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Rapid adaptive camouflage is the primary defense of soft-bodied cuttlefish. Previous studies have shown
that cuttlefish body patterns are strongly influenced by visual edges in the substrate. The aim of the pres-
ent study was to examine how cuttlefish body patterning is differentially controlled by various aspects of
edges, including contrast polarity, contrast strength, and the presence or absence of ‘‘line terminators’’
introduced into a pattern when continuous edges are fragmented. Spatially high- and low-pass filtered
white or black disks, as well as isolated, continuous and fragmented edges varying in contrast, were used
to assess activation of cuttlefish skin components. Although disks of both contrast polarities evoked rel-
atively weak disruptive body patterns, black disks activated different skin components than white disks,
and high-frequency information alone sufficed to drive the responses to white disks whereas high- and
low-frequency information were both required to drive responses to black disks. Strikingly, high-contrast
edge fragments evoked substantially stronger body pattern responses than low-contrast edge fragments,
whereas the body pattern responses evoked by high-contrast continuous edges were no stronger than
those produced by low-contrast edges. This suggests that line terminators vs. continuous edges influence
expression of disruptive body pattern components via different mechanisms that are controlled by con-
trast in different ways.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cephalopod camouflage is the fastest changing and most versa-
tile in the animal kingdom. These visually driven behaviors enable
cuttlefish and octopuses to move throughout complex habitats
such as coral reefs, kelp forests, and temperate rock reefs with rel-
ative impunity from detection or recognition by their numerous vi-
sual predators (Hanlon, 2007; Hanlon et al., 2011).

The cuttlefish disruptive body pattern may break up the ani-
mal’s body outline as well as providing some degree of background
matching that reduces detection (Cott, 1940). Most of the camou-
flage principles involved in disruptive body patterning emphasize
contrast/edges of animal and background (Stevens & Merilaita,
2009). The edge of an object is an abrupt change in spatial proper-
ties between object and background, and it is known that the vi-
sual systems of many animals are highly sensitive to edges
(Troscianko et al., 2009). However, complete edges of objects are
rare in cluttered visual environments. Instead, edge segments
(lines and corners) are more abundant in complex backgrounds;
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thus visual sensing of salient edges/lines in the background pro-
vides cuttlefish with rich information that can be potentially used
for disruptive body pattern expression (Chiao, Kelman, & Hanlon,
2005; Zylinski, Osorio, & Shohet, 2009b).

The expression of camouflage body patterns in cuttlefish is a
visually driven behavior (Hanlon & Messenger, 1988; Holmes,
1940; Marshall & Messenger, 1996), and previous studies have
shown that several low-level visual cues (intensity, contrast, area,
edges, visual depth, etc.) are important in eliciting disruptive body
patterns (Barbosa et al., 2008; Chiao, Chubb, & Hanlon, 2007;
Kelman, Osorio, & Baddeley, 2008; Zylinski, Osorio, & Shohet,
2009a). In a recent study, Zylinski, Osorio, and Shohet (2009b)
conducted the first experiment exploring how edges alone affect
the expression of disruptive body patterns. They showed that sub-
strates comprising randomly arranged, high-pass spatial filtered
disks (similar to the substrate S5 tested in the present study; see
Fig. 1) evoked moderately disruptive body pattern responses from
Sepia officinalis (similar in strength to those evoked by unfiltered,
homogeneous white disks). Zylinski, Osorio, and Shohet (2009b)
also observed that substrates derived by discarding all but 1/4 of
each filtered disk (similar to the substrate S6 tested in the present
study; see Fig. 1) continued to evoke disruptive body pattern
responses nearly as strong as those evoked by the substrates
populated by whole filtered disks.
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Fig. 1. Thirteen substrates used in the present study. A gray field populated with randomly placed white disks (S1) or black disks (S7) was filtered into low and high spatial
frequency bands to produce blurred disks (S2 and S8) and low-contrast full-edge-rings (S3 and S9). Low-contrast, quarter-edge-rings (S4 and S10) were produced by erasing a
random 270 deg arc from each low-contrast full-edge-ring. High-contrast versions of these edge substrates were generated by maximizing the overall contrast (S5–S6 and
S11–S12). Substrates S1–S6 are positive contrast polarity, S7–S12 are negative polarity, and S13 is black-white checkerboard.
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Much of the motivation for the present study was to pursue the
interesting leads in Zylinski, Osorio, and Shohet (2009b), partly be-
cause we noted the importance of edges in our previous work (Chi-
ao, Kelman, & Hanlon, 2005). Here we broadened the scope of the
study to include additional substrate combinations and image
analysis methods that allow us to quantify the activation of indi-
vidual skin components. Specifically, we tested three hypotheses
in the present study: (1) Cuttlefish respond to positive and nega-
tive contrast of objects (white and black disks on gray back-
grounds, respectively) differently; (2) Contrast of edges is
important for cuttlefish to modulate their disruptive body pattern
response; and (3) Cuttlefish’s sensitivity to lines and corners is dif-
ferent from continuous edges. By testing animals on carefully de-
signed substrates (Fig. 1) and analyzing their corresponding
responses, these experiments provide further insights into the
mechanisms by which edges, edge-fragments, contrast energy,
and contrast polarity control disruptive body patterns in cuttlefish.
2. Materials and methods

2.1. Animals and experimental setup

European cuttlefish (S. officinalis) were hatched, reared and
maintained in the MBL Marine Resources Center (Woods Hole,
MA, USA). Ten cuttlefish (mean ML = 5.57 cm) were used in this
study. To provide a stable visual environment and minimize stress
to the animals, the experimental trials were conducted inside a
tent made of black plastic sheeting. Each animal was placed inside
a 25 cm arena within a circular tank (50 cm diameter, 15 cm
height) equipped with flow-through seawater, where various com-
puter-generated artificial substrates (laminated to be waterproof)
were presented on both the floor and wall. A circular 40 W fluores-
cent light source (Phillips CoolWhite, Andover, MA, USA) was
placed directly above the arena to reduce the presence of shadows.
Once the animal had acclimated (i.e. ceased swimming and hover-
ing movements, and expressed a stable body pattern), a still image
was taken remotely using a digital camera (Nikon Coolpix 5400,
Melville, NY, USA) mounted 60 cm above the arena and connected
to an LCD monitor located outside of the tent area so that the ani-
mal’s movements could be observed without disturbing it.
2.2. Substrates

Thirteen artificial substrates were designed to examine the
interactions of several key visual features of background objects
(contrast polarity, contrast energy, edges, and edge-fragments)
on disruptive body pattern expression (Fig. 1). A mid-gray uniform
background with randomly placed white disks (S1) was filtered into
low and high spatial frequency bands to produce blurred white disks
(S2) and low-contrast full-edge-rings (S3). Note that the amplitudes
of S2 and S3 have been adjusted so that their sum is precisely equal
to S1; in addition, the filtering used to produce S2 and S3 ensures
that the summed contrast energy of S2 and S3 is equal to the contrast
energy of S1 itself. Low-contrast, quarter-edge-rings (S4) were pro-
duced by erasing a random 270 deg arc from each low-contrast full-
edge-ring in S3. Substrates S5 and S6 were high-contrast versions of
substrates S3 and S4. Substrates S7–S12 (negative contrast polarity)
were analogous to substrates S1–S6 (positive contrast polarity) ex-
cept that the initial disks in S7 were black instead of white. Substrate
S13 was a high-contrast black–white checkerboard and served as a
control as it has in many of our past experiments. Both the disk-
and check-sizes on these substrates were selected to be approxi-
mately equal in area to the average area of our animals’ white square
skin component.
2.3. Quantification of the strength of disruptive body patterns

We have developed an automated method to quantify the acti-
vation of five light and five dark skin components (Chiao et al.,
2009) used to generate disruptive body patterns described previ-
ously in S. officinalis (Hanlon & Messenger, 1988). In addition, we
also derived a new set of statistics reflecting the activation of dark
skin components on the head/arm of cuttlefish that have not been
characterized previously. These statistics are ‘‘dark head,’’ ‘‘dark
arm tip,’’ and the ‘‘third paired mantle spots’’ (see Fig. 2 for details).
In brief, to perform this component analysis, each animal image
was first cut out from the background on which it appeared and
warped to conform in size and shape to a standard cuttlefish tem-
plate. Then five intensity traces (one medial and four transverse
traces) were extracted from the image. The fluctuation in image
intensity along these traces was used to estimate the activation
strengths of all light and dark components. The summary statistic
(or, the disruptive score) was derived by adding the activations of
five light and five dark disruptive components previously de-
scribed in S. officinalis (Hanlon & Messenger, 1988).
3. Results

A glance at Fig. 3 reveals first that the skin components most
strongly activated by experimental substrates S1 through S12 are
the white square and the white head bar. However, those re-
sponses are variable, and few if any of them are maximal in



Fig. 2. Activation of 3 dark skin components on the head/arm of cuttlefish (Dark Head, Dark Arm Tip, and the 3rd Paired Mantle Spots) that have not been quantified
previously (Chiao et al., 2009). (A) Dark Head (DH) is the mean intensity of the head/arm region. (B) Dark Arm Tip (DAT) is derived from the intensity trace of the medial line.
We sample image intensities along the three red lines and take the average of the three traces. (C) The 3rd Paired Mantle Spots (PMS) is calculated by averaging activations
derived from the intensity trace of a line that runs horizontally across the region of the 3rd paired mantle spots. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Cuttlefish responses to 13 substrates (S1–S13 in Fig. 1) in the present study. Body patterns of all 10 animals were recorded immediately after a long acclimation time.
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strength (to see this, note that the activations of these two skin
components evoked by the control checkerboard substrate S13
tend to be substantially stronger than those evoked by the exper-
imental substrates). Our overall strategy was to analyze how the
variations in activation strength of these two skin components
are controlled by the features of experimental substrates S1–S12.
We observe in passing that our results (Fig. 4) seem to depart from
earlier findings of Zylinski, Osorio, and Shohet (2009b) who re-
ported that cuttlefish skin component activations evoked by sub-
strates similar to S1 and S5 were much stronger.

3.1. Positive and negative contrast polarities activate different
disruptive skin components

Although it has been known that light objects on dark back-
grounds are effective in evoking disruptive body patterns in cuttle-
fish (Chiao & Hanlon, 2001a, 2001b), whether dark objects on light
backgrounds are also effective in modulating body patterning is
less studied (Mäthger et al., 2007). While overall disruptive body
pattern expression and major light/dark skin component activa-
tions of cuttlefish on S1 and S7 were both weak (Fig. 4A), close
examination of all animal responses revealed that animals showed
more dark components on S7 than on S1, particularly in the head/
arm region and the third paired mantle spots (Fig. 3). To quantify
these responses, we developed a new set of statistics to capture
these differences (Fig. 2): the ‘‘dark head’’, ‘‘dark arm tip’’, and
‘‘third paired mantle spots’’ statistics. Cuttlefish tend to express
stronger dark head, dark arm tip, and third paired mantle spots
on S7 than on S1 (Fig. 5). However, paired samples t-tests only par-
tially confirm these observations. Dark head activation was higher
on S7 than on S1, but not significantly so (t = 2.248, df = 9,
p = 0.051, two-tailed); however, note that because activations are
quantified based on deviations from the mean intensity of the ani-
mal, dark components on a dark animal have much lower activa-
tion strengths than a similarly dark head on a light animal. Dark
arm tip activation was significantly higher on S7 than on S1
(t = 2.568, df = 9, p = 0.030, two-tailed). Finally, the third paired
mantle spots activation was also higher on S7 than on S1, but this



Fig. 4. Average total disruptive scores and individual disruptive skin component activations of 10 cuttlefish in response to 13 substrates. Disks of both contrast polarities
evoked moderately disruptive patterns, but high-frequency information alone drove responding to white disks whereas high- and low-frequency information were both
required to drive responding to black disks. Strikingly, high-contrast quarter-edge-rings evoked much more strongly disruptive responses than low-contrast quarter-edge-
rings; by comparison, high- and low-contrast full-edge-rings evoked similar responses. WS, white square; WHB, white head bar. Error bars are SEM.

Fig. 5. Average dark skin component activations of 10 cuttlefish in response to substrates of different contrast polarity (S1–S3 vs. S7–S9). Cuttlefish pattern responses to
white vs. black disks (S1 vs. S7) used different skin components. DH, dark head; DAT, dark arm tip; PMS, 3rd paired mantle spots. Error bars are SEM.

C.-C. Chiao et al. / Vision Research 83 (2013) 40–47 43
difference did not reach statistical significance (t = 2.144, df = 9,
p = 0.061, two-tailed). On the other hand, cuttlefish showed more
light components on S1 than on S7 (Fig. 3). In particular, white
square activation was significantly higher on S1 than on S7
(t = 2.531, df = 9, p = 0.032, two-tailed); white head bar activation
was also higher on S1 than on S7 but not significantly so
(t = 2.104, df = 9, p = 0.065, two-tailed). Taken together, these re-
sults suggest that different skin components are activated by a
substrate populated by mostly dark vs. light objects.

Note that substrate patterns S1 and S7 are photographic nega-
tives of each other and therefore have identical Fourier energy
spectra (excluding the 0-frequency ‘‘dc’’ Fourier component that
reflects the mean reflectance of the substrate). Thus, the fact that
cuttlefish produced significantly different patterns in response to
white- vs. black-disk substrates underscores an observation made
previously by Kelman et al. (2007) that patterning responses are
sensitive not merely to the energy spectrum of the substrate, but
also to the phase spectrum. A more surprising difference along
these same lines is seen by comparing the white square activation
evoked by the high-pass filtered white disks (S3) vs. the high-pass
filtered black disks (S9). These two substrates are also photo-
graphic negatives of each other, and they have equal mean reflec-
tance. They thus have identical Fourier energy spectra. It appears
that the high-pass filtered white disks (S3) evoke stronger white
square activation than the high-pass filtered black disks (S9)
(Fig. 4B); however, this difference fails to achieve statistical signif-
icance (t = 2.171, df = 9, p = 0.058, two-tailed).

Considering the Fourier energy spectra of these substrates, the
energy of S1 is the sum of those of S2 and S3. Thus, if Fourier en-
ergy were the critical factor in determining response strength, S1
should always produce activation at least as strong as either S2
or S3. However, significantly stronger overall pattern expression
was evoked by S3 than S1 (t = 2.815, df = 9, p = 0.020, two-tailed);
in addition, significantly stronger white head bar activation was
evoked by S3 than S1 (t = 2.877, df = 9, p = 0.018, two-tailed).
Although white square activation was also generally stronger on
S3 than on S1, this difference was not statistically significant
(t = 1.621, df = 9, p = 0.139, two-tailed). This confirms previous
findings that edge information alone is sufficient to elicit disrup-
tive body patterns in cuttlefish (Zylinski, Osorio, & Shohet,
2009b) and shows moreover that decreasing the amplitudes of
the low-frequency Fourier components in the substrate actually in-
creases the activation strength of both the overall disruptiveness
and the white head bar.

The trend is different when we consider the negative polarities.
Note that S7 is literally the sum of S8 and S9, and S7 produced sig-
nificantly higher overall pattern expression than S8 by itself
(t = 2.908, df = 9, p = 0.017, two-tailed), though not S9 by itself
(t = 1.942, df = 9, p = 0.084, two-tailed). This is seen most clearly
in Fig. 5, which shows that the dark heads, dark arm tips, and third
paired mantle spots of the cuttlefish were significantly more
strongly activated on S7 than on S8 (DH: t = 2.640, df = 9,
p = 0.027, two-tailed; DAT: t = 2.928, df = 9, p = 0.017, two-tailed;
PMS: t = 3.234, df = 9, p = 0.010, two-tailed) or on S9 (DH:
t = 2.976, df = 9, p = 0.016, two-tailed; DAT: t = 2.830, df = 9,
p = 0.020, two-tailed) except for the PMS (t = 1.740, df = 9,
p = 0.116, two-tailed).Thus, in comparison to the case of the posi-
tive polarity disks, the high- and low-frequency information in
S8 and S9 combine (in S7) to increase responding above that pro-
duced by either substrate alone.

Taken together, these results show that variations in positive vs.
negative contrast play markedly different roles in determining
activations of skin components for disruptive pattern response.
Apparently, negative polarities tend to activate dark skin compo-
nents whereas positive polarities tend to activate light skin compo-
nents. Moreover, in substrate elements of positive contrast
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polarity, high spatial frequencies operate strongly to activate light
skin components while low spatial frequencies suppress such acti-
vation. By contrast, in substrate elements of negative contrast
polarity, both high and low spatial frequencies seem to promote
the activation of dark skin components.

3.2. Full high-pass filtered rings evoke different responses than ring
segments

To provide insight into the processes by which continuous
edges vs. fragmented edges control disruptive body pattern re-
sponse, in substrates S3, S4, S5, S6, S9, S10, S11, and S12 the factors
of polarity (positive vs. negative), contrast (low vs. high), and ring-
state (full vs. quarter) were fully crossed. The results of a three fac-
tor ANOVA with repeated measures investigating how these three
factors interact to control white square activation are given in Ta-
ble 1. This table reveals a significant main effect of contrast, and a
significant interaction between contrast and ring-state.

To better understand the nature of the interaction between con-
trast and ring-state, it is useful to consider the raw image data that
enter into this analysis, displayed in Fig. 3. Each row of this figure
shows the responses of a single cuttlefish to each of our 13 sub-
strates. Note first that the white squares of all ten animals were
activated by S6 (high contrast, positive polarity, quarter-rings)
whereas the white square activations were generally much weaker
in response to S4 (low contrast, positive polarity, quarter-rings). By
comparison, white square activation appears to be of similar
strength in response to S5 (high contrast, positive polarity, full-
rings) and S3 (low contrast, positive polarity, full-rings). A similar
trend of results is observed when we consider the negative polarity
versions of these substrates, S9, S10, S11, and S12. White square
activation appears much stronger for S12 than for S10; however,
white square activation appears less different for S9 and S11.

Fig. 6A plots the marginal mean white square activations for
low vs. high contrast full-ring (solid line) vs. quarter-ring (dashed
line) substrates, where means pool across activations evoked by
Table 1
Result of a three factor ANOVA with repeated measures for activation of the white
square of cuttlefish on Substrates 3–6 and 9–12.

df MS F p

Polarity (positive vs. negative) 1 0.036 4.057 0.075
Contrast (low vs. high) 1 0.110 11.880 0.007*

Ring-state (full vs. quarter) 1 0.005 1.386 0.269
Polarity � Contrast 1 0.003 1.302 0.283
Polarity � Ring-state 1 0.011 1.898 0.202
Contrast � Ring-state 1 0.040 8.255 0.018*

Polarity � Contrast � Ring-state 1 0.002 0.572 0.469

* p < 0.05 is statistically significant.

Fig. 6. Interactions between contrast (low vs. high) and edge ring (full vs. quarter) in thre
WHB (white head bar). See Tables 1 and 2 for statistical results. These interactions su
mechanisms that are controlled by contrast in different ways. The Y-axis is scaled based
positive- and negative-polarity substrates. This plot distills the ef-
fects we noted in Fig. 3. In particular, increasing the contrast of the
full-ring substrate had little effect on white square activation;
however, increasing the contrast of the quarter-ring substrate pro-
duced a large increase in white square activation.

To gain deeper insight into the interaction between ring-state
and contrast, we analyzed the effects of ring-state and polarity
on white square activation within just the low-contrast substrates
S3, S4, S9, and S10 and also just within the high-contrast substrates
S5, S6, S11, and S12. We focus first on the low-contrast substrates
(S3, S4, S9, and S10). Although the white square activations evoked
by the positive polarity substrates S3 and S4 seem to be higher
than those evoked by the negative polarity substrates S9 and
S10, this effect fails to achieve statistical significance (the main ef-
fect of polarity in the two factor ANOVA of Table 2 yields p = 0.065).
A completely different trend of results emerges when we focus on
just the high-contrast full- and quarter-ring substrates S5, S6, S11,
and S12. Even though the high-contrast, quarter-ring substrates S6
and S12 have only one quarter the total contrast energy of the cor-
responding high-contrast, full-ring substrates S5 and S11, the
quarter-ring substrates evoked stronger white-square activation
than the full-ring substrates. A two factor ANOVA (Table 3) analyz-
ing the effects of ring-state and polarity within just the high con-
trast substrates S5, S6, S11, and S12 confirms that this effect of
ring-state was highly significant.

For the white head bar, we performed an analysis parallel to
that reported above for the white square. That is, for this skin com-
ponent, we also conducted a three factor ANOVA with repeated
measures (focused on substrates S3, S4, S5, S6, S9, S10, S11, and
S12) investigating how the factors of polarity, contrast, and ring-
state interact to control activation. The results for the white head
bar are given in Table 4. As we found for the white square, there
was a significant main effect of contrast as well as a significant
interaction between contrast and ring-state for the white head
bar. As shown in Fig. 6, the basic pattern of this interaction was
the same for both the white square and the white head bar. In this
case, increasing substrate contrast boosts skin-component activa-
tion more for quarter-ring substrates than it does for full-ring sub-
strates. To further explore the nature of the contrast and ring-state
interaction (as we did for the white square), we performed sepa-
rate two factor polarity by ring-state ANOVAs within each of the
two contrast levels. For the white head bar, both the low-contrast
and the high-contrast polarity by ring-state ANOVA (Tables 5 and
6) yielded no significant effects.

To summarize: ring-state interacts strongly with contrast in
controlling skin component activation. This is especially clear for
the white square, but the white head bar also shows a similar pat-
tern. In particular, high- (S5, S11) and low-contrast (S3, S9) full-
ring substrates tend to evoke skin component activations of similar
e factor ANOVA with repeated measures for activations of the WS (white square) and
ggest that line terminators and edges influence disruptive patterning via different

on the standard errors of the dependent variables.



Table 2
Result of the two factor ANOVA with repeated measures for activation of the white
square of cuttlefish on Substrates 3–4 and 9–10 (low contrast).

df MS F p

Polarity (positive vs. negative) 1 0.031 4.418 0.065
Ring-state (full vs. quarter) 1 0.008 1.130 0.315
Polarity � Ring-state 1 0.012 2.337 0.161

Table 3
Result of the two factor ANOVA with repeated measures for activation of the white
square of cuttlefish on Substrates 5–6 and 11–12 (high contrast).

df MS F p

Polarity (positive vs. negative) 1 0.009 1.930 0.198
Ring-state (full vs. quarter) 1 0.037 26.185 0.001*

Polarity � Ring-state 1 0.002 0.373 0.556

* p < 0.05 is statistically significant.

Table 4
Result of a three factor ANOVA with repeated measures for activation of the white
head bar of cuttlefish on Substrates 3–6 and 9–12.

df MS F p

Polarity (positive vs. negative) 1 0.006 1.122 0.317
Contrast (low vs. high) 1 0.012 7.896 0.020*

Ring (full vs. quarter) 1 0.001 0.274 0.613
Polarity � Contrast 1 0.001 3.355 0.100
Polarity � Ring-state 1 0.001 0.499 0.498
Contrast � Ring-state 1 0.005 8.157 0.019*

Polarity � Contrast � Ring-state 1 0.001 0.918 0.363

* p < 0.05 is statistically significant.

Table 5
Result of the two factor ANOVA with repeated measures for activation of the white
head bar of cuttlefish on Substrates 3–4 and 9–10 (low contrast).

df MS F p

Polarity (positive vs. negative) 1 0.001 0.305 0.594
Ring-state (full vs. quarter) 1 0.004 2.175 0.174
Polarity � Ring-state 1 0.002 1.918 0.199

Table 6
Result of the two factor ANOVA with repeated measures for activation of the white
head bar of cuttlefish on Substrates 5–6 and 11–12 (high contrast).

df MS F p

Polarity (positive vs. negative) 1 0.006 2.450 0.152
Ring-state (full vs. quarter) 1 0.001 1.006 0.342
Polarity � Ring-state 1 0.000 0.011 0.919
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strength; by stark comparison, low-contrast quarter-ring sub-
strates (S4, S10) tend to evoke activations that are lower than those
evoked by the full-ring substrates (both low and high contrast)
whereas high-contrast quarter-ring substrates (S6, S12) tend to
evoke activations that are substantially higher than those evoked
by the full-ring substrates despite the fact that the high-contrast
quarter-ring substrates have only a quarter of the contrast energy
present in the high-contrast full-ring substrates.
4. Discussion

These experiments afford several new insights into how disrup-
tive body patterns in cuttlefish are controlled by various image fea-
tures and statistics of the visual background. Although the
substrates used in the current study evoked only weak disruptive
body patterns (meaning that only 3 or 4 of the possible 11 compo-
nents were expressed), the importance of edges and edge segments
was evident. Disruptive coloration relies partly on false edges that
break up the body outline (Cott, 1940; Stevens & Merilaita, 2009),
and in cluttered visual environments where such body patterns ap-
pear effective, edge segments are abundant and may provide sali-
ent visual cues for evoking disruptive body patterns.

4.1. Termination points in quarter-ring substrates (i.e. line
terminators) are important cues for driving disruptive pattern
responses

Previous studies have shown that substrate contrast is impor-
tant in evoking disruptive body patterns in cuttlefish (Barbosa
et al., 2008; Chiao & Hanlon, 2001a; Chiao, Chubb, & Hanlon,
2007; Zylinski, Osorio, & Shohet, 2009a). The present study sug-
gests further that continuous edges (of the sorts present in sub-
strates S3, S5, S9, and S11) and line terminators (of the sorts
present in substrates S4, S6, S10, and S12) influence disruptive
body pattern expression via different mechanisms. The most obvi-
ous indication of this is that even though the high-contrast, quar-
ter-ring substrates (S6 and S12) contain only 1/4th the contrast
energy of the high-contrast full-ring substrates (S5 and S11), the
high-contrast quarter-ring substrates nonetheless produced sub-
stantially higher white square component activation than did the
high-contrast full-ring substrates (S5 vs. S6, t = 2.478, df = 9,
p = 0.035, two-tailed; S11 vs. S12, t = 2.535, df = 9, p = 0.032, two-
tailed). We conclude that cuttlefish are highly responsive to some
features in the quarter-ring substrates that are absent from the
full-ring substrates. The most likely candidate features are the
end-points of the quarter-ring segments.

Why might one expect the end-points of the quarter-ring seg-
ments to be especially effective in driving disruptive body pattern
expression? One reason is that these end-points have important
statistical properties not present in the full-ring substrates. An im-
age region that cannot be well-approximated by some pattern of
straight, parallel grayscale striations is called ‘‘intrinsically two-
dimensional.’’ Although any small segment of one of the rings in
a full-ring substrate is quite low in intrinsic two-dimensionality
(since such a segment can, in fact, be well-approximated by a pat-
tern of striations), the end-points of the segments present in the
quarter-ring substrates have very high intrinsic two-dimensional-
ity (since they cannot be well-approximated by patches of straight,
parallel, gray-scale striations). Points of high intrinsic two-dimen-
sionality are likely to be useful for identifying and localizing targets
in a cluttered scene as well as for unambiguously identifying the
direction of movement of a target. It has been proposed that flying
insects that face the challenge of intercepting flying targets in clut-
tered environments are highly sensitive to points of high intrinsic
two-dimensionality in the visual input (Nordström & O’Carroll,
2009). It has also been proposed that human vision is pre-atten-
tively sensitive to intrinsically two-dimensional image features
(Barth, Zetzsche, & Rentschler, 1998).

There are good reasons to suppose that the end-points in the
quarter-ring substrates activate a population of visual neurons
other than those activated by the continuous edges in the full-ring
substrates. The continuous rings present in both the full- and quar-
ter-ring substrates will drive simple and complex cells (assuming
neurons of these sorts are present in cuttlefish); however, only the
quarter-ring substrates (S6 and S12) will effectively drive hyper-
complex (end-stopped) neurons (DeAngelis, Freeman, & Ohzawa,
1994; Gilbert, 1977; Hubel & Wiesel, 1968; Kato, Bishop, & Orban,
1978; Orban, Kato, & Bishop, 1979a, 1979b; Yamane, Maske, &
Bishop, 1985). Hypercomplex neurons are selective not merely for
bars of a particular orientation and spatial frequency but also
require the bars to be truncated; they do not respond to continuous
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elongated patterns. We therefore speculate that the activation of the
white square and the white head bar evoked so much more effec-
tively by the quarter-ring than the full-ring substrates, is mediated
by neurons sensitive specifically to the end-points of the quarter-
rings. These neurons may be hypercomplex cells. Alternatively, they
may be selective not specifically for truncated bar patterns (as one
would expect of hypercomplex cells) but for some other image
statistic such as intrinsic two-dimensionality. A recent study
showing that cuttlefish responded to fragmented circles and
scattered circle fragments differently (Zylinski, Darmaillacq, &
Shashar, 2012) suggests that cuttlefish responses to fragments
may also depend on the orientation of neighboring objects.

The current results suggest that the neurons selectively acti-
vated by ring-segment end-points are much more sensitive to vari-
ations in contrast than the neurons activated by the full-ring. As
shown clearly in Fig. 6, for each of the white square and the white
head bar, skin component activation differs only slightly between
the low- vs. high-contrast full-ring substrates (pooling over posi-
tive and negative polarities); by comparison, activation (in both
of these skin components) is dramatically higher on the high-con-
trast vs. the low-contrast quarter-ring substrate.

It is also possible that cuttlefish are sensitive not only to the end-
points of the quarter-ring segments, but also to the overall contrast
of the substrate. The finding that S4 (the lowest in contrast energy
among S3, S4, S5, and S6) evoked much weaker disruptive compo-
nent activations than did S3, S5, and S6 (Fig. 3B and C) could be
due to a nonlinear process in which substrates with energy less than
some threshold are equivalent to uniform gray in terms of their
influence on skin component activations. Perhaps the cuttlefish does
some global computation of contrast energy, and if this net energy is
less than some threshold, it automatically suppresses its response,
irrespective of the properties of these substrates. However, this
explanation cannot fully account for the finding that the high-con-
trast quarter-ring substrate produced higher activation than did
the high-contrast full-ring substrate.

4.2. The failure of the Fourier amplitude principle: implications

Many perceptual processes obey the Fourier amplitude princi-
ple, which proposes that the salience of a stimulus and hence its
effectiveness in controlling behavior is a non-decreasing function
of the amplitude in the stimulus of any given Fourier component.
This principle has been invoked in standard theories to explain
(1) the detection and appearance for human observers of very
low contrast patterns (Blakemore & Campbell, 1969; Campbell &
Robson, 1968; Robson, 1966), and (2) motion perception (Chubb
& Sperling, 1988; Watson, Ahumada, & Farrell, 1986).

In particular, Julesz (1962, 1975) famously conjectured that two
visual textures will be preattentively discriminable only if they
have different Fourier amplitude spectra. Although counterexam-
ples to this conjecture were eventually discovered (e.g., Diaconis
& Freedman, 1981; Julesz, Gilbert, & Victor, 1978), the amplitude
spectrum principle proved remarkably successful in accounting
for most instances of preattentive texture segregation (Bergen &
Adelson, 1988; Sutter, Beck, & Graham, 1989).

Given, especially, its effectiveness in handling most cases of hu-
man preattentive texture segregation, one might wonder whether
the Fourier amplitude principle holds for the processes by which
visual substrates control skin component activation in cuttlefish.
That this might be true is suggested by the observation that
high-contrast substrates (i.e., substrates in which the amplitudes
of Fourier components are predominantly high) tend to evoke pat-
tern responses in which skin components are more strongly acti-
vated than do low contrast substrates (Barbosa et al., 2008).

Note, however, that if the Fourier amplitude principle holds
for the processes through which skin component activations are
controlled by the substrate, then lowering the amplitude of any
given Fourier component in a substrate can never increase the
strength with which any given disruptive skin component is acti-
vated. Under this principle, S1 should always produce activation
at least as strong as either S2 or S3. However, we found that the
overall disruptiveness and the white head bar were significantly
more strongly activated on S3 than on S1 despite the fact that S3
is a high-pass filtered version of S1 (i.e., S3 is identical to S1 except
that the amplitudes of many low spatial frequency Fourier compo-
nents in S3 have been strongly attenuated).

This finding rules out a class of rudimentary models of disrup-
tive pattern responding. Specifically, we must reject any model
proposing that the activation of a given skin component is con-
trolled by a weighted sum of the responses of visual neurons, each
of which produces a response whose magnitude is a non-decreas-
ing function of the amplitude of any given Fourier component in
the visual input.

It is not, however, difficult to imagine simple modifications to
models of this sort that could account for the current results. For
example, if the visual neurons controlling skin component activa-
tion are subject to divisive normalization (review in Carandini
and Heeger, 2011), then the response strength of any given visual
neuron controlling skin component activation is likely to depend
on the relative amplitudes of different Fourier components. In this
case, if a skin component such as the white head bar is more sen-
sitive to high than to low spatial frequencies in the substrate, its
activation may well increase as the ratio of high-to-low spatial fre-
quency energy in the substrate is increased. This is precisely what
occurs in substrate S3 vs. S1: the ratio of high spatial frequency to
low spatial frequency energy is much higher in S3 than it is in S1.

It should be noted that Zylinski, Osorio, and Shohet (2009b) did
not observe a significant difference between the patterning re-
sponses on S1 and S3, nor did they observe a significant difference
between the responses on S5 and S6. Although we do not know the
exact cause of the discrepancy between their results and ours, dif-
ferent quantification methods (manual grading with principal
component analysis vs. objective assessment of individual compo-
nent activation) may lead to slightly different results. More impor-
tantly, they tested fewer animals; their study therefore had less
statistical power to observe the effects we have documented here.

In any case, the present study provides new perspectives on the
visual processing of edge information in controlling camouflage
body patterning in cuttlefish. Specifically, we suggest that end-
stopped neurons may be involved in detecting lines and corners,
which are distinctly different from the continuous edges, and vi-
sual neurons that control skin component activation could use
divisive normalization to assess various features of objects in the
scene.
5. Conclusion

The current experiments have revealed a number of ways in
which the features of visual edges in the substrate act to control
the body pattern deployed by cuttlefish. First, the patterning re-
sponse is quite sensitive to the contrast polarity of the substrate;
that is, the skin components activated by the substrate comprising
black disks on a gray background tend to be dark, whereas those
activated by white disks on a gray background tend to be light.
Although this sounds like a naturally expected result, it has not
been suggested or reported in the past.

Second, high-pass filtering a substrate comprising white disks
on a gray background (S1) yields a substrate (S3) with heightened
power to activate the white square. This result rules out models in
which skin component activation is a non-decreasing function of
the amplitude of any given Fourier component. An alternative
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model that could explain this finding proposes that activation is
controlled by the ratio of high-to-low-frequency amplitudes in
the substrate.

Third, the line terminators introduced into a substrate (e.g., S4,
S6, S10, S12) when continuous rings are fragmented emerge as
important features that operate differently from continuous edges
(as in substrates S3, S5, S9, S11) to influence patterning. In partic-
ular, the effectiveness of line terminators in activating both the
white square and the white head bar increases as substrate con-
trast is increased; by comparison, the effectiveness of continuous
rings in activating these skin components changes little if at all
with a corresponding increase in contrast. This suggests that line
terminators control skin component activation via a different neu-
ral pathway (perhaps involving hypercomplex, or end-stopped,
neurons) than the pathway used by continuous rings.

We begin to see, then, what it takes to achieve effective camou-
flage. The impact exerted by a visual edge on the patterning re-
sponse of a cuttlefish depends in subtle and complicated ways on
the features of the edge: its spatial frequency content; its contrast;
whether or not it is continuous or fragmented; and various interac-
tions among these features. The present study thus provides in-
sights into visual perception and concealment strategy in animals
(Troscianko et al., 2009). Both background matching and disruptive
coloration tactics of camouflage rely on animals extracting edge
features from scenes. In turn, activation of skin components is dif-
ferentially sensitive to interactions of these features. This results in
adaptive camouflage body patterns, which help animals to defeat
the visual mechanisms of edge detection and object recognition
of predators.
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