# State-Delayed Matrix Differential-Difference Equations 

G. Adomian<br>Center for Applied Mathematics, University of Georgia<br>Submitted by E. Stanley Lee

> Matrix differential-difference equations involving delayed state terms are solvable by the decomposition method without linearization. 1986 Academic Press, Inc.

Differential-difference equations (or delay equations) arise naturally in complex physical systems involving time delay or lag in propagation of effects. Such systems can include a human physiological system, a national economy, control problems in large systems, and a host of other applications. The equations in general will be nonlinear and stochastic and, in special cases, may be linear or deterministic or both.

## 1

Let us begin with the simple deterministic linear time-invariant statedelayed $n$th order matrix differential-difference equations with normalized delay of unity. In more general equations, of course, we can consider timedependent or random delays as well [1]. We are considering the system

$$
\dot{y}(t)=A_{0} y(t)+A_{1} y(t-1), \quad t \geqslant 0
$$

where $y$ is an $n \times 1$ vector (the state vector), $A_{0}, A_{1}$ are constant ${ }^{1} n \times n$ matrices, and the initial state vector is specified. Thus we have

$$
\begin{aligned}
(d / d t)\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]= & {\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & & & \\
\vdots & & & \\
a_{n 1} & \cdots & & a_{n n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] } \\
& +\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{n 1} \\
b_{21} & & & \\
\vdots & & & \\
b_{n 1} & \cdots & & b_{n n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
\end{aligned}
$$

${ }^{1}$ Cases for time-varying or stochastic elements are considered elsewhere [2].
where $D y(t)=y(t-1)$. Thus

$$
\begin{aligned}
& d y_{1} / d t=a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 n} y_{n}+b_{11} D y_{1}+\cdots+b_{n 1} D y_{n} \\
& d y_{2} / d t=a_{21} y_{1}+\cdots+a_{2 n} y_{n}+b_{21} D y_{1}+\cdots+b_{21} D y_{n} \\
& \vdots \\
& d y_{n} / d t=a_{n 1} y_{1}+\cdots+a_{n n} y_{n}+b_{n 1} D_{y 1}+\cdots+b_{n 1} D y_{n}
\end{aligned}
$$

a system of $n$ coupled equations. Let $L=d / d t$. Write each $y_{k}=\sum_{m=0}^{\infty}\left(y_{k}\right)_{m}$ and $y_{k}(0)=\left(y_{k}\right)_{0}$ as a component of the initial state vector. Now

$$
\begin{aligned}
& y_{1}=\left(y_{1}\right)_{0}+L^{-1}\left[a_{11} \sum_{m=0}^{\infty}\left(y_{1}\right)_{m}+\cdots+a_{1 n} \sum_{m=0}^{\infty}\left(y_{n}\right)_{m}\right. \\
& \left.\quad+b_{11} D \sum_{m=0}^{\infty}\left(y_{1}\right)_{m}+\cdots+b_{1 n} D \sum_{m=0}^{\infty}\left(y_{n}\right)_{m}\right] \\
& \vdots \\
& y_{n}=\left(y_{n}\right)_{0}+L^{-1}[\cdot]
\end{aligned}
$$

where the bracketed quantity is the same as in the expression above.
The second components $\left(y_{1}\right)_{1},\left(y_{2}\right)_{1}, \ldots,\left(y_{n}\right)_{1}$ are given by

$$
\begin{aligned}
& \left(y_{1}\right)_{1}=L^{-1}\left[a_{11}\left(y_{1}\right)_{0}+\cdots+a_{1 n}\left(y_{n}\right)_{0}+b_{11} D\left(y_{1}\right)_{0}+\cdots+b_{1 n} D\left(y_{n}\right)_{0}\right] \\
& \vdots \\
& \left(y_{n}\right)_{1}=L^{-1}\left[a_{n 1}\left(y_{1}\right)_{0}+\cdots+a_{n n}\left(y_{n}\right)_{0}+b_{n 1} D\left(y_{1}\right)_{0}+\cdots+b_{n n} D\left(y_{n}\right)_{0}\right]
\end{aligned}
$$

which are calculable since they involve only components of the initial vector.

The third components $\left(y_{1}\right)_{2}, \ldots,\left(y_{n}\right)_{2}$ are

$$
\begin{aligned}
& \left(y_{1}\right)_{2}=L^{-1}\left[a_{11}\left(y_{1}\right)_{1}+\cdots+a_{1 n}\left(y_{n}\right)_{1}+b_{11} D\left(y_{1}\right)_{1}+\cdots+b_{1 n} D\left(y_{n}\right)_{1}\right] \\
& \vdots \\
& \left(y_{n}\right)_{2}=L^{-1}\left[a_{n 1}\left(y_{1}\right)_{1}+\cdots+a_{n n}\left(y_{n}\right)_{1}+b_{n 1} D\left(y_{1}\right)_{1}+\cdots+b_{n n} D\left(y_{n}\right)_{1}\right]
\end{aligned}
$$

again calculable since it depends only on the calculated components, etc., to determine $\sum_{m=0}^{\infty}\left(y_{1}\right)_{m}, \ldots, \sum_{m=0}^{\infty}\left(y_{n}\right)_{m}$ to some desired $m$ which is a sufficient approximation. The operator $D$ acts to delay by unity thus $D \phi(t)=$ $\phi(t-1)$, etc.

## 2

Now we consider a nonlinear term $N y$ to be present. Its exact form does not matter so long as (Adomian's) polynomials [1,2] can be generated for
the nonlinearity which can be a product or composite nonlinearity as well as simple ones including polynomial, trigonometric, decimal power, etc. $N y$ is simply written as $\sum_{m=0}^{\alpha} A_{m}$ and since each $A_{m}$ involves only the first $m$ components of the state vector, the calculation is as easy as for the linear case $[1,2]$. For example, if we add to the previous two terms the vector whose components are $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$ then

$$
\begin{aligned}
& \left(y_{1}\right)_{1}=L^{-1}[\cdot]+L^{-1}\left(y_{1}\right)_{0}^{2} \\
& \left(y_{1}\right)_{2}=L^{-1}[\cdot]+L^{-1} 2\left(y_{1}\right)_{0}\left(y_{1}\right)_{1}
\end{aligned}
$$

since $A_{0}\left(y^{2}\right)=y_{0}^{2}, A_{1}\left(y^{2}\right)=2 y_{0} y_{1}$, etc. [2].

3

Now suppose we have a stochastic matrix coefficient or coefficients. Then averaging is done after the components are determined to the desired $m$. Convergence is discussed in [2].

## References

1. G. Adomian, "Stochastic Systems," Academic Press, New York, 1983.
2. G. Adomian, "Nonlinear Stochastic Operator Equations," Academic Press, New York, in press.
