidal category,
the reader is referred to Mac Lane [11].) One then defines a Lie coalgebra
over the monoidal category (¥”, ¥) to be a Lie algebra over the monoidal category
(777, ®°?) where ¥7°? denotes the opposite category of ¥ and ®°7: ¥ o7 x
Y0P — Y707 the functor induced in the obvious way by &. To see what this
means in down-to-earth language, we first recall that a Lie algebra consists
of a vector space L together with a linear map [, ]: L ® L ~> L (called the
“bracket”’) such that

(1) [xx] =0 Vxel
and
(2) [xr [y! z]] + [y’ [z, x]] + [z) [x, y]] =0 Vx, Y, zel.

Condition (1) is a strong form of anti-commutativity whereas condition (2)
is known as the Jacobi identity. In this form, the definition of a Lie algebra
is not dualizable: What we must do is “get rid of the elements.,”” To do so,
we write ¢: L ® L — L in place of [, ] (so that ¢(x @ ¥) = [, ¥] for x, y € L)
and

ELR®LXR®L—-LRLRL

for the linear map induced by the map

L XL XL-—->LxL %L
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which cyclically permutes the co-ordinates [i.e., (x, ¥, 2) = (¥, 2, ¥)]. In effect,
E=ETVTRVRQV-TRVRV

may be defined for any vector space V' as the composite
TRVRV—SVRIVV)Z, 7RV)QV—VRVRV

in which the first and last maps are the natural isomorphisms sending x ® y ® 2
tox ®(y®2)and (x ®y) ® 2 to x ®y & 2, respectively, and in which

T VOW->WRV

is defined for any ordered pair (V, W) of vector spaces as the linear map which
sends v ® w to w ® v (i.e., 7 is the “twist”’ map). Thus, under ¢,

QY2 2R(YRN>(YR)Rx—>yR2z®=x
so under £,

QY Qa2 @ ®.

With these notational conventions, the Jacobi identity [condition (2)] evidently
becomes

ol ®¢)o(lLerer + &+ ¢) =0:L®L QL —~L;

and we have “gotten rid of the elements” in the second condition. To “get
rid of the elements” in the first condition (strong anti-commutativity), observe
that

[, 2] =0 Vaxel < ¢p(x@®x) =0 VxelL
<+ {x@x|xel)Ckerg¢

where (x ® x | x €L> denotes the subspace of L & L generated by all x Q x
with x € L. It is clear that one has the inclusion

x@x|xel) Ckerll o — 7¢.p];

and we claim that the reverse inclusion also holds (and is straightforward
to check). In passing, it is worthwhile to note that

Im(1 4+ 7) Cker(l — 7)
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{i.e., (1 — 7)o (1 + 7) = 0] with equality holding precisely when the character-
istic y(K) of the ground field K is different from 2. Thus, condition (1) may
be replaced by the condition

ker(l — 7)Ckerg

[i.e., by Im(] + 7} Cker(l — 7) Cker p] and in case x(K} # 2by o (l + 1) =0,
ie,byp = —g@or.

A Lie algebra over (¥", ®) can thus be considered to be a vector space L
together with a linear map ¢: L @ L — L (called the “bracket”) subject to
the two conditions

(1) ker(l — 7) Cker ¢, and

2 o (1®Peo(l+£+ ) =0LRLRIL~L.
Accordingly, we define a Lie coalgebra over (¥, X)) to consist of a vector
space M together with a linear map 4: M — M & M (called the “cobracket”)
subject to the two conditions

(1) Im4CIm(l — 1), and

2 A+ £+ (1RDed=0M->MRJIMROM.
We note here that

Im(I — 7) Cker(1 + 7)

fi.e, (I +7)o(l —7) = 0] with equality holding in case y(K) # 2. Thus,
in case y(K) +# 2, we may replace condition (1) by condition

(1) 4=—704.

At this juncture, we shall switch to a parallel display format as an aid to
the reader. We adopt this form of exposition the better to display the connection
between Lie algebras and Lie coalgebras, and we begin by recapitulating
the definitions of Lie algebra and of Lie coalgebra in this format.

Definition (Algebra) Definition (Coalgebra)

A Lie algebra over (¥, ¥) is a pair A Lie coalgebra over (¥, ) is a pair
(L, @) where L is an object of ¥" and (M, 4) where M is an object of ¥~ and
p: L@®L— L is a morphism of ¥ 4: M — M & M is a morphism of ¥~
subject to subject to

(1) ker(] — 7) Cker g, (1) Imd4CIm(l — 7),
and and
@ 2e(1@p)e(l+£+8) =0 (2 (I1+£+8)c(1@D)cd=0.
Note. Im(l + r)Cker(l —7)Ckerep. Note. Im4CIm(l — r)Cker(l + 7).
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We remark in passing that, for any vector space V,

Im(l — 1) = () ker(f @)

fevs

where V* denotes the vector space dual of V.

We now turn to some examples of Lie coalgebras and, of course, of Lie
algebras. First, we shall look at some familiar examples of Lie algebras, on
the left side of the page. Then, on the right side of the page, we shall follow
each Lie algebra example by its Lie coalgebra counterpart.

Examples of Lie Algebras

1. As our first example of a Lie
algebra, we consider Euclidean 3-space
[E3 together with the vector cross prod-
uct X. Let R denote the field of real
numbers. If we identify E? with Re; @
Re, @ Re, in which ¢;, ¢,, and e,
denote, respectively, the standard basis
elements (1, 0, 0}, (0, 1, 0) and (0, 0, 1)
of B3, and if we write [v, @] in place
of the vector cross product © X w (for
{v, w} CE3), then one clearly has that
[e;, e] =0 for each ie{l, 2,3} and
also that [e,, e,] = €5, [¢5, €] = €,
and [ey, e;] = ¢, . Plainly, then, the
Jacobi identity is satisfied for e, , e,,
and ey, i.e., [e1, [, &5]] + [eg, [eg, €]
+ e, [es el =[er, e + [ex) 6] +
[es, €5l =040+ 0 =0.Since [, ]:
E? ® B3 — E3is bilinear and {¢, , e, , 5}
is a basis for E3, it follows easily that
[x, x] = O for all xe E® and that

(%3, 2]] + [3.[2 *]] + [3[* ¥]] =0

for all elements x, y, and z of [E3.
Alternatively, the Jacobi identity fol-
lows immediately from the fact that

[x, [yy z]] =(x-2)y— (x ‘¥R
where, for instance, x * 2 denotes the
dot product of x with z:

x'z=(x1’x2»x3)'(zivzz’za)
=2 "2 + X+ X3 2.

Examples of Lie Coalgebras

1. As our first example of a Lie
coalgebra, we consider (E?)*, the vector
space dual of E3, together with the
diagonal 4: (E®)* — (B3)* ® (E3)*
defined as follows: Let {e!, €2, &%
denote the dual basis of (E3)* to
{er, €5, €5} of E® [so that eie;) =
8; = {TIH*)]. We then get a Lie
coalgebra structure on (E3)* by putting

de) = R — e Qe
A = Qe — e ® e,
and
Ad(®) = R et — et R el
Indeed, we evidently have that
Im4CIm(l — 7).

Moreover, upon applying (14 §+¢€%) o
(1 ®4)04 to e, for instance, we
find that
elH4e2®e3_e3®e2
1®4
EREARE—eE Qe el
~BRERQE+ R R e
J1+é+8
Qe e+ el et el
+eERERe —2ReER e
—tRe et —el Qe R e
—3RAERE—SRel Qe
~—RERE+ SR Re
+e@EQeE+eEReERQel
=0.
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2. As our second example of a Lie
algebra, we look not at a specific
example of a Lie algebra, but rather
at a standard procedure for manufact-
uring an entire class of Lie algebras.

To any algebra A with an associative
multiplication

e s ARA—- A4

we can associate a Lie algebra £(4)
in the following way: As vector spaces
2(A4) and A4 are identical [i.e., the
underlying vector spaces of £(A) and
of A coincide]; while for x € 2(4) and
yve8(4), [x vlgw is defined by the

equation

[x’y]su) =X'y—y'x

Similarly, (1 4+ £+ ) (1 @ 4) -
4(e*) = 0 for each i € {2, 3}. Since 4 is
defined as the unique linear map
having the above values on ¢!, €2, and
&3, we get—in this way—the structure
of a Lie coalgebra on (E3)*.

The above example can readily be
generalized: In a perfectly analogous
way, which shall be examined in
greater detail below, one can endow
the vector space dual of any finite
dimensional Lie algebra with the
structure of a Lie coalgebra. [This type
of assignment is functorial, and ac-
counts for the fact that the categories
of finite dimensional Lie algebras and
of finite dimensional Lie coalgebras are
dual to one another.] Even more
generally, one can define a Lie co-
algebra L° (read “L upper zero') for
any Lie algebra L, in a functorial way.
L® is a subspace of L* and coincides
with L* in case L is finite dimensional.
The details of this construction will
appear below.

2. Dually, we now show how to
manufacture an entire class of Lie
coalgebras. Just as one can define for
any associative algebra its associated
Lie algebra, so one can define for any
coalgebra C having an associative
diagonal

4 C—>C®C

its associated Lie coalgebra 2¢(C).
This is done in the following way: As
vector spaces £5(C) and C are identical
(i.e., the underlying vector spaces of
L£¢(C) and of C are the same]; and the
diagonal dg.) of 2C) is given by
the identity

Ageey = (1 — 7)o 4,

£ecC)
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where the dot in x-y and in y-x
denotes the multiplication in 4. To
“dualize” this example, one must, once
again, “get rid of the elements,” but
this is easy. Simply note that the above
identity simply says that gg(, , the
multiplication on £(A4), is given by the
equation

Po(q) T Pac° (1—n),

where 1 is the identity on 4 ® 4 and
AR A—> AR A is the twist map.
Of course, one must check that gg(,)
satisfies the Lie conditions, but that is
routine: Plainly,

[#,2] =x-x—x-x=0

for each element x of £(A) while the
associativity of ¢, guarantees (what we
choose to call) the Jacobi associativity
of gy . The verification that this is
50 is routine and requires only careful
bookkeeping (and a cup of coffee); it
is, therefore, omitted. [It has been
suggested that this verification be done
at most once in a lifetime!]

3. A third familiar example of a
Lie algebra is the Lie algebra of
“primitives” P(H) of an (associative)
Hopf algebra H. Specifically, if H is a
Hopf algebra with an associative mul-
tiplication

ey HOH— H,

then P(H), the space of primitives of
H, carries the structure of a Lie
algebra, in a natural way, as a sub Lie
algebra of Q(H), the Lie algebra
associated to H:

P(H) <> Q(H).

where 1 is the identity of C &%) C and
7: C® C— C®C is the twist map.
Thus, if

Acle) = Y €1 @ ca
i=1

then

Agefe) = Z [ere ® €ai — €2 & €44)-
i=1

We shall use {c) to denote dgc()(c).

Thus,

) = dgye(¢)
= Z [e1i ® €30 — €20 @ ¢44).
i=1

To see that dgc) equips 8¢(C) with
the structure of a Lie coalgebra, we
must check that Ag.) satisfies the
Lie conditions. Plainly,

Im 4, CIm(l — 7);

and we claim that the associativity of
4 guarantees the Jacobi associativity
of Agecy . In this case, the ‘“‘dual” of
““at most once’’ is ‘‘at most once,” and
we omit the details.

3. When one studies Hopf alge-
bras, it is useful to consider, for any
Hopf algebra H, not only the “primi-
tives” P(H) of H, but also the “‘inde-
composables” Q(H) of H. Not sur-
prisingly, one gets functors P and Q,
and it turns out that for any biasso-
ciative Hopf algebra H, P and Q are
defined dually to one another. Thus,
one would expect, in the case of a
Hopf algebra H with an associative
diagonal

Ay H>HRH,

to be able to equip Q(H)—the space
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To see why P(H) inherits a Lie
algebra structure in a natural way as
a sub Lie algebra of 2(H), recall that
P(H) can be considered to be the space

{fxeH|dx =+ ®x+x X1},

where + = n4(1x), 70 K — H being
the unit of H and 1 being the identity
of the ground field K. Thus + is the
(multiplicative) unit of (the algebra) H.
Since the diagonal 4 of a Hopf algebra
is always (by definition) an algebra
map, we find that if xe P(H) and
y € P(H), then

A[x, y]
=Adxy—y x)
=dx-dy — dy - dx
=1Rr+xHEFR®y +y @1
- Ry+y HF®x+x 1)
=+ Ruy+yQrtx@y+ay @t
+Qyr-xRy-yRx-yx D+
= 1Rxy — 1Qyx + xy@t — y2@t
=1 @ (xy —yx) + (xy —yx) @1
=1 @ [xy] + [xy] ®+

This shows that [x, y] € P(H) when-
ever x€ P(H) and ye P(H); and it
follows that P(H) inherits the structure
of a Lie algebra as a sub Lie algebra
of £(H), the Lie algebra associated
to H. [The definition of a coalgebra
appears below, while the definition of
a Hopf algebra appears in Section 3
under The Hopf Algebra Structure of
UeM.]

of “indecomposables” of H—with the
structure of a Lie coalgebra in a
natural way as a quotient Lie coalgebra
of Q¢(H), the Lie coalgebra associated
to H:
Q(H) —>> O(H).

This is indeed the case; to see why,
recall that Q(H) can be considered to
be the space H/H?, where H is the
maximal ideal kerey, ey H—> K
being the counit (augmentation) of H.
The main observation necessary to
showing that Q(H) inherits a Lie
coalgebra structure as a quotient of
Q¢(H) is the observation that

(x) = Adgoy(*) = (4 — 70 dp)x)
is an element of
ker(l & €) N ker(e @ 1),

i.e., of
(HH)nNnH@H)=H®AH.
From this, it follows that H is a
sub Lie coalgebra of 25(H) under

He>HDyK =H

(where 5: K — H is the unit of H),
as well as a quotient Lie coalgebra of
L¢(H) under

H=H®nK >~ H.

[In any Hopf algebra, one has that
H =kere ®Imn = H ®1nK.] What
is more, the square H? of H is readily
shown to be a Lie coideal of H. [This
means that for xe H and yeH,
(x-y>e H*® H + H ®© H%.] Accord-
ingly, Q(H) inherits the structure of a
Lie coalgebra as a quotient Lie coal-
gebra of 2¢(H), the Lie coalgebra
associated to H, under the map

Q(H) —> H —> H/H? = Q(H).
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We now present a fourth example of a Lie coalgebra. The example that
we are about to give is special in several respects. First of all, it comes from
the air (or heaven) so to speak, as opposed to arising in some general, functorial
way as did the examples considered so far. Secondly, this example turns out
to be an example of a coalgebra that is not locally finite (a term defined below),
and that fact is of interest both in the general context of coalgebra theory and
in the particular context of Lie coalgebra theory. Both of these assertions,
at this point necessarily vague, will be illuminated further on in this paper.
We wish to emphasize here, however, that this example really is noteworthy;
and was discovered not at the beginning (as it is presented here), but only
later, when—for reasons that will be appreciated after Section 4—it became a
question of paramount importance to know whether there were any Lie co-
algebras that where not locally finite. [Note. It will shortly become clear that
finite dimensional Lie coalgebras are trivially locally finite; that ¢(C) is locally
finite since C is; and that Q(H) is locally finite as a quotient of L(H).] Without
further ado, let us then introduce this very special Lie coalgebra which we
choose to denote by the pair (£, 4). Here E denotes the vector space on the
countably infinite set of basis elements {x,}n_,; and 4: E — E @ E denotes
the linear map determined by the requirement that

A(x) =0
while

At = (L — )t @ ¥0pa)  for n > 1.

Because of the importance we have attached to (E, 4), it is appropriate to
check that (E, 4) is, in fact, a Lie coalgebra, and this we shall now do. Clearly
Im 4 CIm(l — 7), so it remains to verify the Jacobi associativity of 4. Let
n > 1. Then

(1 ®4)ed(x,) = (1 @)% ® *ps1 — %11 ® %]
= %y @ A(¥n41) — X1 & A(x)
= %9 @ (%9 @ Xnig — ¥nip ® %) — %nyy OO0
= %y & %o @ Xnyg — %o ® Xpyp & Xo -
Therefore,

(1 + €+ &) o(1 ®4A)oA(x,)
= %y @ X @ Xpyg + X Q) Xpya @ Xy + Xppp B % @ %
— % @ Xnia @ Xg — Fnia @ Xg @ %y — %p @ %g ® Xpia
=0’
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and we have shown that (1 + & + €)oo (1l @ d)od(x,) =0 for all n = 1.
Since this identity holds trivially for » = 0, the validity of the Jacobi identity
follows immediately. Thus, (E, 4) is a Lie coalgebra.

We claim that x, does not lie in any finite dimensional sub Lie coalgebra
of E. Why is this so ? Well, our intuition tells us that if NV denotes the smallest
sub Lie coalgebra of E containing x,, then N must contain x, and x, since
Ax, = x5 O %, — xy ® x, and to say that N is a sub Lie coalgebra of E is to
say that 4(N)C N ® N. But, the same reasoning leads to the conclusion
that x, must lie in IV whenever x, lies in IV since d(x,) = x5 Q) %3 — x3 @ % .
Similarly, if x;€ N, then x,€ N; and x,€ N implies x; € N, etc. Certainly
this argument, as it stands, is not rigorous, but the above-mentioned suspicions
can be confirmed. Their veritications use the annihilator transformations
between subspaces of a Lie coalgebra and its dual Lie algebra, and also use
the linear independence of the x, ; we shall omit the defails.

DEFINITION, A coalgebra C is locally finite if and only if any x € C lies
in some finite dimensional subcoalgebra D C C.

This definition furnishes us with the vocabulary necessary to assert that
(E, 4) is not locally finite.

Remark. The only element of {x,};_, which lies in a finite dimensional
sub Lie coalgebra of E is x,, as the reader is invited to check.

At this stage, as we suggested somewhat earlier, the significance of the above
example lies in the fact that it is a basic result of the theory of associative
coalgebras with counit that any such coalgebra is locally finite (cf. [16, p. 46,
Theorem 2.2.1; 6, p. 65, Lemma I11.1.8; or 10, p. 351, Proposition 2.5]). Later
on, however, in Section 4, we shall observe a very concrete and significant
consequence of this existence of non locally finite Lie coalgebras.

Remark. As an aid to a reader unfamiliar with coalgebra theory, we include
a few definitions: The diagonal 4: C — C & C of a coalgebra (C, 4) is said
to be associative in case the composites (4 ® 1) o4 and (1 ® 4) o 4 coincide
as maps from Cto C ® C ® C. A coalgebra (C, 4) is said to have a (two-sided)
counit e: C — K [e being a linear map] in case the diagram

cCRCcL-c4CcRC

e@lcl llc llc®c

KRC-32>C«2-CRK

is commutative. Here, the maps K ®Q C —= C and C ® K —= C are the
obvious, natural isomorphisms 2 ® ¢+ k- ¢ and ¢ ® k+> ¢ - k, respectively,
the dot denoting scalar multiplication. These definitions (of associativity of 4,
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and of two-sided counit) result from “‘getting rid of the elements” in the usual
algebra definitions (of associativity of ¢, and of two-sided unit n: K — 4)
via expressing those “‘pre-dual” conditions in terms of (diagrams with) arrows
and then “turning the arrows around.”

We conclude this section by observing that it is really the lack of associativity
of (the diagonal of) a Lie coalgebra that accounts for the existence of non locally
finite Lie coalgebras. [Of course, Lie coalgebras neither are associative nor
do they have counits.] Indeed, although the classic result, from coalgebra
theory, states that any coalgebra with an associative diagonal and counit is
locally finite, one need not, in fact, assume the existence of a counit because
one can prove that any coalgebra C with an associative diagonal is locally finite.
The reason this is so is that one can show that any coalgebra C having an
associative diagonal can always be obtained as a coalgebra quotient of a coalgebra
C, having an associative diagonal and a counit, and this in a universal way.
Now the image of a locally finite coalgebra under a coalgebra map is again
locally finite because the image of a subcoalgebra under a coalgebra map is
again a subcoalgebra.

Note. f:(C, d¢)— (D, dp)isacoalgebramapincase dpof =(f @ f)odc;
while f: (C, 4, ec) > (D, 4p, €p) is a coalgebra map if, additionally, e, o f = .

Remark. The ‘‘universal way” mentioned above is an allusion to the fact
that the assignment C+— C, (referred to above) gives rise to a functor which
is right adjoint to the forgetful functor. It is in this sense that the above-
mentioned construction of obtaining an associative coalgebra C as a quotient
of an associative, counitary coalgebra C, in a universal way is the analog of
embedding an associative algebra 4 in an associative, unitary algebra 4, in a
universal way. The details of this construction may be found in {12, p. 6].

Remark. The usefulness of local finiteness of each object of the category
% of associative, counitary coalgebras results from the fact that one can establish
many results about objects of € by dualizing results about finite dimensional
objects of .7, the category of associative, unitary algebras. Similarly, one can
expect to get results about locally finite Lie coalgeébras by dualizing results
that hold for finite dimensional Lie algebras.

2. CATEGORIES AND FUNCTORS

(a) Categories

In what follows, it will be convenient for us to have some symbols to denote
the categories frequently referred to. With morphisms defined in the obvious
way, we shalllet ¥", o7, €, &, £, and &5 ; denote, respectively, the categories
of vector spaces, associative unitary algebras, associative counitary coalgebras,
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Lie algebras, Lie coalgebras, and locally finite Lie coalgebras. In addition,
¢/ and ¢% shall denote, respectively, the full subcategories of commutative
(associative, unitary) algebras and commutative (associative, counitary) co-
algebras. In other words, for 4 € Obj &/ and C € Obj %, we have 4 € Obj ¢/
and CeObj ¥ if and only if p, = ¢, o7 and 4. = 70 4., respectively.

(b) Some Functors
We now discuss a number of functors that arise in a natural way in connection
with Lie coalgebras. The first one we shall discuss is the “upper zero.”
1. ()% For—» F¢

To any Lie algebra L, we can associate, in a functorial way, a Lie coalgebra
L? (the ‘“‘upper zero” of L) as described below. First, however, we recall that
any time one has a coalgebra C, one can put an algebra structure on the vector
space dual C* of C. Lie coalgebras are no exception. If (M, 4) is a Lie coalgebra,
then the linear map

AM->MOM

gives rise to a linear map
4% (M M)* - M*,
Since there is always a (natural) linear injection
p: M* @ M* — (M & M)*
from M* @ M* to (M ® M)* defined by
| AT ®) = 1) 2
there is an obvious candidate, namely,
A% o p: M* @ M* - (M ® M)* > M*,

for a multiplication on M*. It should come as no surprise that if 4: M —
M & M equips M with the structure of a Lie coalgebra, then 4* o p: M* R
M* — M* equips M* with the structure of a Lie algebra. [In fact, if V is
avector space and 4: V' — V' () Vis a linear map, then (V, 4) is a Lie coalgebra
if and only if (V'*, 4* o p) is a Lie algebra.] Furthermore, the dual f *: M} — M}
of a map f: M; — M, of #* is a map of .#. In just this way, one gets a (con-
travariant) functor * from #¢ to %, i.e., a (covariant) functor

()*: (Z9r — 2.



LIE COALGEBRAS 13

It is natural to inquire whether, conversely, L* carries the structure of a
Lie coalgebra in case L is a Lie algebra. Let’s see. If ¢p: L @ L — L gives the
multiplication on L, then ¢*: L* — (L @L)* is a map from L* to (L ® L)*.
We saw befote that there was a natural injection p: L* @L* — (L QL)*
from L* @QL* to (L ®L)*. Unfortunately, p “goes the wrong way”:

L* 255 (L @ L)* «*—L* @ L*.

Of course in case L is finite dimensional, p is surjective as well (as injective)
and hence invertible. In that case, L* does carry the structure of a Lie coalgebra,
as we saw earlier. [In fact, if V is a finite dimensional vector space and ¢: V ®
V — V is a linear map, then (V, ¢) is a Lie algebra if and only if (V*, p~1 ¢ ¢*)
is a Lie coalgebra.] What can be done ““in general” ? Well, themap ¢: L ® L —L
induces a map ¢*: L* — (L @ L)* in any case. Consider the diagram

L* 2> (L @ L)*

Ju

L*®L*

]

V-—->s>VTV,
in which V' is a subspace of L*. Basically, we would like to consider a subspace

V of L* to be a ““good”’ subspace in case we can define a map from Vo V® V
filling in the above diagram.

DEFINITION. A subspace ¥ C L*is called “good” in case *(V) C p,(V ® V).

It is easy to see that the sum of good subspaces of L* is again a good subspace
of L* (cf. the proposition below).

DerFINITION. For any Lie algebra L, put

=YV
ved¥

where 9 denotes the set of all good subspaces of L*.

ProPOSITION. L® is a good subspace of L*, hence the maximal good subspace
of L*. :
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Proof.

P = ¢* (V) =T CTAr @V CTe[(TV) @ (T V)]

— Y ALY ®LY) = oL ®LO).

Hence L° is a good subspace of L*.

Whenever V is a good subspace of L*, we may define a map

4, V-V RV
by requiring that
pldu(f)] = ¢*(f) VfeVCL*

This makes sense because Im ¢* CIm p and p 1s injective. The map 4,: V —
V ® V so defined fills in the diagram

L* =% (LQL)*

L* ®L*

]

dy
V-->TVXTV.

Notice that if we write 4,(f) as ¥;, g: ® k;, then
flx, 3] = ) gdx) -h(y) Vx,yeL.
i=1

ProPosITION. For any good subspace V of L*, (V,4y) is a Lie coalgebra.
In particular, (L%, A;0) is a Lie coalgebra.

If (L, %) and (L,, p,) are Lie algebras and f: L, — L, is a Lie algebra
map, then f*: L¥ — L¥ takes good subspaces (of L¥) to good subspaces (of L}),
because

a(f V) = (RN @ V) CURf)pVOV)
=p(f*@fNV V) = p(f*VRF*V).

Consequently, f*(L3) CL}, so the restriction of f* to LY induces a map

foi18 18,
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the unique linear map making the following diagram commutative
Ly L1t
L2510,

It is easy to check that f°is a Lie coalgebra map. It follows that the assignment
L+> L0 and fr> f0 defines a contravariant functor from £ to .#°.

THEOREM. ' The contravariant functor %: & — £¢ is “adjoint on the right”

to the contravariant functor *: ¥°— Z; i.e., for every Lie algebra L and Lie
coalgebra M; there is a natural set bijection

Homg(L, M*) ~ Hom,, (M, L?).

Remark. In the proof of the above, one must show that there exist natural
transformations

$:lge—>%*.  and  §ilg—> ¥
such that the composites

M 2 pprox B ape (for M e Obj 29)

and
Lo 22, poxe Y2 1o (for L € Obj &)

are the identities.
¢ and ¢ are defined by the commutative diagrams

M —-+"“ AR A
J g0 (z0)*
4’M\ 173
Mo Lo*

in which the maps ¢() are inclusions, and x,: V' — V** is defined for any
vector space V' by xp(9)(f) = f(); in other words, x; is the natural injection
of V into its double dual.

Note. The definition of ¢,, makes sense because x,(M) is a good subspace
of M**, basically because we took the “‘upper zero” as “big as possible.”

607/38/1-2
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A Final Note. IfL is finite dimensional, then L® = L*. Clearly the categories
% 4. and Z5 ;. of finite dimensional Lie algebras and of finite dimensional Lie
coalgebras are anti-equivalent.

This completes our discussion of the functor ( ). We turn now to our pext
example.

2. 8 € — Ze

Earlier, when involved with the examples, we saw how to associate with
any coalgebra C having an associative diagonal, a Lie coalgebra 2¢C). If
f: C— D is a morphism of ¥, then £°(f) is a morphism of .#°. [Here £°(f)
and f coincide as vector space maps.] Notice that we distinguish between
£ (a category) and £¢ (a functor), and likewise between % and £.

It turns out that £° has a right adjoint U, the “universal coenvelop,” described
in Section 3, below.

Before moving on to our next example, we take note of a proposition to
which we shall later refer. This result should, incidentally, come as no surprise.

ProrositioN.  The following diagrams are commutative.

gor —*_, of
(a) (9w 2
2 N
and
(.0.)? ——> Cr.a,
(b) gov l P
(L0 )" = L4

Remark. In consequence of the above, we have that

[24(ON* = &(CH) for any object C of %,
and that
L2e(4%) = [2A))* for any object A of 4 4. .

Here o 4 and %, ;. denote the categories of finite dimensional objects of &7
and of %, respectively.

3. Loc: ¥ — &7 .

The third functor we wish to consider is the functor Loc: £° — %5, ,
which shall assign to each Lie coalgebra its locally finite part.
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DerFINITION. For any Lie coalgebra M, set

Loc(M) = Y N.

N. atinite dimensional sub Lie coalgebra of M

Loc(M) is obviously also the sum of all locally finite sub Lie coalgebras
of M, and hence the largest locally finite sub Lie coalgebra of M.

Denote by iy o¢ 2: Loc M ¢~ M the inclusion of Loc M into M. If f: M; — M,
is a Lie coalgebra map, then it is clear that f(Loc M;)C Loc M,. Thus,
f: M, - M, induces a map

Loc(f): Loc(M,) — Loc(M,)
of #¢ such that

toemy © Loc(f) = fowocimy -

In this way, we get a functor from #° to #; , denoted Loc.

THEOREM. The functor Loc: £° — &5 . is right adjoint to the inclusion
Junctor I L5, — F¢, ie., for every Pe Obj &3, and M € Obj Z¢, there is a
natural set bijection

Hom g (IP, M) ~~ Hom_z,ff (P, Loc M).

Hence &5 ;. is a coreflective subcategory of £°.

Conjecture.  If Loc M = {0}, then M = {0}.

If it is true that M = {0} whenever Loc M = {0}, it would follow that the
example (E, 4) of Section 1 is the best possible type of example of a non locally
finite Lie coalgebra.

We now, momentarily, interrupt the flow of our presentation in order to
present background material that will provide the context in which we can
state our next result, a result which is an immediate consequence of the fact
that Loc is a coreflector. Thereafter, we shall discuss a second application

of the functor Loc, namely, the identification for any Lie algebra L, of the
subspace

{feL* | ker f contains a cofinite ideal of L}.

Recall that a category X is complete in case X" has limits or equivalently
products and equalizers. Dually, J¢" is cocomplete in case £ has colimits or
equivalently coproducts and coequalizers. Now it is easy to see that .#° has
coproducts, equalizers, and coequalizers (cf. [12, p. 9, Theorem 1.1.12]). To
show that .#° has products is, on the other hand, more involved: What one
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does is use the fact that the forgetful functor F: £¢ — ¥~ from the category
of Lie coalgebras to the category of vector spaces possesses a right adjoint

Le: v — P,

The fact that L¢ is right adjeint to the forgetful functor. expresses the fact
that one has, for each vector space ¥V, a Lie coalgebra L°(V) and a vector space
map mpep: F(LCV) — V satisfying the following universal mapping property:

If M is any object of #° and g: F(M)— V is any morphism
of ¥7, then there exists a unique morphism G: M — LV of
£ making the diagram

Ve FLV)

. /ﬂ
g /’;'(G)
F(M)

commutative.

This property clearly dualizes that satisfied by a free Lie algebra (LV,i.,)
on a vector space V. (For a definition of 2 free Lie algebra on a vector space V,
see, for instance, [4, p. 285].) Accordingly, the pair (L°V, m;cp) just described
is called a cofree Lie coalgebra on the vector space V; it is determined up to
canonical isomorphism by the universal mapping property it satisfies.

The details of the construction of L¢ and of its subsequent use in the con-
struction of products in £ will appear in a subsequent paper. Those details
provide a proof of the following theorem.

THEOREM, % is complete and cocomplete,

As an immediate consequence of the above, we find that %5, , as a full
coreflective subcategory of £¢, is likewise complete and cocomplete.

Remark. Since the forgetful functor F: #°¢ — ¥~ possesses a right adjoint
Le, the forgetful functor F: &7, — ¥ likewise possesses a right adjoint,
which shall be denoted by Lf ,: ¥ — ], . L], is given as the composite

e L gt Loe g‘z.f.
as the following diagram of categories and adjoint functor pairs reveals

1 F

c —— ¢ —

1., «——— Z R v
Loc Le

[IVote: F o I is the forgetful functor.] As above there is, for each vector space I/,
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apair (L{,,.V, s y)whereL], V isanobject of £, and mys R, V>V
is a morphism of ¥ satxsfymg the appropriate universal mappmg property.
The pair (L], V, e, y) is called a locally finite cofree Lie coalgebra on the
vector space V.

The first functor that we logked at in this section was the functor “upper
zero.” Readers familiar with classical coalgebra theory and with the “upper
zero” A° of an associative (unitary) algebra A as presented, for instance, in
Sweedler’s book [16] may wonder

(1) why we didn’t define L9, for a Lie algebra L, to consist of those elements
of L* whose kernel contains a cofinite ideal of L,

and

(2) what the connection is between the Lie coalgebra L® (that we have
defined) and

{feL* | ker f contains a cofinite ideal of L}.

Now that we have the functor Loc at our disposal, we can answer both of
these questions at once. This is done in the following theorem.

THEOREM. For any Lie algebra L,
Loc(L“) = {feL* | ker f contains a cofinite ideal of L}.

- In general, L® will not be locally finite, so .in general Loc(L% C L. This
may be seen by considering the example L = M* where M is a Lie coalgebra
which is not locally finite. [Recall that ¢,,: M — M*® is injective.] There is,
however, a locally finite version of L° denoted L% and defined as the sum
of all finite dimensional good subspaces of L*:

LY =Y{V|Ve¥%and V is finite dimensional}.
v

Since ¥ CL* is good if and only if ¥ is a sub Lie coalgebra of L, it follows
from the above that L% = Loc(L®). Consequently, the functor %: £°? — %7
is the composite .Zo? —»()* e _,Loc ¢ ¢.» and, as such, is the right adjoint
of the functor &5, C— F¢ " Pos,

The fact that we may have Loc(L®) C L? is in contrast to what may happen
if we take an associative (unitary) algebra A instead of a Lie algebra L as the
algebra to which we apply the “‘upper zero” construction. In case 4 € obj <7,
A® € obj € and as such is locally finite. [Here we define 4° to be the maximal
good subspace of A4* where “good” again means that ¢¥(V)Cp(V ® V),
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4. A ® A— A being the multiplication on A.] Since A° is locally finite,
A°® = Loc(A4% and consequently

A = {fe A* | ker f contains a cofinite 2-sided ideal of A}.

This is the definition of A° given by Sweedler [16, p. 109]. In Sweedler’s
approach, the idea behind the construction of A4° seems to be the following.
Any linear map f: 4 — K whose kernel contains a cofinite two-sided ideal /
of A gives rise to an element of (4/I)*. Whenever [ is a cofinite two-sided
ideal of A, then A/I has the structure of a finite dimensional algebra, and hence
(A/T)* has the structure of a finite dimensional coalgebra. Thus there is a
linear map

(A — (A/1)* @ (A1)~

giving the coalgebra structure of (4/I)*. From a consideration of the exact
sequence

0—I1cTeg ™ 41— 0
and then of the induced exact sequence
(mp)* @p)*
0 —— (4/D)* A* I* 0

one sees that
{fe A*| f(I) = 0} = ker[(i))*] = Im[(m)*]

has the structure of a finite dimensional coalgebra. It is standard to denote
ker(i}) by the symbols I* (read, I-perp). Since the (cofinite) two-sided ideals I
of A are directed [i.e., form a directed system], it follows that

4 = (JI+
1

has the structure of a coalgebra as a direct limit of finite dimensional coalgebras.
In point of fact, Sweedler’s construction of 4° makes use of the algebra structure
on A & A. Since the tensor product of Lie algebras is not again a Lic algebra,
a different approach was needed.

We conclude this section with a comparison of 2¢(4°% with (24)°, where
A is an associative algebra, £4 is the Lie algebra associated to 4, and 2¢(A4°)
is the Lie coalgebra associated to the associative coalgebra 4% Such a com-
parison is of interest in view of the already established equalities

[@O)N* = Q(C*) for Ceobj¥
and
[2(A)]* = 8A%) for Aeobjo, .
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Here, by contrast, we do not have equality. Instead, we have the relation stated
in the following proposition.

ProrosITION. For anmy associative (unitary) algebra A, 2°(A° is a sub Lie
coalgebra of Loc[(24)°].

In general, £(4°) C Loc[(84)"], as may be seen by taking A4 to be an infinite
dimensional, commutative, simple algebra (for example, an infinite dimen-
sional, commutative field extension of the ground field K).

Remark. The elements of Loc(L?) are in one-to-one correspondence with
the finite dimensional representations of the Lie algebra L.

3. THe UNivERsAL COENVELOPING COALGEBRA OF A LIE COALGEBRA

We now turn to the universal enveloping algebra of a Lie algebra and to
the universal coenveloping coalgebra of a Lie coalgebra. We shall revert to
our parallel display format in that we first list, on the left side of the page,
results about Lie algebras. Then, on the right side of the page, we shall follow
each Lie algebra result by its Lie coalgebra counterpart.

Since adjoint functors shall be appearing routinely in the exposition that
follows, and since we wish to display the “duality” between the Lie algebra
theory and the Lie coalgebra theory as succinctly as possible, we shall adopt
the convention of writing

R4S

to denote the fact that the functor R: 2 — & is left adjoint to the functor
S: & — 2 and that the functor S: & — & is right adjoint to the functor
R: 9 — &, i.c., that there is a natural set bijection

Homg(RD, E) —=> Homg(D, SE)
for each object (D, E) of &°7 x &.

The Lie Algebra Situation The Lie Coalgebra Situation

In the case of Lie algebras, a “Dually,” in the case of Lie coal-
universal enveloping algebra UL of a gebras, one defines a universal co-
Lie algebra L is defined for every Lie enveloping coalgebra U°M for every
algebra L by asking for a left adjoint Lie coalgebra M by asking for a right

adjoint
U—g ge 4 Ue
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to the functor
Qo - .

In greater detail, a universal enveloping
algebra of a Lie algebra L is defined to
be an object UL of 7 together with
a morphism
fy: L — (UL)

of # such that if 4 is any object of &7
and f: L — £(4) any morphism of %,
then there exists a unique morphism
F: UL — A of &/ making the diagram

L—" gL
\ //;
F
s ¥ (F)
£(4)
commutative. The universal mapping
property (hereafter abbreviated by
U.M.P.) satisfied by (UL, iy;) guar-

antees that there is a natural set
bijection

Hom (UL, A) ~=— Homg(L, 24),

i.e., that U is left adjoint to £ and
£ is right adjoint to U:

U—Q.
Note.
Hom (UL, A) — Homg(L, 2A4)

Here the map

is given by

Fr— Q(F)OI.UL-

to the functor
Le: € — Ze.
In greater detail, a umiversal coen-

veloping coalgebra of a Lie coalgebra M
is defined to be an object U¢M of €

together with a morphism

: Q(UM) —~ M

Tyem

of £¢ such that if C is any object of ¥
and f: £9(C) - M any morphism of
¢, then there exists a unique mor-
phism F: C — UM of € making the
diagram

MU (UM)
A
:\ // 2YF)
/
£4C)
commutative. The universal mapping
property (hereafter abbreviated by
U.M.P.) satisfied by (U°M, myep)
guarantees that there is a natural set
bijection
Hom ,,(£°C, M) = Homy(C, U°M),

i.e., that ¢ is left adjoint to U° and
Ue is right adjoint to £

Qe — Ue,

Note. Here the map

Homy(C, U°M)~— Homg,(£°C, M)
is given by

F > myop 0 2(F).

Prior to the construction of (UM, myey), and of (UL, i), it is worthwhile
to look at a few special cases. We list these in a parallel display format where,
for completeness, we restate the adjointness conditions that specify the desired

properties of U and of Ue.
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The Algebra Context

1. In the algebra context, we have
that U is left adjoint to £:

U-— 8.

The Coalgebra Context

1. “Dually,” in the coalgebra con-
text, we have that U¢ is right adjoint
to L¢:

ge — Ve,

We now look at some special cases.

2. In the algebra context, one
defines the tensor algebra functor
T: ¥~ — &/ to be the left adjoint of the
forgetful functor F: &7 — ¥, i.e.,

T —F.

DEFINITION. A tensor algebra on a
vector space V consists of an object
TV of o together with a morphism
irp: V —F(TV) of ¥ such that if 4
is any object of &/ and g: V — F(A)
any morphism of ¥, then there is a
unique morphism G: TV — 4 of o/
making the diagram

v— T L R(TV)
7
x K//NG)
F(4)

commutative. The pair (TV, ip) is
called a tensor algebra on the vector
space V, or sometimes, the free as-
sociative unitary algebra on the vector
space V.

The construction of (TV,ir,) is
standard, but will be sketched in
Section 5.

It turns out that T is a special case
of U in that

(W) = UILV)]

2. ‘“Dually,” in the coalgebra con-
text, we have a functor 7% ¥ — %
which is right adjoint to the forgetful
functor F: € — 77, i.e.,

F—Te.

DEFINITION. A4 tensor coalgebra on
a vector space V consists of an object
TV of € together with a morphism
mrrept F(TV)— V of ¥ such that if C
is any object of € and g: F(C)— V
any morphism of 7", then there is a
unique morphism G: C — TV of €
making the diagram

V1Y ___R(TV)

A
vn\ //F(G)
7

F(C)

commutative. The pair (T°V, wpep) is
called a tensor coalgebra on the vector
space V, or sometimes, the cofree
associative counitary coalgebra on the
vector space V.

The construction of (T°V, mrep) is
—by now—standard, but will be
sketched below.

It turns out that 7T is a special case
of U¢ in that

T{V) = UL(V)]
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where L(V) [more properly, (L(V),
iz(r)] denotes the free Lie algebra on
the vector space V: Here the functor

LYy ->%

denotes the left adjoint of the forgetful
functor

F % -7,

ie.,
L—F.

The fact that UL(V)] = T(V), i.e.,
that
T — UL,

is an immediate consequence of ad-
jointness. To see this, one need
merely consider the diagram

L U
VvV ol
F L

e A el R
L-F U+g

of categories and adjoint functor pairs
and observe that Fo €: o/ — & — ¥~
is simply the forgetful functor from .o/
to ¥". It follows that

UoL:¥V - ¥ >

is left adjoint to the forgetful functor,
ie.,

UoL —F,
whence
U-L =T,
Remark 1. Prior to knowing of the

existence of UL for an arbitrary Lie
algebra L, one can show directly that
TV is a universal envelop for LV.
Specifically, one shows that TV to-

where LYV') [more properly, (LYV),
me))] denotes the cofree Lie coal-
gebra on the vector space V. Here
Le: ¥ — ¢ denotes the right adjoint
of the forgetful functor

F: %~ v,
i.e.,
F—Le

as mentioned in Section 2. The fact
that U°[LY(V)] = T«V), i.e., that

Te = UcoLe,

is an immediate consequence of ad-
jointness. To see this, one need
merely consider the diagram

g F
CLe=V
Ue e

e e
gHUe  FAL®

of categories and adjoint functor pairs
and observe thatF o ¢: € — ¢ — ¥~
is simply the forgetful functor from ¢
to ¢". It follows that

UtoLt: ¥V — F#*— ¥

is right adjoint to the forgetful functor,
ie.,

F—UeoLe,
whence
UtoLe = Tv.
Remark 1. Prior to knowing of the

existence of U°M for an arbitrary Lie
coalgebra M, one can show directly
that 7°V is a universal coenvelop for
LeV. Specifically, one shows that T¢V
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gether with the map : LV — (TV)
defined by the diagram

vV L FLV)

V4
i\ //F( )
TV i
¥

F(TV) = FI(TV)]

(in which F and F are forgetful
functors) is a universal enveloping
algebra for LV. This is based on the

natural equivalence
[TV, Al =V, FAl,

= [V,F(€4)ly ~ [LV, 24]¢

where [X, Y]g denotes the set of

morphisms in the category & from X
toY.

Remark 2. In consequence of the
Poincaré-Birkhoff-Witt theorem, one
may take LV as the smallest sub Lie
algebra of &(TV) containing Im 2, ,
i.e., as the sub Lie algebra of (TV)
generated by Im 77, . 47, is then the
map induced by iy, ie., iy, is the
unique linear map making the fol-
lowing diagram commutative:

v, F(TV)]
\,
AN jm]
Y
FILV].

Here ¢: LV < (TV) is the natural
inclusion and F: & — ¥ is the for-
getful functor.

together with the map =: £(T°V) —
L¢V defined by the diagram

Ve RLeV)

A
n e
TV / Fm)
/

F(T°V) = FI@(T°V)]

(in which F and F are forgetful func-
tors) is a universal coenveloping coal-
gebra for L°V. This is based on the
natural equivalence

[€C, LV]ge =2 [F(2°C), V]

= [FC, Vly o, [C, V)¢

where [X, Y)g denotes the set of mor-
phisms in the category & from X to Y.

Remark 2. *‘Dual” to constructing
the free Lie algebra on a vector space IV
as a sub Lie algebra of £(TV), one
may construct the locally finite cofree
Lie coalgebra L{,(V) on a vector
space ¥V as a quotient of L(T°V).
Specifically, one may take L] ; (V') to be
L(TeV)/I where IC 8(T°V) is the
largest Lie coideal of £(7°V) con-
tained in ker wpep , 1.e., where I is the
coideal of Q4(T°V) “cogenerated” by
ker mreyp . L @) is then the unique
linear map making the following dia-
gram commutative:

Vv TV FRATV)]
\\ lp[p]
Lg, N
FIQ(TeV)I].

Here p: Q(TeV) — 2(T°V)/I is the
natural projection and F: &5, — ¥
is the forgetful functor.
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3. As our next (and second) exam-
ple of a standard (type of) algebra
which is a special instance of a
universal enveloping algebra of a Lie
algebra, we cite the symmetric algebra
on a vector space.

DeriniTION. A symmetric algebra
on a vector space V consists of an
object SV of c&/ together with a
morphism igy,: V — F(SV) of ¥ such
that if A is any object of ¢/ and
g: V—F(4) any morphism of ¥,
then there is a unique morphism
G: SV — A of co/ making the dia-
gram

V— L R(SV)

s
\ //F(G)
g .

F(4)

commutative. The pair (SV, i) is
called a symmetric algebra on the vector
space V, or sometimes, the free com-
mutative associative unitary algebra on
the vector space V.

Note. Ideals are what one factors
algebras by to get quotient algebras.
Dually, coideals are what one factors
coalgebras by to get quotient coalge-
bras. If M is a Lie coalgebraand I C M
is a subspace of M, then [ is a coideal
of M in case

ANCI®M+ ML

Note. The above construction of
1:.(V) as a quotient of L(T°V)
utilizes the notion of ‘“‘cogeneration”
which shall be mentioned below and
discussed more fully in Section 5.

3. “Dually,” in the coalgebra con-
text, there is a functor S¢: ¥ — ¢
from the category of vector spaces to
the category of commutative, associa-
tive, counitary coalgebras which is
right adjoint to the forgetful functor
F: ¢ -7, ie.,

F — Se,

DEerFINITION. A symmetric coalgebra
on a vector space V consists of an
object S°V of ¢& together with a
morphism  mgep: F(SV)—> V of ¥~
such that if C is any object of ¢& and
g: F(C)— V any morphism of ¥, then
there is a unique morphism

G: C— SV

of ¢& making the diagram

V25 F(SV)

\ V4
9 /" FG)
/
F(C)
commutative. The pair (S¢V, 7gep) is

called a symmetric coalgebra on the
vector space V, or sometimes, the
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The  construction of (SV,ig,) is
standard and hence is omitted (cf. the
theorem which follows, below).

The U.M.P. satisfied by the pair
{SV,isy) gives rise in a straight-
forward and standard way to a
functor S: ¥~ — ¢« from the category
of vector spaces to the category of
commutative, associative, unitary al-
gebras. S is called, for obvious
reasons, the symmetric algebra functor.
The U.M.P. satisfied by (SV,igp)
guarantees that the symmetric algebra
functor S: ¥ — ¢/ is left adjoint to
the forgetful functor F: e/ — ¥, i.e.,
that

S —F.

It turns out that S is a special case of U
in that one can establish the following
resuit.

THEOREM. For any vector space V,
let Triv V denote V tousidered as-a Lie
algebra in the trivial way: the map
V®V — Vis the zero map. Then

U(Triv V) = S(V).

cofree commutative associative counitary
coalgebra on the vector space V.

Sweedler constructs S°V as the
largest commutative subcoalgebra of
TV [ie., as the sum of all com-
mutative subcoalgebras of 7°V] and
then takes mgc, to be the restriction of
7rop to S¢V. (See [16, p. 129, Theo-
rem 6.4.3).)

It turns out that the syrmetric
coalgebra functor SV — € is a
special instance of U® in that one can
establish the following result.

THuEOREM. For any vector space V,
let Triv I7.denote V considered as a Lie
coalgebra in the trivial way: the map
V—V®YV is the zero map. Then

Ue(Triv V) = S(V).

Remark. 'The proof of the theorem
stated above uses the notion of a
cogenerating subspace in that what one
does is “dualize” the fact that if the
elements of a generating subspace of an
associative algebra pairwise commute
then the algebra is commutative.

Recapitulation. Both TV and SV are special cases of the universal enveloping
algebra of a Lie algebra. Likewise, their counterparts TV and SV are special
cases of the universal coenveloping coalgebra of a Lie coalgebra. In consequence
of the aforementioned facts, our U°M generalizes the previously considered
(known) TV and S¢V. Both T°V and S°V are discussed in Sweedler’s book
[16]; the notation used there, for them, is, however, different from the notation
that we have adopted. We hope that the advantages of our notation are
evident.

At this point, it will be convenient for us to review the construction of 7¢¥V
since that construction shall serve as a prototype for what follows. The con-
struction of TV that we will be giving may be found in Sweedler (cf. [16,
p. 125, Theorem 6,4.1]) though as mentioned above, the notation that we have
adopted is our own and not his.
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The construction of T°V for an arbitrary vector space V, as given in [16],
is a two-step process. One first shows that if (TV,iy,) denotes the tensor
algebra on V, then (TV)° together with the linear map

TV s (V) L5

satisfies the U.M.P. required of a cofree, associative, counitary coalgebra
on the vector space V. Provided we keep in mind what is really being claimed,
it should hopefully cause no confusion if we abbreviate this fact by simply
writing ‘

To(V*) = (TV).

Thus, as a first step, we see how to construct 7°W in case W is the vector
space dual V'* of some vector space V. One then shows how to construct T°W
whenever W is a subspace of a vector space V for which T°V is known. One
simply observes that the diagram

VI FTV]
%

may always be “filled in” to yield the commutative diagram

V <IV F[TV]

[

W «— F[T*W]
T'W

giving a construction of T°W for any subspace W of V. In other words, if
TV is known and if W is a subspace of ¥, then T°W may be constructed as a
certain subspace [indeed subcoalgebra] of T¢V. Since any vector space I
embeds in its double dual F** via the map yx,: V' — V** where y,(v)(f) =
f{(9), the above two-step procedure yields a construction of TV for an arbitrary
vector space V.

We now turn to the construction of UL and of U°M. Once again, we shall
resume our parallel display format in that we shall first describe, on the left-
hand side of the page, the construction of UL. Following that description,
we shall then describe, on the right-hand side of the page, the construction
of UeM.
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The Construction of UL

Recall that the universal enveloping
algebra UL of a Lie algebra L is
constructed as a quotient algebra of
the tensor algebra 7L on L:

TL —» UL = TL[(-+).

In fact it is the universal mapping
property (U.M.P.) that forces UL to be
a quotient algebra of 7L and indeed
to be a specific quotient of TL. In
order to remind ourselves of why and
how this is the case, we consider the
diagram

L™, FITL)

377

FUL)

in which F: o/ — ¥ is the forgetful
functor. [If we were pedantic, we
would instead consider the diagram

F(F) T2, FIT(FL))

F"'Ut\

F[R(UL)] = F(UL)

in which F: & — ¥ is the forgetful
functor.] By the U.M.P. satisfied by
(TL, iy.), there exists a unique mor-
phism p: TL — UL of &/ filling in the
above diagram, i.e., making the dia-
gram

L—™ L FTL)

//
iyr / F(p)
\ ¥

F(UL)

The Construction of UM

“Dually,” we expect that UM
should be a subcoalgebra of T°M. As
a matter of fact, returning for a
moment to the construction of UL as
a quotient of TL, we recall that TL has
the structure of a Hopf algebra and
that the ideal 7 of TL that one factors
TL by to get UL is a Hopf ideal (i.e.,
an ideal and a coideal), so that UL
inherits the structure of a Hopf algebra
as a quotient Hopf algebra of TL.
Thus, we should expect that 7°M has
the structure of a Hopf algebra and
that UM inherits a Hopf algebra
structure from 7T°M. This is indeed
the case; but more of that later [cf.
the second theorem under The Hepf
Algebra Structure of UcM}.

Cramm. If (UM, wyey) s a uni-
versal coenveloping coalgebra of a Lie
coalgebra M, then U°M must be
a subcoalgebra of T°M and myey:
LY(UM)— M must be the restriction
to UM of mpepy: F(T°M)— M.

Proof. “Dual” to the fact that
Im ¢y, is a generating subspace of UL
[so that if B is a subalgebra of UL
containing Imiy; , then B = UL}, we
have the fact that kermy.,, is a
““cogenerating subspace” of U°M [in
the sense that if I is a coideal of UM
contained in ker wyey , then I = {0}].
In each case, these facts are direct
consequences of the universal mapping
properties satisfied by (UL, iy, ) and by
(UM, myep), respectively. Look at the
diagram
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commutative. We claim that p is
surjective. Why ? Well p is an algebra
map. Accordingly, Imp is a sub-
algebra of UL. But iy, = poipy SO
that Im iy, C Im p. Since Im 7y, gen-
erates UL as an algebra [by the U.M.P.
satisfied by (UL, iy,)] it follows that
Imp = UL. Since the image of p is
all of UL, it follows that p is surjective.
But if E is any quotient of 7L under
an algebra map #: 7L —» E, then a
consideration of the (not necessarily
commutative) diagram

LRL—1 1L
irL®irLl lin

TL® TL ———> TL

@rrell-7)

ver| |»

EQE——>E

@go(l—1)

shows that woir,: L — £(F) is a Lie
algebra map if and only if

mogryo(l — 7)o (iry @ rg)
:"T°iTL°[’]’

i.e., if and only if

Im{pr; o (1 - 7)o (irp @igr) —trp o [T
Cker =.

Accordingly, we let I be the smallest
ideal of TL containing

_Im{‘PTL o(l=7)o(iry trr)~irro[, I}
and set UL — TL/Tand iy, — p o iry, -

M <M FToM)

FLUM].

[The ““‘dual” of pedantic is pedantic.]
By the U.M.P. satisfied by (7°M,
mrepq), there exists a unique morphism
i: UM — T°M of € filling in this
diagram, i.e., making the diagram

Me_T4 F[T°M]

A
\ //F(i)
Tuem Y

F[UM]

commutative. Since i: UM — T°M is
a map of €, ker 7 is a coideal of U°M.
But the equality mpep 0 7 = myyeps clear-
ly implies that ker 7 C ker e, . Since
ker 7 is a coideal of UM contained in
ker myep; and since ker myey, is a
cogenerating subspace, it follows that
ker i = {0}. In other words, (the map)
i: UM — T°M is injective and mryep =
mreps © 1. ' Thus, we have shown that if
(UM, myepy) is a universal coen-
veloping coalgebra of M, then UM
must be a subcoalgebra of 7T°M and
myeps (UM ) — M must be the re-
striction to UM of mpep: F(T<M)—M.
But, if D is any subcoalgebra of 7°M
and if j: D ¢— T°M denotes the in-
clusion, then a consideration of the
(not necessarily commutative) diagram

D (1—r)ed DD
il if@]‘
oy TEAM L et @ ToM
ﬂ,cM=ﬂi ln®n
MMM




LIE COALGEBRAS 31

shows that e 0f: (D) > M is a
morphism of #¢ if and only if
(Trops @ Trepg) o (1 — 1) 0 dpeyyof
={ o Tpep oj,

i.e., if and only if

D =1Imj

Cker{(mpepy @ mpepg) o (1 — 1) 0 Ay,
—< e "T"M}

Accordingly, we define UM to be the
largest subcoalgebra of T°M contained
in

ker{(myepy @ mpep,) © (1 — 7) 0 dpey,
— < > ° WT"M}

(i.e., the sum of all such coalgebras),
and we set wyey == ey |pepr - It is
then straightforward to check that
(UM, my.y,) is a universal coenvelop-
ing coalgebra for the Lie coalgebra M.

Alternate Comstructions of UeM
1. We claim that for every Lie algebra L,
Ue(L®) = (ULY".

What we have just written ought to be clarified a bit. What we are really
saying is that if (UL, iy;) is a universal enveloping algebra for a Lie algebra L
and if we set

()™ LULY] — L°

equal to the composite
ULY] 5 [RUL)P G 1,
where j is the inclusion

LYUL)] — Loc[UL))° < [&(UL))",

607/38/1-3
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then ((UL)®, (1;,.)") is a universal coenveloping coalgebra for the Lie coalgebra
L0, The bijective correspondence (between the appropriate Hom sets) necessary
to establish adjointness is sketched below.

Hom,,{2(C), %]~ Hom L, [2(C)]*] = Hom,[L, £(C*)]

S Hom[UL, C¥] =~ Homq[C, (UL)].

Since any Lie coalgebra M can always be embedded in the “upper zero” of
its dual Lie algebra (i.e., M >—, M*?), we can use the fact that U9(L®) =
(UL)° to get an alternate construction of UM for an arbitrary Lie coalgebra M.
[This two-step construction is clearly patterned on that given for T°V.]

2. A second alternative construction of (U°M, myc,,) depends on showing
directly (i.e., prior to knowing of the existence of U°M) that T°V together
with the Lie algebra map m: 2(T°V)— LV defined by the commutative
diagram

V8 __ FlLeV]
\ A
rev s F[n}
FIT*V] = FI8«(T*V)]

(in which F and F are forgetful functors) is a universal coenveloping coalgebra
for LeV. This verification is based on the natural equivalence

Hom ,[2°C, LV] =2, Hom, [F(£°C), V] = Hom, [F(C), V]

== Homg[C, T*V]

[cf. Remark 1 above]. Since any Lie coalgebra M can be embedded in the
cofree Lie coalgebra on itself, i.e.,

M «— em LM
\ /7'
M c” ’
M

we have (sketched) yet another proof for the existence of the universal co-
enveloping coalgebra of an arbitrary Lie coalgebra.

The Hopf Algebra Structure of UcM

We begin by reviewing a few definitions and facts about Hopf algebras.
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DerintTioN. A Hopf algebra consists of a vector space H together with
linear maps

p: HQ® H— H,
7 K-> H,
4:H- H® H,
eaH—-K

such that

(1) (H, @, 7) is an algebra with multiplication ¢ and unit =;
{2) (H, 4, ¢€) is a coalgebra with comultiplication 4 and counit ¢; and

(3) the linear maps 4: H— H ® H and «: H — K are algebra homo-
morphisms.

Usually it will be assumed that (H, ¢, 3) is an object of &/ and that (H, 4, ¢)
is an object of €; but we may occasionally speak, for instance, of a biassociative
Hopf algebra in order to emphasize this.

Note. 1If (A4, ¢4,74) and (B, z, 15) are objects of &7, then so is (4 ® B,
P4®8 ) M4®a), Where ¢, op and 7,y are defined to be the (linear) composites

107®1

(A®B)®AQB——ARBRAQYB—ARARB)®B

24 ®vp

> (ARARBR®B)——AR®B

and
14®ng

K2 K®RK—~—= AR B,

respectively. Thus, (@, ® 8,) " (2, ® b,) =a, " a, ® b, b, while, 1 ,g5 =1, X 1;.
Dually, if (C, 4¢, ¢c) and (D, 4, , ;) are objects of &, then so is (C ® D,
dcop» scop) Where dcgp and ecgp are defined to be the (linear) composites

CRDEEL(CRC)QID®D) - CRIC®D)QD
2PLCRE®C)®D - (C®D)®(C QD)
and
c®D %% KQK 2K,
respectively.

The requirement that 4 and ¢ be algebra maps translates to the requirement
that four diagrams be commutative. It turns out that the four diagrams that
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arise in this way are preciscly the same four that would arise were we to require
that ¢ and 5 be coalgebra maps.

We may, therefore, view a Hopf algebra as a vector space H endowed
simultaneously with an algebra structure and a coalgebra structure in such
a way that these two structures are “compatible with one another.” “Com-
patible” means that the two maps which give H its coalgebra structure should
be algebra maps or equivalently that the two maps which give H its algebra
structure should be coalgebra maps.

A map of Hopf algebras is a vector space map which is simultaneously an
algebra and a coalgebra map.

Let (C, 4., €c) be an associative, counitary coalgebra with comultiplication
4c: C— C ® C and counit e.: C — K; and let (4, ¢, , n,) be an associative,
unitary algebra with multiplication ¢, A ® 4 — A and unit 5, K — 4.
Then for f, g € Homy(C, A), we define the convolution f x g € Homy(C, A) by

[ =942 (f®g 4.
This makes Homg(C, 4) into an associative algebra with unit

Ng4o€c: C—>K—> A4

Now let (H, ¢, , 4, €) be a (biassociative) Hopf algebra and take (C, 4., €c)
and (4, @4, 7,4) to be the underlying coalgebra (H, 4, ¢) and algebra (H, ¢, n)
of (H, g, n, 4, €), respectively.

DEFINITION.  An involution for (or on) H is a linear map
wi:H—~H

such that w and 14 (the identity map on H) are inverse to each other in
Homy(H, H), i.e., such that

wkly =lgp*w =nyoey.

One can show that w is an anti-algebra map and an anti-coalgebra map (i.e.,
that w: H — H°? is a map of Hopf algebras, where the multiplication and the
comultiplication on H°” are defined, respectively, as gy o 7 and 7 o 4y, 7 being
the twisting map). If H has either a commutative multiplication @y (i.e., 5y =
¢y o7) or a commutative comultiplication 4y (i.e., dy = 70 dy), then it

L34

turns out that w? = 1y ; this justifies the name “involution.”

Remark. Some authors (e.g., Sweedler [16]) use the words ‘“Hopf algebra”
to describe what for us would be a (biassociative) Hopf algebra with involution.
Those same authors would consider our (biassociative) Hopf algebra to be
merely a “bialgebra.” Also, for these authors, a Hopf ideal is a bi-ideal (ideal
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and coideal) that is carried into itself by the involution. The bi-ideal I of TL
discussed under The Construction of UL and under The Construction of UM
is carried into itself by the involution that exists on 7L and thus is a Hopf ideal.

If H has the structure of a Hopf algebra, then H carries, in particular, the
structure of an algebra; so H® carries the structure of a coalgebra. On the other
hand, H—as a Hopf algebra—also carries the structure of a coalgebra, so H*
is endowed with the structure of an algebra (as the dual of a coalgebra). As
we know, H® is a vector subspace of H*. It turns out that H° is closed under
the multiplication of H*. In just this way does H° acquire the structure of an
algebra. Moreover, this algebra structure on H® turns out to be compatible
with the coalgebra structure on H? in such a way that H? is in fact (endowed
with the structure of) a Hopf algebra.

Since, as we have indicated above, the ‘““upper zero” of a Hopf algebra is
again a Hopf algebra; since UL = (UL)®; and since UL carries—in addition
to its algebra structure—a coalgebra structure making it into a (biassociative)
Hopf algebra with involution, [the diagonal, for instance, being determined
by the requirement that A(iy;x) = iypx ® typ + 4y R iyx for xel], we
should expect that UM carries—in addition to its coalgebra structure—an
algebra structure making it into a (biassociative) Hopf algebra with involution.
This is indeed the case. Moreover, even as UL inherits its (involutive) Hopf
algebra structure as a quotient Hopf algebra of the (involutive) Hopf algebra
TL, so UM inherits its (involutive) Hopf algebra structure as a sub Hopf
algebra of the (involutive) Hopf algebra T¢M.

We shall now sketch some of the details of these assertions. Given a vector
space V, let

Prey: TV Q TV — TV,
Nrey+ K— TV,

and
Wreyt (TVY? — TV

denote the unique coalgebra maps which lift, respectively, the linear maps

TVRTV—>V via x@yr> epep(y) T, (%) 4 erey(8) ey (),
K—V via k—0,
and |
(TVY? -V via x> —7e (%),
where (T¢V)°P denotes the opposite coalgebra of T¢V: dgepyor = 70 dpepr .

[These liftings exist by virtue of the U.M.P. satisfied by (7°V, 7rep).] One
then can establish the following resuits.
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THEOREM. (T°V, @rey , ey, Aoy, €rey , wrey) is @ commutative, biassociative
Hopf algebra with involution; moreover, for any linear map f: V — W, the induced
coalgebra map T(f): TV — TW is a morphism of involutive Hopf algebras.
Thus, there exists a functor Ty : ¥ — H, where H is the category of com-
mutative, biassociative Hopf algebras with involution, such that Fo Tj = T*
where F: S — € is the forgetful functor.

THEOREM. For any Lie coalgebra M, UM can be given the structure of a
commutative, biassociative Hopf algebra with involution as a sub Hopf algebra
of Ty(M). Moreover, if f: M — N is a map of £°, then the induced coalgebra
map U(f). UM — U°N is compatible with the induced multiplications and
units. Thus, there is a functor Us : £¢ — H (where H is the category of com-
mutative, biassociative Hopf algebras with involution) such that Fo Uf = U*
where F: 3 — € is the forgetful functor.

Sketch of Proof. Let @, 3, and w denote, respectively, the multiplication,
unit, and involution of T (M). Since (UM & UM), n(K), and w(U°M)
are all subcoalgebras of T°M [being the images under coalgebra maps of
coalgebras], a verification that these are all contained in

ker{(mpop @ mpepg) o (1 — 7) 0 dpoyy — {5 0 ey}
will establish that (UM ® UcM)C UM, o(K)C U¢M, and o(U*M)C U*M.

ProrosiTiON. For any Lie algebra L,
Ug(L%) = [Uns(L))°

where we write Ug(L) to symbolize that we consider UL with the Hopf algebra
structure it acquires as a quotient Hopf algebra of Ty(L), where Ty (L) symbolizes
the (involutive) Hopf algebra structure one obtains from TL by defining a diagonal,
counit, and involution appropriately.

ProposiTiON. For every Lie coalgebra M, Uy (M) is a proper algebra, i.e.,
the intersection of all cofinite two-sided ideals of UL (M) ts zero!

THEOREM. Given Lie coalgebras M and N, let
B = Pu.n: UM UN— U(MODN)
denote the unique coalgebra map lifting the Lie coalgebra map
E= ¢y LUMRUN)>MPN

1 Note added in proof. Classically, a result of Harish-Chandra guarantees that over
a field of characteristic zero the universal enveloping algebra of a finite dimensional Lie
algebra is proper [cf. Harish-Chandra, On representations of Lie algebras, Ann. of
Math. 50 (1949), 900-915]. See also a forthcoming paper by the author in the Proc.
Amer. Math. Soc.
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determined by
x®y) = (‘Uﬂn(y) '”ueu(x)’ EutM("c) "Tucn(y))v

for x€ UM and y € U°N. Then B is a natural isomorphism of involutive Hopf
algebras.

CorOLLARY. The functor Uy : £° — H preserves finite coproducts.

Let o denote the category of biassociative Hopf algebras with involution,

TueoreM. The functor Uy : £°— H# is right adjoint to the functor
Q: H# — Z°, ie.,
00— Uj.

Remark. The result mentioned in the above theorem is “dual’ to the fact
that the functor P: ¥ — % is right adjoint to the functor Uy: £ —
where P is the functor assigning to each Hopf algebra H its Lie algebra of
primitives (cf. Griinenfelder [6, p. 32, Theorem 1.3.10}).

Note. For every Lie algebra L, Uy(L) has the structure of a “‘cocommutative,”
biassociative Hopf algebra with involution. In the case of a Hopf algebra
(H, ¢, m, 4, €) we say that (H, ¢, 1, 4, €) is “‘commutative” in case ¢ = por
and “cocommutative” in case 4 = 7o 4. Obviously Uy(L) is not commutative
unless [x -], = 0 for all x, yeL.

We conclude this section by mentioning, in passing, that (UL)® is precisely
Hochschild’s algebra of representative functions on UL (cf. [7, p. 500]), a fact
we shall make use of in Section 5. In view of the equality (UL)® = U*(LY),
we can thus view (UL)® in a new light.

4. A NaTURAL QUESTION

In the case of Lie algebras, one knows that the natural map
iUL: L— 2( UL)

is always injective. The injectivity of i, follows directly from the Poincaré-
Birkhoff-Witt theorem, and is equivalent to it in case the characteristic x(K)
of the ground field K is zero.

It is, therefore, natural to inquire whether or not the natural map

st S(UM) > M

is always (or ever) surjective. The answer to this inquiry is provided by the
following theorem.
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THEOREM. myep: Q(UM) — M is surjective if and only if M is locally
finite.

Since the proof of this result is a direct consequence of the theorem of Ado
and Iwasawa for Lie algebras, it will be useful to remind ourselves of that
result first.

TuroreM (Ado-Iwasawa). If L is a finite dimensional Lie algebra, then UL
contains a cofinite two-sided ideal I such that iy, (L) NI = {0}.

For a proof of this theorem, the reader is referred to Jacobson [8, p. 202].

As an immediate consequence of the above, we find that for each finite
dimensional Lie algebra L there exists a finite dimensional associative, unitary
algebra 4 and a Lie algebra injection

f: L >— £(A).
Indeed, one may take A4 to be UL/I, and
f: L >— L[UL/I]

to be the composite

fyL 2(m)

L >2%, QUL) ="> QUL/I)

where
m: UL —> UL(I

is the natural projection. [Here, of course, [ is the cofinite two-sided ideal
mentioned in the Ado-Iwasawa theorem.] The map £(m)c iy, is injective
because

[£(m) ¢ iyr) O} = iuil(87)H{O}] = 1))
={xeL|iy(x)el}
and
{xeL|iy(x)el} ={0} since iy (L)YNI ={0}

and
fyp: L — 2(UL)

is injective by the Poincaré-Birkhoff-Witt theorem.

Conversely, if —for a (finite dimensional) Lie algebra L —there exists a finite
dimensional object 4 of &/ and a Lie algebra injection f: L >— £(A4), then
there exists a cofinite two-sided ideal I of UL such that i,;(L) NI = {0}.
Indeed, by the U.M.P. satisfied by (UL, 7;), the Lie algebra injection
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f: L — £(A4) extends to a map F: UL — 4 of &/ such that f = &(F)oiy, . If
we set I equal to the kernal of F, then I has the desired properties.

We may therefore view the Ado—Iwasawa theorem as saying the following:
For every finite dimensional Lie algebra L, there exists a finite dimensional
object 4 of &7 and an injective map f: L >— £(A4) of Z.

This result may be dualized to obtain the following result.

ProrosiTiON. For every finite dimensional Lie coalgebra M, there exists a
finite dimensional object C of € and a surjective map f: 2(C) —> M of Z°.

Indeed, if M is a finite dimensional Lie coalgebra, then M* is a finite dimen-
sional Lie algebra, so there exists a finite dimensional object 4 of &/ and a
Lie algebra injection

J: M* =L >— £(4).

Upon applying the functor * = Homy( ; K) to this injection, we obtain a
Lie coalgebra surjection

M =< M** = L* <2 [Q(A)]* = 2(4%*)
in which M** —= M is the inverse of the natural Lie coalgebra isomorphism
xu: M — M**

given by xu(x)(g) = g(x) for xe M and ge M*. We may therefore take C
equal to A* and f: 85(C) —> M equal to the composite

i

2(C) = 2(A%) = [QAN* Los L¥ = M** s M.
We now prove the theorem announced at the beginning of this section.

THEOREM. Let M be a Lie coalgebra, let UM be ils coenvelop, and let

myenss L(UM) — M be the canonical map. Then
T yepg 18 SUrjective <> M is locally finite.

Progf. =: Suppose that we,, is surjective. Since UM is an object of €,
it follows that U°M is locally finite. But if C is a subcoalgebra of UM, then
L£¢(C) is a sub Lie coalgebra of £¢(UcM). Accordingly, the local finiteness
of the object U¢M of € implies (entails) the local finiteness of £(UcM), which
is of course an object of .Z°. But since the surjective image of a locally finite
coalgebra under a coalgebra map is obviously locally finite (because the image
of a subcoalgebra under a coalgebra map is again a subcoalgebra), it follows
that M is locally finite whenever the Lie coalgebra map mye,: (UMY — M
is surjective.
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<: Conversely, suppose that M is locally finite. We must show that
myen: 8(UM)— M is surjective. Towards this end, let x e M. Since M
is locally finite, there is a finite dimensional sub Lie coalgebra N C M such
that x € N. Since N is a finite dimensional Lie coalgebra, there exists a finite
dimensional object C of € and a Lie coalgebra surjection

f: 8¢(C) —> N.

Let
i N> M

denote the natural inclusion. Then
inofi: 8(C)>> N> M

is a Lie coalgebra map and so, by the U.M.P. which (UM, my.,,) satisfies,
there exists a unique morphism

F:C-—>UM

of ¢ filling in the following diagram.

Let us now take stock of the situation. We began with an element x of M,
and found a sub Lie coalgebra N of M of finite dimension such that x already
lay in N. Because N was finite dimensional, we were able to find a finite dimen-
sional object C of € and a Lie coalgebra surjection f: £6(C) —» N from £¢(C)
onto N. Thus there is an element z € 25(C) such that f(2) = x. [See the above
diagram.] Set y = £°(F)(z). Then y € 2(U*M), and clearly

Tyen(Y) = Ty 8(FNR)] = [myep, o LAF)](2)
= (in o f)(3) = in(f(2)) = in(x)

:x’

80 myey is surjective. This concludes the proof of the theorem.
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Further insight into why ., may fail, in general, to be surjective may be
obtained by observing that for any Lie coalgebra M,

Ue(M) ~ U*(Loc M)

since the functor Loc: £° — Z5 , is a coreflector (as we saw in Section 2).
In fact, since Loc M C M, we may suppose that U¢(Loc M) C U¢(M); then

UqM) = U(Loc M).
Accordingly, we have
LUY(M) = LU(Loc M) —> Loc M C M;

that is, in general,

Im Tyep = Loc M.

We began our study of Lie coalgebras by defining them to be coalgebras
whose diagonals satisfied the Lie conditions. In view of the above result, we
may now state a proposition which permits a Milnor-Moore-like definition
of locally finite Lie coalgebras.

PropoSITION. A wvector space M, together with a linear map Ay M —
M @ M, is a locally finite Lie coalgebra if and only if there exists an object C of €
and a surjective linear map f: C — M making the diagram

(1—r)ed¢
—_—

c cC®C

fl if@f

Y

M—M®M
M

commutative.

Proof. If (M, 4,) is a locally finite Lie coalgebra, we may take C equal to
UM and f equal to mye,, by virtue of what we have just established.

Conversely, if C is a coalgebra as in the proposition, then a routine verification
shows that (I — 7) o 4. endows C with the structure of a Lie coalgebra; and
the commutativity of the above diagram together with the fact that f is surjective
insures that one can transfer the Lie coalgebra structure from C to M.
(C, (1 — 7)o d.) and hence (M, 4,,) are locally finite since any object of €
is locally finite.

Remark. The definition of a graded (reduced) Lie coalgebra given by
André in [2] is-the analog of the above characterization of a locally finite Lie
coalgebra.
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5. DUALIZATION OF THE POINCARE-BIRKHOFF-WITT THEOREM FOR LIE ALGEBRAS

This final section concerns itself with an analog of the Poincaré-Birkhoff-Witt
theorem for Lie algebras which we choose to call the Dual Poincaré-Birkhoff-
Witt Theorem. In what follows, we shall abbreviate the former by ‘‘the PBWS,”
and the latter by “the Dual PBW§.”

The constraints of the present paper allow only a sketch of the Dual PBWY.
A complete proof of this result may be found in [12], and will be presented
in a subsequent paper.

We shall begin, shortly, by recalling the statement of the PBW6 and reminding
ourselves of its proof. This will be done in order to suggest what the Dual
PBW?4 should be and how we might try to establish it. Following such a brief
sketch in which we present—as it were—an aerial view of the terrain we must
traverse, we shall return and fill in the broad strokes with somewhat finer
detail.

One comment is in order prior to delving into the PBWY. It is this. We
can only expect to get a Dual PBW# for locally finite Lie coalgebras. The
reason for this stems from the fact that, on the one hand, the PBW#& is equivalent,
in case the ground field K has characteristic zero, to the injectivity of the
natural map iy, : L — Q(UL); whereas, on the other hand, the canonical map
myenss BY(UM) — M is surjective if and only if M is locally finite, in con-
sequence of the deep result of Ado and Iwasawa.

In what follows, we shall restrict ourselves to the case in which the ground
field K has characteristic zero.

Recall that the PBW4 gives a vector space basis for the universal enveloping
algebra UL of a Lie algebra L in terms of a vector space basis for L. Specifically,
if {%,}4c.4 is a well-ordered basis for L and if 2, = iy (x,), where iy, : L — Q(UL)
is the composite

L> 7L s UL,
then the PBW# asserts that

{zle PRy, Tt Ry, oy Cop <Ly

is a basis for UL. This form of the PBW# does not lend itself to dualization.
There is, however, an alternate formulation which does, and to which we now
turn.

Briefly put, the above-mentioned basis for UL gives rise to a filtration on UL,
the so-called Lie filtration, which may be obtained (also) in the following
manner. TL, the tensor algebra on (the underlying vector space of) L is a graded,
hence a filtered, algebra. UL, as a quotient of TL, inherits a filtration from TL.
What is critical is the fact that this (inherited) filtration on UL turns out to be a
filtration by powers of a generating subspace of UL, specifically, by the generating
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subspace Imi,; of UL. The associated graded algebra EYUL) is in turn
generated by the elements of ESUL) of degree 1, i.e., by EJ(UL). The fact
that 7;;;: L — Q(UL) is a Lie map implies that the elements of EY(UL) pairwise
commute so that E%UL)—which is generated by EY(UL)—is a commutative
algebra. The PBW9 asserts that E(UL) is none other that SL, the symmetric
algebra on L. In particular, if L is a Lie algebra of finite dimension n, then E%(UL)
is the polynomial algebra (Hopf algebra) in n-variables Klx, , %, ,..., x,].

If we wish to dualize this situation, then presumably we will want to filter
the co-envelop UM of a Lie co-algebra M by some sort of “co-powers” of a
“co-generating” subspace. This strategy can—in fact—be carried out. The
analog of the product of two subspaces of an algebra is the “wedge” of two
subspaces of a coalgebra (to be defined below); while the analog of the fact
that Im iy, is a generating subspace of UL is the fact that ker wycy is a
“cogenerating’ subspace of UM (also to be defined below). [Recall that
tyr: L — QUL) and myep: Q(UM) — M are the canonical maps.] In this
type of “duality,” + and N (sum and intersection) correspond under the
annihilator transformations which send subspaces of a vector space ¥ to sub-
spaces of the dual space V* and vice versa. [The definitions will be given below.]
Moreover, UL is in fact filtered by powers of the generating subspace

Im 7y, + Imiy,

where ny: K — UL is the unit of UL (i.e., ny (1) = 4y1), so we can expect
that UeM will be filtered by “wedges” of the cogenerating subspace
ker €, c,, N ker 7.,

where eyey: UM — K is the counit of UM, This is indeed the case.

Here is how things are defined.

In the case of algebras, a subspace
S of an algebra A4 is called a generating
subspace if whenever B is a subalgebra
of A containing S, then B = 4.

Strictly speaking, one should speak
of a generating map rather than a
generating subspace.

DeriNiTION. A linear map f: V'—A
from a vector space J to an algebra A
is called a generating map in case the
only subalgebra of 4 containing Im f
is A itself.

“Dually,” in the case of coalgebras,
a subspace § of a coalgebra C is called
a cogenerating subspace if whenever I
is a coideal of C contained in S, then
I={0}

In point of fact, one should again
really speak of a cogenerating map.

DEFINITION. A linear map f: C—V
from a coalgebra C to a vector space IV
is called a cogenerating map in case any
coideal of C which is contained in
ker f is zero.
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ProrosITION. Let A be an object of
L and let f: V — A be a linear map
Jrom a wvector space V to A. Let F:
TV — A be the unique algebra map
“extending” f, i.e., the unique morphism
of o making the diagram

V ity

Ve
\ e
¥

A

TV

commutative. Then f is generating <> F
is surjective.

DerinrTioN.  Let (A4, ¢,%) be an
object of &7, and let SCA be a
generating subspace. Then the filtra-
tion of A by “powers of the generating
subspace nK + S” s defined via

Fy, =K,

F, = 7K + S,

Fy, = (nK + S),

Fo=@K+ S, for n>1,

where, for subspaces X and Y of an
algebra A, the product X -V of X
and Y is defined by setting

XY
—ImX®Y > A4A® A A.

Note. This is an increasing (al-
gebra) filtration.

WALTER MICHAELIS

PrOPOSITION. Let C be an object of
€ and let f: C— V be a lincar map
Jrom C to a vector space V. Let F:
C — TV be the unique coalgebra map
“lifting” f, t.e., the unique morphism
of € making the diagram

L4
TV
| 4

A
s
\//F

C

TV

commutative. Then f is cogenerating
<« F {5 injective.

DerFINITION., Let (C, 4,€¢) be an
object of &, and let SCC be a
cogenerating subspace. For any sub-
space W of C, denote by W+ the
subspace of C defined by W+ =
W N ker e. Then the filtration of C by
“‘wedges of the cogenerating subspace St
is defined via

F,=¢C,

Fi =CnNnkere = Ct =kerg,
F, = SNkere = St,

Fy = St A S,

Fy = A28t = St A St A ST,
F, =

A1 8§+, for n>=1,

where, by definition, A S+ = ker e,
and where, for subspaces X and Y of
a coalgebra C, the wedge X A Y of X
and Y [not to be confused with the
exterior product] is defined by setting

XAY =ket[CHC®C
—> CIX ® C[Y]
—AX®C+CQRY]

Note. This is a decreasing (coal-
gebra) filtration.
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"The definitions just given clearly display a duality between the product
of two subspaces of an algebra and the wedge of two subspaces of a coalgebra.
There is, in fact, a further, interesting relationship between “product” and
“wedge.” It is this: For subspaces X and Y of a coalgebra C,

XAY=[X' YL

where | and ]| are the annihilator transformations and where ““-”" is the
multiplication of the dual algebra C*, i.e.,

XtV = Im{X ® Y2 s CF @ CF C—55 (C @ C)* s €],

In other words, to find the wedge of subspaces X and Y of a coalgebra C,
multiply their annihilators in the dual algebra C* and then take the annihilator
of the result to land back in C.

The annihilator transformations which appear above shall now be defined.
Given a vector space V, let s(}) denote the set of all subspaces of V. Then the
annihilator transformations are functions

1:s(V) - s(V*)
and
A s(V*) — s(V),
defined as follows. If U is a subspace of V, let
iU: UV

denote the inclusion, and set
Ut = ker[(iy)*] = {fe V* | f(U) = {0}}.
If W is a subspace of V* and
ig: W V™
denotes the inclusion, set
W = M (W) = kexr[(d,)* o x,] = {ve V| W(v) = {0}

[where x,: ¥V — V** is the natural injection]. U is called the annihilator
of U in V* and WX is called the annihilator of W in V. [We read U+ as
“U-perp,” and WL as “W-double-line-perp.”’] For further details, see [6,
p- 61] or [12, p. 24].

We now return to the sketch given earlier of the PBW§ in order to fill in
a few details. Thereafter, we shall give a brief sketch of the Dual PBWf. We
shall then conclude the section by mentioning two counterexamples.
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We first recall the construction of the tensor algebra 7'V on a vector space V.
By definition,

TV — @ TV)

where

T(V)=K T(V)="V, and T,(V)=@V =V @ @ Vorn> I.
1

n times

If we denote the injection of T,,(V') into T(V') by
it T(V) — @ V),
n=0
then obviously

TV = (@ Imi,  (internal direct sum).

m=0
The multiplication on TV is defined by the obvious maps
To(V) ® To(V) =5 Tpuo(V) =5 TV,

and the unit
npp: K— TV

is defined by %7, = 7;. These definitions make 7V into an internally graded
(associative, unitary) algebra. It follows that we can filter TV in an increasing
way, as an algebra, by setting

F(TV)y= ® Imi, forn=0.
m=0

(For the basic facts concerning filtrations, the reader is referred to [3, 6, 13,
15, 16].) But

Imi, = (Imz)” for n>1,
from which it follows that
F,(TV) = (Imiy, 4 Im i)™ if m>1.

Since
trp: V—> TV
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is defined by iy, = 7;, this shows that the increasing filtration on TV given
above (from the grading) can also be described by

F(TV) = npvK,
and

FATV) = (nrpK @ Imipy)® = (nryK + Imip)r  for n > 1.

[Recall that the importance of i, (whence the special name for 7;) lies in the
fact that (TV, iry) satisfies a universal mapping property.]

Since the enveloping algebra UL of a Lie algebra L is a quotient algebra
of TL, it follows that we obtain an algebra filtration on UL from that on TL
by setting

F(UL) = #{F(TL))  (Vn)

where

w: TL — UL = TLKiryx ®irpy — trpy @ irpx — i, y] | x, y€L)
is the projection. Since
NuL: K-’ UL

and
iUL: L UL

are given, respectively, by

NuL = TeNTL
and

iyy = woirp,
it follows that

Fo(UL) = "IULK»
while

F UL) = (oK + Imig)*  for n> 1.

This filtration of UL, by powers of the generating subspace Im iy, , is called
the Lie filtration on UL. Note that for n >> 1, F,(UL) is the subspace of UL
generated by all m-fold products of elements of the generating subspace
Im iy, , where m <=, i.e., by the set of all

iuz_(-"'al) v iUL(xa,,,)v

where Xy, elLand m < n.

607/38/1-4
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Let
E%UL) = {E)(UL) = F,(UL)/F,y(UL)}7_
denote the associated graded algebra. [By convention, F_,(UL) = 0.] Since,

for n > 1, the nth filtrand F,(UL) is the nth power of a generating subspace
of UL, it follows easily that EY(UL) generates ESUL). Because

igp: L — Q(UL)

is a Lie map, it is then easy to show that the elements of EY(UL) pairwise
commute. It follows that @,_o EY(UL) is a commutative (associative, unitary)

algebra.
Let SL denote the symmetric algebra on (the underlying vector space of) L; let

igp: L — SL
denote the composite
L5 TL s SL = TL[ipx ®ipey — iry @ irgt | %,y €LY;
and let

8: BUL) > @ EY(UL)

n=0

denote the injection of EYUL) into @,_o ENUL) as a direct summand.
Since @®,_, EY(UL) is commutative, the universal mapping property which
(SL, i) satisfies guarantees that there is a unique map

F: SL — (@ EYUL)

n=0

of associative unitary algebras making the following diagram commutative:
L st SL

iuLl l F

iy(L) => EYUL) 2> é EY(UL).

n=0

It is easy to see that F is a coalgebra map. [One must, of course, at some point,
check that the Lie filtration (an algebra filtration) is also a coalgebra filtration;
but this is easy since, for xe L, d(iyx) = iy;x @ty -+ tyr ® dyx and
e(iy,x) = 0.] It is also easy to see that F' is surjective. [F maps a generating
subspace of SL onto a generating subspace of @, , ES(UL).] The PBW4
asserts that F is an isomorphism of Hopf algebras.
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It follows immediately from the PBW¢ that
iUL: L - Q( UL)

is injective. Conversely, in case the characteristic of K is zero (a condition
not used so far) it is not hard to show that the injectivity of 7,,; implies that
of F. Indeed, since SL is a pointed, irreducible coalgebra (Proposition 11.1.1
of [16]) it follows that

Fis 1-1 = F |p(5) 18 1-1,

where P(SL) is the space of primitive elements of SL. {This follows, for example,
from Lemma 11.0.1 of [16]). For the definitions, the reader is also referred
to Sect. 8 of [16].] But P(SV)~ V whenever x(K) = 0. [See Serre [14, pp.
LA.3.10-LA.3.11, Theorem 3.5], for example, or Jacobson [8, P- 170, Theorem 9
(Friedrichs)].] Thus

Flpsy =Foigy,

from which the assertion follows. [For a more elementary proof of this equiva-

lence, the reader is referred to Cartier [5, pp. 1-07-1-09, Lemma 2]. It is to be

noted, however, that even though the proof in [5] does not use Hopf algebraic

techniques so explicitly, it nonetheless employs the use of the diagonal on UL.]
We now transform the statement

F: SL — @ EY(UL) is an isomorphism of Hopf algebras,
-0
once more, to arrive at the form of the PBW# that we wish to dualize.

Recall that we are denoting by i5;: L — SL the injection of L into SL (as a
direct summand), and by B: EYUL) — @,_o EYUL) the injection of EYUL)
into @®y_o ES(UL) as a direct summand. It is easy to see that Im 5, generates
SL as an algebra and that Im 8 generates @®,,_o ES(UL) as an algebra. [These
facts are used to show the surjectivity of F.] Filter SL by powers of the gener-
ating subspace Im i5; and @, _, EYUL) by powers of the generating subspace
Im B by defining

Fy(SL) = 95K,
F(SL) = (g K +Imig)* for n>1

and

R, [@ EX( UL)] SN 4

n=0

F, [@ Eg(UL)] = [g=_, pwpK +ImpB]*  for n > 1.

n=0
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[Note that the filtration on SL (by powers of the generating subspace Im ig;)
is simply the Lie filtration on U(TrivL) = SL.] Since

F: SL — (P EY(UL)
n=0

is an algebra map, the commutativity of the diagram defining F guarantees
that F is a map of filtered (Hopf) algebras and so induces a map

EY(F): EX(SL) — E° (}Q: Eg(UL))

of the associated graded (Hopf) algebras. But the filtration on @, _, ES(UL)
is by the grading, so

E° (éi) EY UL)) ~ EYUL).

n=0
Note. Hereafter, we shall write @ E%UL) in place of @,_, EY(UL).

Moreover, SL is a graded algebra and the filtration on SL is by the grading;
hence E%(SL) ~ SL. Since E® and @ are functors, it follows that

F: SL — @ EYUL)
is an isomorphism of Hopf algebras if and only if the natural map
EY(F): EYSL) — EYUL)

is an isomorphism of (graded, connected, biassociative, bicommutative) Hopf
algebras,

This is the form of the PBW6 which we shall dualize, To do so, we introduce
a filtration on U°M, analogous to the Lie filtration on UL and called the Lie
Sfiltration on U°M. This filtration, which turns out also to be an algebra filtration,
is given by “wedges” of the cogenerating subspace

(ker ’ITU,,M)“L = ker Tyepg N ker €penr -
Let
oE(UM) = { £ (UM) = F(UM)|F,,(UM)}7_,

denote the associated graded coalgebra, and let

w @ oEn(UM) — E(UM)
n=0
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denote the projection of @, _ oE.(UM) onto the component of degree one.
Using the fact that ker my.), is a cogenerating subspace of UM one is able
to show that ker « is a cogenerating subspace of @®,,_¢ oE.(U°M). This, together
with the fact that

T yepst (UMY — M

is a Lie map, enables one to show that @, _y oE,(U°M) is cocommutative. Let
(S°V, mgey) denote the symmetric coalgebra discussed in Section 3. Since
@no oEn(U°M) is cocommutative, the universal mapping property which
(S°M, ey, satisfies guarantees that there exists a unique map

F: é oEn(UM) — SeM

n=0

of counitary coalgebras making the following diagram commute:
M——2M _ seMm

,,T i TF

OEUM) < @ oE(UM).

Here 7: (£, (U°M) — M is induced by myer,: UM — M. [In case M is locally
finite, 7 is a vector space isomorphism.] It is easy to see that F is injective
and an algebra map. But, in contradistinction to what occurs in the case of
Lie algebras, F'is not (in general) an isomorphism since S°M is not (in general)
graded. [If M == {0}, then of course S¢(0) = K, and @,_y oE.(U%(0)) ~K
as well.] We next filter S¢} by wedges of the cogenerating subspace (ker mgep,)*,
and we filter @;,_, (£,(U°M) by wedges of the cogenerating subspace (ker a)*.
The filtration on S°M is simply the Lie filtration on U¢(Triv M), whereas
the filtration on @®;,_, oE.(U°M) turns out to be a (decreasing) Hopf algebra
filtration arising from the grading. [From this latter fact, it follows that
oE (@ (E(UM)) = (E(U°M).] Since F: @,_q E(UM)— S<M is a map of
counitary coalgebras, the commutativity of the diagram defining F guarantees
that F is a map of filtered Hopf algebras. It follows that

F: @D EUM)— SM
induces a map

WE(F): oF (B B(UM)) — J(S°M),

1.e., a map
oS(F): E(UM) — (E(S°M)

of the associated graded Hopf algcbras.
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The Dual PBW# asserts that in case the ground field K has characteristic 0,
then the natural map

oB(F): E(UM) — (E(S°M)

is an isomorphism of graded, connected, biassociative, bicommutative Hopf
algebras whenever M is a locally finite Lie coalgebra (in fact, if and only if
M is locally finite).

Tueorem [The Dual Poincaré-Birkhoff-Witt Theorem]. Let M be a Lie
coalgebra over a field of characteristic zero. Then the natural map

oE(F): oE(U*M) — (E(S°M)

is an isomorphism of graded, connected, bicommutative, biassociative Hopf algebras
if and only if M is locally finite.

The ungraded version of this theorem asserts that, in characteristic zero,
the bicommutative, biassociative, pointed, irreducible, involutive Hopf algebras
@ E(UM) and @ (E(S°M) are isomorphic if and only if M is Jocally finite.

We conclude this section with a indication of two counterexamples. The
first of these concerns the Hopf algebra map

F: @ JE(UM) - SM

where M is a locally finite Lie coalgebra. We have noted above that F'is injective,
so it is natural to ask whether F is not also surjective. [In the case of Lie algebras,
the corresponding map is an isomorphism.] The following example shows
that this is not the case. Let M = L* where L is a finite dimensional Lie
algebra. Then

SYM) = S¢L*) = (SL),

where SL denotes the symmetric algebra on (the underlying vector space of) L.
We claim that (SL)® is not finitely generated as an algebra. The quickest way
to see this is to apply a result of Sweedler [17, p. 266, Corollary 2.2.0] to
conclude that if (SL)® were finitely generated, then the group

G(SL)®

of group-like elements of (SL)® would be a finitely generated free abelian
group, and hence countable. [By definition, an element x of a Hopf algebra
H is group-like if Ax = x (0 x.] But the group G(SL)® of group-like elements
of (SL)® coincides with the group Alg(SL, K) of algebra homomorphisms
from SL to K, where Alg(SL, K) has its group structure as a subgroup of the
convolution algebra Homg(SL, K) = (SL)*, i.e., the dual algebra of the co-
algebra SL. [This follows easily from the way in which the diagonal on the
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“upper zero” of a Hopf algebra is defined.] On the other hand, Alg(SL, K)
is isomorphic as a group to the underlying additive group of L*. Indeed, the
universal mapping property satisfied by the symmetric algebra (SL, i) on L
guarantees that the set map

Hom 4(SL, K) — Homy(L, K)

given by
frFfois

is bijective; in addition, this map is a group homomorphism since

(f * 8) o isu(®) = (f * g)isLx)
= fisex) g(tse) + f(¥se) glisx)
= f(isex) + glisox)
= (f + glis®)
= (f+ &) o isu(%).

It follows that the underlying additive group of L* is countable (being isomorphic
to G(SL)?), an absurdity. Thus, (SL)® cannot be finitely generated. On the
other hand, it can be shown that @ (E(U°M) is finitely generated. Thus F
cannot be an isomorphism and hence F' cannot be surjective.

The second example concerns the question of whether or not UM and
S¢M are isomorphic as augmented algebras. [Recall that in the case of a Lie
algebra L, the Poincaré-Birkhoff-Witt theorem may be considered as saying
that UL and SL are isomorphic as augmented coalgebras.] That the answer
to this is negative is shown by the following example, called to our attention
by M. Sweedler. Recall from the above that (SL)? is not finitely generated
(cf. Sweedler [17, p. 266]). On the other hand, (UL)® is precisely Hochschild’s
algebra of representative functions on UL (cf. [7, p. 500]). But if L is a finite
dimensional semi-simple Lie algebra, then a result of Harish-Chandra (cf.
{7, p. 513]) says that (UL)? is finitely generated. Hence UM and S°M cannot

be isomorphic in general.
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