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Let K be a bounded subset of a metric space (B, d). Let W(K) be the 
supremum of the cardinals of all subsets H of K such that the distance between 
any two distinct points in H is equal to the diameter of K. This function Won 
the family of all bounded subsets of B is used to prove the following result. 
Let K be a weakly compact convex subset of a Banach space B. Then K has 
a close-to-normal structure if B satisfies any of the following conditions: 
(a) B is strictly convex; (b) B is separable; (c) B has the property A: For any 
sequence {x,,} in B, {x,,) converges to a point x in B if it converges weakly to x 
and {II x,, II} converges to 11 x 11. Applications of this result to the fixed point theory 
are given. 

1. INTRODUCTION 

Let K be a bounded subset of a metric space (B, d). Let H be a 
subset of K which has at least two points. H is a diametral subset of K 
if for any distinct points X, y in H, d(x, y) = S(K), where 6(K) is 
the diameter of K. It is obvious and well known that every diametral 
subset of K is finite if K is compact. However, two maximal (with 
respect to the inclusion relation) diametral subsets of K may have 
different cardinals. For example, let A be the closed convex hull of 
the subset 

{(x, y) E E2 : x2 + y2 < 1, x, y> 0, tan-l(y/x) < 43) 

of the two-dimensional Euclidean space E2. Then both 

((0, 01, (c-(57/4), sin(+))} 
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NO, O), (1, (0, (cos(43), sin(43))) 

are maximal diametral subsets of A. Let W(K) denote the supremum 
of {I H I: H is a (maximal) diametral subset of K}, where / H j is the 
cardinal of H. By the well ordering principle for cardinals, the 
cardinal W(K) is well defined. By the usual inner product for the 
n-dimensional Euclidean space En, one can prove that W(K) < 
n + 1 if B = En. Also W(K) < 2” if B = Rn with the supremum 
norm. Note that W(K) is finite if K is compact. The same conclusion 
does not hold if we drop the condition compactness on K. In fact, 
for any cardinal 01, there exists a bounded subset H (e.g. any ortho- 
normal basis) of a Hilbert space B of dimension 01 such that W(H) = 0~. 
By considering the closed convex hull K of H, we obtain W(K) > 01. 
So geometrically, the function W defined above can be used to 
investigate how badly a weakly compact convex set may behave. Also, 
it can be used to obtain significant generalizations and extensions of 
the fixed point theorems obtained by Kannan and Soardi in [S] and [8]. 
For this purpose, we need the following definition. Let K be a 
bounded convex subset of a normed linear space. K has a close-to- 
normal structure if for any closed convex subset H of K with 6(H) > 0, 
there exists x in H such that 11 x - y I/ < 6(H) for all y in H. It is 
obvious that K has a close-to-normal structure if K has normal 
structure [2]. Let K be a weakly compact convex subset of a normed 
linear space B. There are two related open problems concerning 
the existence of a fixed point for a self map T on K: (i) T has a fixed 
point if it is nonexpansive (11 T(x) - T( y)/j < 11 x - y 11, x, y E K). 
(ii) T has a fixed point if T is a Kannan map on K, i.e., 

II T(x) - W)ll G (II x - WI + II Y - T(YW 

for all x, y in K. It was proved respectively by Kirk [7] and Soardi [8] 
that (i) and (ii) hold if K has normal structure. In [9], we obtain the 
following characterization of (ii). 

THEOREM 1. Let B be a normed linear space. Then the following 
propositions are equivalent: 

(i) Every Kannan map of a nonempty weakly compact convex 
subset of B into itself has a jxed point; 

(ii) Every weakly compact convex subset of B has a close-to- 
normal structure. 
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The above theorem drops the open problem (ii) stated above from 
the fixed point theory and adds the following open problem to the 
geometry of Banach spaces: (iii) Every weakly compact convex 
subset of a Banach space B has a close-to-normal structure. 
In Section 2, we shall use the function W defined above to prove that 
(iii) holds if any one of the following conditions is satisfied: (a) B is 
strictly convex; (b) B has the property A [3]: For any sequence (x~} 
in B, {xn} converges to a point x in B if it converges weakly to x and 
{II x, II} converges to II x II; (c) B is separable. From (c) and the example 
in [I], it follows that there exists a weakly compact convex subset of 
a Banach space which has a close-to-normal structure but has no 
normal structure. From (b), it follows that (iii) holds if B is locally 
uniformly convex [6]. 

2. MAIN RESULT AND ITS APPLICATIONS 

Let B be a normed linear space. B is strictly convex if for any x, y, x 
in B, 11 x - x 11 + 11 z - y /I = 11 x - y 11 implies that z E [x, y] (= 
{( 1 - t)x + ty: t E [O, 11)) [4, p. Ill]. 

THEOREM 2. Let B be a Banach space which satis@ at least one 
of the following conditions: 

(a) B is strictly convex; 
(b) B has the property A: 
(c) B is separable. 

Then every weakly compact convex subset of B has a close-to-normal 
structure. 

Proof. Suppose to the contrary that there exists a weakly compact 
convex subset K of B which has no close-to-normal structure. Then K 
includes a closed convex set H such that 8(H) > 0 and for any x in H, 
II x - T(x)11 = W) f or some T(x) in H. We shall first prove that W(H) 
is uncountable. It is clear that W(H) > 2. Let x1 , x2 ,..., X, be n 
distinct elements in H such that 11 X, - xj 11 = 6(H) for all distinct 
i, j in (1, 2 ,..., n>. Let 

f = i x,/n, x,+~ = T(K). 
id 
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Then %, x,+i E H and 

d f II xi - x,+~ lib 
i=l 

6 vf) (II xi - %+1 II < wN. 

So all of the above inequalities are equalities. Thus 

II xi - xn+1 II = 6(H) for all i = 1, 2 ,..., n. (1) 

By induction, W(H) is infinite. Let {xn} be a sequence in H such that 

I/ x, - x, II = 6(H) for all distinct positive integers n, m. 

It suffices to find an element x, in H such that 

II xm - x, I/ = 6(H) for all positive integer n. 

Since CL1 (l/29 xi is absolutely convergent and B is complete, 
{S-l ( 1 Pi) Xi> converges to some element X in B. Since 

{CL UP) xz + W”) x,+11 is a sequence in H which converges to 
x = CT-r (l/29 xi and H is closed, x belongs to H. Let x, = T(a). 
Then 

6(H) = /I x - T(X)ll 

G f (W) II xi - x, II 
i=l 

e f (l/2”) W) i=l 
= 6(H). 

So all of the above inequalities are equalities. Thus 

II XKi - x, /I = 6(H) for all positive integer n. 
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Hence W(H) is uncountable. This implies that B is not separable. Let 

x1~fL x2 = Ql), f = (1/2)(x, + x2), x, = qq. 

Then by (I), 

jj xi - xi 11 = S(H) for all distinct positive integers i,j. 

Let x = x1 + xp - x3 . Then 

II xl - ~3 II + II x - xl II = II ~3 - x II = WO 

So B is not strictly convex (for otherwise, x1 = (1/2)(x, + x), i.e., 
x1 = X, , a contradiction to 6(H) > 0). It follows then from hypo- 
thesis that B has the property A. Since W(H) is infinite, there exists a 
sequence {xJ in H such that 

/I x, - x, I/ = S(H) for all distinct positive integers n, m. 

Since H is closed and convex, it is weakly closed. Since K is weakly 
compact, so is H. By Eberlein’s theorem, H is sequentially compact. 
So by taking a subsequence, we may assume that {xn} converges 
weakly to some point x, in H. Thus 

S(H) = II x, - Wm)ll 

< lim inf II x, - T(x,)II 

d lim SUP II x, - ~(4ll 

So lim 11 x, - T(x,)jI = 6(H). Since {xn - T(x,)) converges weakly 
to x, - T(x,) and 

lim II x, - WJI = s(H) = II x, - W,)II, 
by the property A of B, {xn - T(x,)} converges to x, - T(x,). So 
{xn> converges to xc0 . Hence (xn> is a Cauchy sequence, a contradiction 
to the choice of {x~}. Q.E.D. 

Note here that the unit ball of Zi gives us an example of a bounded 
closed convex subset K of a Banach space B such that K has no 
normal structure and B has the property A and is not strictly convex 
(and therefore is not locally uniformly convex). It should be clear 
that through Theorem 1, one can apply the above result to obtain 
significant extensions and generalizations of the results of R. Kannan 
and P. Soardi in [5] and [8]. 
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