
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 114, 426-428 (1986) 

State- Delayed Matrix 
Differential- Difference Equations 

G. ADOMIAN 

Center for Applied Mathematics, University of Georgia 

Submitted by E. Stanley Lee 

Matrix differential-difference equations involving delayed state terms are solvable 
by the decomposition method without linearization. ‘13 1986 Academic PRESS, IX 

Differential-difference equations (or delay equations) arise naturally in 
complex physical systems involving time delay or lag in propagation of 
effects. Such systems can include a human physiological system, a national 
economy, control problems in large systems, and a host of other 
applications. The equations in general will be nonlinear and stochastic and, 
in special cases, may be linear or deterministic or both. 

1 

Let us begin with the simple deterministic linear time-invariant state- 
delayed nth order matrix differential-difference equations with normalized 
delay of unity. In more general equations, of course, we can consider time- 
dependent or random delays as well [ 11. We are considering the system 

I’(t) = A0 Y(f) + A 1 Y(l- 11, t>Q 

where y is an n x 1 vector (the state vector), A,, A r are constant’ n x n 
matrices, and the initial state vector is specified. Thus we have 

’ Cases for time-varying or stochastic elements are considered elsewhere [2]. 
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where Dy( t) = y(t - 1). Thus 

dY,ldt=a*lY, +a12y,+ .*. +%y,+b,,Dy* + .‘. +b,lDyn 

dy,ldr=u,, y, + ... +a,,y,+b,,Dy, + ... +b,,Dy, 

dy,/dt = a,1 y, + . . . + u,, y, + b,, DY1 + . . . + b,, Dy, 

a system of n coupled equations. Let L = d/dr. Write each y, = C,“=,( yk)m 
and ~~(0) = (y,), as a component of the initial state vector. Now 

Y,=(Y,)o+L-’ 
[ 

a11 f  (Yl)m+ ... +a,, f (Y”), 
f?l=O m=O 

Yn=(YJo+L-‘II.1 

where the bracketed quantity is the same as in the expression above. 
The second components (y,), , ( y2), ,..., (y,), are given by 

which are calculable since they involve only components of the initial vec- 
tor. 

The third components ( Y,)~,..., ( Y,)~ are 

(Y,)2=L-‘hdYJ, + ... +a,“(YJl+b,,D(Y,),+ ..- +bAY”),l 

(Yn)2=L3%l(Y,)l+ .** +%l(Ynh +k*D(Y1), + ... +LmYAl 

again calculable since it depends only on the calculated components, etc., 
to determine C,“=o(yl)m,..., C,“=Jy,), to some desired M which is a suf- 
ficient approximation. The operator D acts to delay by unity thus D&t) = 
+4(t - 1 ), etc. 

2 

Now we consider a nonlinear term Ny to be present. Its exact form does 
not matter so long as (Adomian’s) polynomials [ 1,2] can be generated for 
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the nonlinearity which can be a product or composite nonlinearity as well 
as simple ones including polynomial, trigonometric, decimal power, etc. NJ? 
is simply written as C;=, A,,, and since each A, involves only the first m 
components of the state vector, the calculation is as easy as for the linear 
case [ 1,2]. For example, if we add to the previous two terms the vector 
whose components are y:, yz,..., JJ~ then 

since A,(y’)=y& A,(y2)=2yoy,, etc. [Z]. 

3 

Now suppose we have a stochastic matrix coefticient or coefficients. Then 
averaging is done after the components are determined to the desired m. 
Convergence is discussed in [2]. 
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