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Abstract

We prove the existence of a weakly dependent strictly stationary solution of the equation X t =

F(X t−1, X t−2, X t−3, . . . ; ξt ) called a chain with infinite memory. Here the innovations ξt constitute an
independent and identically distributed sequence of random variables. The function F takes values in some
Banach space and satisfies a Lipschitz-type condition. We also study the interplay between the existence
of moments, the rate of decay of the Lipschitz coefficients of the function F and the weak dependence
properties. From these weak dependence properties, we derive strong laws of large number, a central limit
theorem and a strong invariance principle.
c© 2007 Elsevier B.V. All rights reserved.

MSC: primary 62M10; secondary 91B62; 60K35; 60K99; 60F05; 60F99

Keywords: Time series; Weak dependence; Central limit theorems; Uniform laws of large numbers; Strong invariance
principles

1. Introduction

Statistical inferences heavily rely on the underlying model. The same process may have
different representations and it may belong to different classes of models. In this paper, we
introduce a chain with infinite memory as the stationary solution of the equation

X t = F(X t−1, X t−2, X t−3, . . . ; ξt ), a.s. for t ∈ Z, (1.1)
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where F takes values in a Banach space. For details, see Section 3.1. The dynamical behavior
described by (1.1) corresponds to a large variety of time series models. Those models can be
seen as natural extensions, either of linear models or of Markov models. In the sequel, the
innovations ξt constitute an independent and identically distributed (iid) sequence. Chains with
infinite memory can be represented as causal Bernoulli shifts X t = H(ξt , ξt−1, . . .), and then
conditions on H gave asymptotic results, see [31]. But several Bernoulli shifts, such as Volterra
series, may not fit the parsimony criterion and the function H may be non-explicit. This is a
drawback for statistical inferences in that context. Autoregressive representations are preferred
in various applications, e.g. in finance, hydrodynamics, physics; see [11,25]. Kallenberg [23]
stresses the fact that all the p-Markov processes are solutions of equations of the type

X t = F(X t−1, . . . , X t−p; ξt ). (1.2)

Bougerol [3] gave conditions of Lyapunov type for the existence of a stationary solution to
Stochastic Recurrence Equations (SRE), which are particular cases of (1.2).

Approaches other than (1.1) to modeling processes which do not satisfy the Markov property
already exist; the Random Systems with Complete Connections (RSCC; see [21]) and the
Variable Length Markov Chains (VLMC; see [4]). Such models are widely used in the fields of
particle systems or in DNA data analysis. These processes are defined through their conditional
distributions. Their existence relies on assumptions on the conditional expectations, following
the work of Dobrushin [10]. Notice that Berbee [2] obtained another existence condition for the
cases where the state space is discrete; see also [5,18].

Dobrushin’s condition implies strong mixing; see [12,21]. Mixing coefficients are useful for
deriving asymptotic theorems for various functionals of a stationary sequence; see Rio [30].
However, major asymptotic results still hold under so-called weak dependence conditions; see
Section 2.2, [8,13] and the recent monograph by [7]. The Central Limit Theorem (CLT) of
Dedecker and Doukhan [6] holds if the x2 ln(1 + x)th moments of X0 are finite and if the
process is weakly dependent with geometric decay of the coefficients. Because weak dependence
is less restrictive than mixing (see Andrews [1] for an example) this result extends the CLT for
mixing sequences due to Rio [30]. The conditions for those CLT are expressed in terms of Orlicz
functions that balance the moments of some order and the weak dependence conditions.

The existence of a stationary solution to (1.1) is proved in Section 3.2 under a specific
Lipschitz-type assumption on F ; see (3.1). Approximation by suitable Markov processes is the
main tool for the proofs given in Section 5. This existence condition also yields finiteness of
moments of some order in terms of Orlicz functions. We get bounds for the weak dependence
coefficients of the solution to (1.1). We use these bounds to derive sufficient conditions on F in
terms of Orlicz functions and in turn to prove a Strong Law of Large Numbers (SLLN), a CLT
and a Strong Invariance Principle (SIP); see Section 3.3. We discuss the generality of our model
in Section 4 comparing it with existing ones. But to begin with, we introduce some notation and
we define useful tools such as weak dependence coefficients and Orlicz spaces.

2. Preliminaries

2.1. Notation

In the sequel, the iid innovations ξt for t ∈ Z take values in a measurable space (E ′,A′). Let
‖ · ‖ denote the norm of a Banach space E . The space E (∞) is the subset of EN of finitely non-
zero sequences (xk)k>0 such that there exists N > 0 with xk = 0 for k > N . Let E be endowed
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with its Borel σ -algebra A; then E (∞) is considered together with its product σ -algebra A⊗N.
The function F in (1.1) is assumed to be a measurable function from E (∞)

× E ′ with values in E .
Moreover ‖ · ‖m denotes the usual Lm-norm, i.e., ‖X‖

m
m = E‖X‖

m for m > 1 for every E-valued
random variable X . For h : E → R, we define ‖h‖∞ = supx∈E |h(x)| and

Lip (h) = sup
x 6=y

|h(x) − h(y)|

‖x − y‖
.

The space Λ1 (E) is the set of functions h : E → R such that Lip (h) 6 1.

2.2. Weak dependence

An appropriate notion of weak dependence for the model (1.1) was introduced in [8]. It is
based on the concept of the coefficient τ defined below. Let (Ω , C, P) be a probability space,M
a σ -subalgebra of C and X a random variable with values in E . Assume that ‖X‖1 < ∞ and
define the coefficient τ as

τ(M, X) =

∥∥∥∥sup
{∣∣∣∣∫ f (x)PX |M(dx) −

∫
f (x)PX (dx)

∣∣∣∣ with f ∈ Λ1 (E)

}∥∥∥∥
1
.

An easy way to bound this coefficient is based on a coupling argument:

τ(M, X) 6 ‖X − Y‖1

for any Y with the same distribution as X and independent of M; see [8]. Moreover, if the
probability space (Ω , C, P) is rich enough (we always assume so in the sequel) there exists
an X∗ such that τ(M, X) = ‖X − X∗

‖1. Using the definition of τ , the dependence between
the past of the sequence (X t )t∈Z and its future k-tuples may be assessed: Consider the norm
‖x − y‖ = ‖x1 − y1‖ + · · · + ‖xk − yk‖ on Ek , setMp = σ(X t , t 6 p) and define

τk(r) = max
16l6k

1
l

sup{τ(Mp, (X j1 , . . . , X jl )) with p + r 6 j1 < · · · < jl},

τ∞(r) = sup
k>0

τk(r).

For the sake of simplicity, τ∞(r) is denoted by τ(r). Finally, the time series (X t )t∈Z is τ -weakly
dependent when its coefficients τ(r) tend to 0 as r tends to infinity.

2.3. Orlicz spaces

Orlicz spaces are convenient generalizations of the classical Lm-spaces; we refer the reader
to [24] for the introduction and properties of such spaces. Let Φ be an Orlicz function, i.e.,
defined on R+, convex, increasing and satisfying Φ(0) = 0. For any random variable X with
values in E , the norm ‖X‖Φ is defined by the equation

‖X‖Φ = inf
{

u > 0 with E
[
Φ
(

‖X‖

u

)]
6 1

}
.

The Orlicz space LΦ is given by

LΦ
= {E-valued random variables X such that ‖X‖Φ < ∞}.
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It is a Banach space equipped with the norm ‖ · ‖Φ . For m > 1 and Φ(x) = xm , notice that LΦ

is the usual Lm-space. We restrict ourselves to Orlicz functions Φ satisfying the condition:

For all x, y ∈ R+, Φ(xy) 6 Φ(x)Φ(y). (2.1)

This class of Orlicz functions is sufficiently large. For instance, the functions Φ(x) = xm and
Φ(x) = xm(1 + ln(1 + x))m′

satisfy (2.1) for each m > 1, m′ > 0. Moreover, if φ is any
Orlicz function satisfying the ∆2-condition (there exists k > 0 such that φ(2x) 6 kφ(x)) then
Φ(x) = supu>0 φ(xu)/φ(u) is an Orlicz function satisfying (2.1). Various examples of Orlicz
functions satisfying the ∆2-condition are given in [24].

Later, in Theorem 3.2 we will need some transformations of Orlicz functions. Given such a
function Φ, we define, for q > 1,

Φ̃q(x) = sup
y>0

{(xy)q−1
− Φ(y)/y}. (2.2)

The transformations Φ̃q(x) have simple bounds for certain choices of Φ; see Lemma 5.1 for
details. In particular, if Φ(x) = xm for m > q > 1, then Φ̃q(x) 6 x (m−1)(q−1)/(m−q).
Another useful example is the one of Φ(x) = xq(1 + ln(1 + x))(1+b)(q−1) and Φ̃q(x) 6
exp((q − 1)x1/(1+b))xq−1 for any q > 1 and b > 0.

3. The results

3.1. Assumptions

The existence of a solution to (1.1) will be proved under a Lipschitz-type condition. We
express it in terms of some Orlicz functions in order to be able to work with moments more
general than power moments; see Theorem 3.1. These moments will be needed to establish the
asymptotic results of Theorem 3.2.

Assume there exists an Orlicz function Φ such that for all x , y in E (∞)

‖F(x; ξ0) − F(y; ξ0)‖Φ 6
∞∑
j=1

a j‖x j − y j‖, (3.1)

where (a j ) j>1 is a sequence of non-negative real numbers such that

a =

∞∑
j=1

a j < 1 and (3.2)

µΦ = ‖F(0, 0, . . . ; ξ0)‖Φ < ∞. (3.3)

The Lipschitz property of F and the moment assumption (3.3) induce that ‖F(c; ξ0)‖Φ < ∞ for
any constant c ∈ E (∞). We choose c = (0, 0, . . .) in condition (3.3) for convenience.

3.2. Existence, moments and weak dependence

The following theorem settles the existence of a solution to (1.1). It also states that the Φth
moment of this solution is finite.
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Theorem 3.1. Assume that conditions (3.2) and (3.3) hold for some Orlicz function Φ satisfying
(2.1). Then there exists a τ -weakly dependent stationary solution (X t )t∈Z of (1.1) such that
‖X0‖Φ < ∞ and

τ(r) 6 2
µ1

1 − a
inf

16p6r

(
ar/p

+
1

1 − a

∞∑
k=p+1

ak

)
→ 0 as r → ∞.

The proof of the existence of a solution to (1.1) is given in Section 5.3 expressing it as the
limit of the p-Markov processes defined in (1.2). The weak dependence properties are proved in
Section 5.4.

Remark 3.1. We also prove in Section 5 that there exists some measurable function H such
that X t = H(ξt , ξt−1, . . .). This means that the process (X t )t∈Z can be represented as a causal
Bernoulli shift. For those processes, conditions (3.2) and (3.3) together imply the Dobrushin
uniqueness condition; see [10]. Thus (X t )t∈Z is the unique causal Bernoulli shift solution to
(1.1). Moreover, as a causal Bernoulli shift, the solution (X t )t∈Z is automatically an ergodic
process. Under the conditions of Theorem 3.1, the solution to (1.1) has finite Φth moment. From
Lemma 5.3, (X t )t∈Z has also finite first-order moments. The ergodic theorem yields the SLLN
for any chain with infinite memory under the assumptions of Theorem 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1, there exists a τ -weakly dependent
stationary solution (X t )t∈Z to (1.2) such that ‖X0‖Φ < ∞ and τ(r) 6 2µ1(1 − a)−1 ar/p

for r > p.

Dedecker and Prieur [8] proved the existence of a solution to (1.2). They stated that there exists
0 < ρ < 1 and C > 0 such that τ(r) 6 Cρr . Applying Corollary 3.1, we get the bound ρ 6 a1/p.
The bounds of the weak dependence coefficients in Theorem 3.1 come from an approximation
with Markov chains of order p and from the result of Corollary 3.1.

In Theorem 3.1, the τ -weak dependence property is linked to the choice of the parameter
p and then to the rate of decay of the Lipschitz coefficients a j . For example, if a j 6 ce−β j ,
we choose p as the largest integer smaller than

√
− ln(a)r/β to derive the bound τ(r) 6

Ce−
√

− ln(a)βr for some suitable constant C > 0. If a j 6 cj−β , we choose the largest integer
p such that p ln p(1 − β)/ ln a 6 r . Then there exists C > 0 such that τ(r) 6 Cp1−β .
Notice that ln r is smaller than ln p + ln ln p up to a constant and that ln r/r is proportional
to 1/p(1 + ln ln p/ ln p) and then equivalent to 1/p as p tends to infinity with r . From these
equivalences, we achieve thus that there exists C > 0 such that τ(r) 6 C (ln r/r)β−1.

A result similar to the one of Theorem 3.1 was obtained for discrete state space models (such
as RSCC) in [20]. They gave bounds for the mixing coefficients under conditions on the marginal
distributions of the innovations. The bound in [20], Theorem 2.1.5 on page 42, is similar to the
one for τ(r) in Theorem 3.1. In a sense we extend their result: Here the innovations are not
supposed to be absolutely continuous and our approach can be applied to discrete state space
processes as well; see the example of the Galton–Watson process with immigration in Section 4.

Bougerol gives in [3] a recursive approximation of the stationary measure in the Markovian
case. In Proposition 3.1 below we generalize this result to the infinite memory case. Let
φk : Ek−1

× E ′
→ E be the random function defined as x 7→ F(x, c; ξk), for each k > 2

and some fixed sequence c = (c1, c2, . . .) ∈ E (∞). Write X̃1 = φ1 = φ(c; ξ0) and define
recursively

X̃n = φn(X̃n−1, . . . , X̃1).
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Proposition 3.1. Assume that conditions (3.2) and (3.3) hold for Φ satisfying (2.1). If (X t )t∈Z
is the solution to (1.1) then

‖X̃r − Xr‖Φ 6
‖X0‖Φ + c

1 − a
inf

16p6r

(
ar/p

+
1

1 − a

∞∑
k=p+1

ak

)
→ 0 as r → ∞,

where c is a constant such that ‖ci‖ 6 c for all i > 1.

The proof of this proposition is given in Section 5.6.

3.3. Asymptotic results

In this section, E = R. We give an appropriate condition on F (see (3.4)) that leads to versions
of the results of Dedecker and Doukhan [6] and Dedecker and Prieur [8] obtained under weak
dependence.

Theorem 3.2. Assume that conditions (3.2) and (3.3) hold for some Orlicz function Φ satisfying
(2.1) and assume there exists c0 > 0 such that∑

k>1

akΦ̃q(c0k) < ∞ if there exist p > 1 such that
∑
j>p

a j = 0, (3.4a)

∑
k>1

akΦ̃q

−c0k ln

∑
j>k

a j

 < ∞ otherwise, (3.4b)

where Φ̃q is defined in (2.2). The following relations hold:

SLLN: If q ∈]1, 2[ then n−1/q ∑n
i=1(X i − EX0) →n→∞ 0, a.s.

CLT: If q = 2, then 1
√

n

∑[nt]
i=1(X i − EX0)

D[0,1]
−→ σ W (t) as n → ∞ where σ 2

=∑
∞

i=−∞
Cov(X0, X i ) is finite and W (t) is the standard Wiener process.

SIP: If q = 2 and if the underlying probability space is rich enough then there exist
independent N (0, σ 2)-distributed random variables (Yi )i>1 such that

n∑
i=1

(X i − Yi ) = o(
√

n ln ln n) a.s.

The proof of this theorem is given in Section 5.5.
Note that x2 ln(1 + x)th moments are necessary to get the CLT for weakly dependent

processes. See [15] for an example of processes, solutions of (1.2) for p = 1, that do not satisfy
the CLT under conditions (3.2) and (3.3) for Φ(x) = x2. Note also that approximations by
martingale difference as in [28] or projective criterion as in [27] give the CLT under weaker
assumptions for some of the examples treated in Section 4.

Condition (3.4a) is relevant for the Markov solution (X t )t∈Z to (1.2), i.e., when
∑

j>p a j = 0.
For the other cases, we rewrite assumption (3.4b) for various rates of decay of the Lipschitz
coefficients a j . Let a, b, c be some positive real numbers; then

If ak 6 ck−a,
∑
k>1

akΦ̃q (c0k ln k) < ∞ for some c0 > 0. (3.4b′)

If ak 6 c exp(−akb),
∑
k>1

akΦ̃q

(
c0k1+b

)
< ∞ for some c0 > 0. (3.4b′′)
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For instance, condition (3.4b′) holds if Φ(x) = xm for m > q and a > 1 + (q − 1)(m − 1)

(m − q)−1. Condition (3.4b′′) holds for Φ(x) = xq(1 + ln(1 + x))(1+b)(q−1). Applying
Theorem 3.2, the CLT and the SIP hold for sub-geometric rates of decay of the Lipschitz
coefficients as in (3.4b′′) under a moment condition of order x2(1 + ln(1 + x))1+b.

4. Examples

In this section, we present some examples with E = Rd and d > 1. We consider the finite
memory case as well as an infinite memory extension of Stochastic Recurrence Equations (SRE).
In particular, we consider the example of the Galton–Watson process with immigration which
satisfies the conditions of our results, but it is not a SRE in the sense of [3].

4.1. Markov models

SRE. We consider an iid process (φt )t∈Z of random Lipschitz maps with ‖φt (x1)−φt (y1)‖ 6
L(φ)‖x1 − y1‖ a.s. for all x1, y1 ∈ E and t ∈ Z. Moreover let φt (x) be measurable for every
fixed x ∈ E and t ∈ Z. If a stochastic process (X t )t∈Z with values in E satisfies the equation

X t+1 = φt (X t ) a.s., for all t ∈ Z,

we say that (X t )t∈Z obeys the SRE associated with (φt )t∈Z. We write this equation as in (1.2)
setting ξt = φt for t ∈ Z, and F(x, z) = z(x) for x ∈ E and z ∈ E ′, the space of Lipschitz
random functions. In this case, conditions (3.2) and (3.3) become

‖L(φ)‖Φ < 1 and ‖φ0(0)‖Φ < ∞.

Weaker conditions related to a Lyapunov exponent for the existence of an a.s. solution to a
SRE are obtained in [3]. However, that result does not yield the existence of moments or
asymptotic results such as those in Theorem 3.2. We also mention the survey article by [9] for
an overview and nice applications of SREs.
Non-linear autoregressive models. Here we consider a solution to (1.1), where E ′

= E and F
admits the representation

F(x1, . . . , x p; s) = R(x1, . . . , x p) + s.

Condition (3.2) becomes

‖R(y1, . . . , yp) − R(x1, . . . , x p)‖ 6
p∑

j=1

a j‖x j − y j‖ with
p∑

j=1

a j < 1,

and condition (3.3) coincides with ‖ξ0‖Φ < ∞. Results similar to those in Theorem 3.2 are
obtained by different methods in [17].
Galton–Watson processes with immigration. If E = R, a Galton–Watson process with
immigration is given as a stationary solution of the equation

X t =


X t−1∑
i=1

ζt,i + ζt , if X t−1 > 0,

ζt if X t−1 = 0.

(4.1)

Here (ζt,i )t∈Z,i>0, (ζt )t∈Z are independent iid families of integer-valued random variables
and E ′

= NN is equipped with the product measure. We can write X t = F(X t−1, ξt ) with
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F(x, (ui )i>0) = u0+
∑x

i=1 ui if x > 0 and F(0, (ui )i>0) = 0 for any (ui )i>0. If y1 > x1 > 0
then F(x, (ui )i>0) − F(x, (ui )i>0) =

∑y1
i=x1

ui and thus

‖F(x1, ξ0) − F(y1, ξ0)‖Φ =

∥∥∥∥∥
y1∑

i=x1

ζ0,i

∥∥∥∥∥
Φ

= |y1 − x1|‖ζ0,0‖Φ .

Assumptions (3.2) and (3.3) hold as soon as ‖ζ0,0‖Φ < 1. This model is not a SRE if ζ0,0 is
not finitely supported; thus we are not under the conditions of [3]. Other non-SRE examples
which can be treated by our approach are given in [26].

4.2. SRE with infinite memory

Infinite memory extensions of classical SRE are solutions of the equation
X t = φt (X t−1, X t−2, . . .) a.s.,

‖φt (x) − φt (y)‖ 6
∞∑

i=1

L i (φ)‖xi − yi‖, a.s.

for all x = (xi )i>1, y = (yi )i>1 ∈ E (∞). Here (φt )t∈Z is an iid process of random Lipschitz
maps. If

∑
i>1 ‖L i (φ)‖Φ < 1 then conditions (3.2) and (3.3) are satisfied. Some examples with

this representation follow.

Non-linear ARCH (∞) models. Here (X t )t∈Z is the stationary solution of the equation

X t = ξt

(
α +

∞∑
j=1

α j (X t− j )

)
,

where ξt is a d × k matrix, E ′
= Mk,d(R), α ∈ Rk and α j : E → Rk are Lipschitz

functions. The LARCH(∞) model of [19,16] corresponds to the special case of linear
functions α j (x) = c j x with k × d matrices c j . Assumptions (3.2) and (3.3) hold as soon
as ‖ξ0‖Φ

∑
j>1 Lip α j < 1 and

∑
j>1 α j (0) < ∞.

Models with linear input. Let f : Rk
× E ′

→ E be measurable and satisfy ‖ f (t, ξ0) −

f (s, ξ0)‖Φ 6 L ‖t − s‖ for some finite constant L > 0. We consider

X t = f (At , ξt ), At =

∞∑
j=1

c j X t− j ,

where c j are k × d matrices. Relations (3.2) and (3.3) hold if L
∑

j>1 ‖c j‖ < 1 and
f (0, ξ0) ‖Φ < ∞. These models are used in statistical mechanics; see [22].
Affine models. Let us consider the special case of chains with infinite memory that can be
written in a bilinear form

X t = Mtξt + ft , (4.2)

where Mt = M(X t−1, X t−2, . . .) and ft = f (X t−1, X t−2, . . .) are both Lipschitz functions
of the past values X t−1, X t−2, X t−3, . . .. Applying Theorem 3.1 under the condition

‖ξ0‖Φ

∞∑
i=1

Lip Mi +

∞∑
i=1

Lip fi < 1,

there exists a weakly dependent solution to (4.2). This class contains various time series
models (such as ARCH, GARCH, ARMA, ARMA-GARCH, etc.). In the appendix we prove
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the existence of the joint densities of the solution to (4.2). This result and the weak dependence
properties obtained in Theorem 3.1 are needed for achieving optimal rates of convergence of
non-parametric estimators; see [29].

5. Proofs of the main results

After some preliminaries in Section 5.1, in Section 5.2 we construct a solution of the Markov
model (1.2). We use it to approximate the solution to (1.1). The existence of a solution to (1.1),
presented in Theorem 3.1, is obtained as p → ∞ in Section 5.3. Its weak dependence properties
are derived by coupling techniques in Section 5.4. Using weak dependence results of [6,8], we
prove Theorem 3.2 in Section 5.5. Finally, we derive the proof of Proposition 3.1 in Section 5.6.

5.1. Preliminaries

We first present four useful lemmas. The first one aims at bounding the transformations Φ̃q
for q > 1; the other ones are used in the proof of the existence of a solution of (1.1).

Lemma 5.1. Assume L is an increasing non-negative function on [0, ∞] and write L−1 for the
generalized inverse of L, i.e., L−1(x) = inf{y > 0 with L(y) > x}. If Φ(x) = xq L(x), x > 0,
for some q > 1 then

Φ̃q(x) 6
(

x L−1(xq−1)
)q−1

for all x > 0.

Proof. From (2.2), we have Φ̃q(x) = supy>0{yq−1(xq−1
− L(y))}. We restrict ourselves to

y 6 L−1(xq−1); otherwise yq−1(xq−1
− L(y)) 6 0. Now notice that the first term of the product

yq−1(xq−1
− L(y)) is increasing and the second term always remains smaller than xq−1. This

proves the lemma. �

Lemma 5.2. Assume that the Orlicz function Φ satisfies (2.1). Let ξ and ζ be independent
random variables, z a measurable function and Z = z(ξ, ζ ). We write Eξ for the expectation
with respect to the distribution of ξ . Define

‖z(ξ, ζ )‖Φ,ξ = inf
{
u > 0 with Eξ [Φ(‖z(ξ, ζ )‖/u)] 6 1

}
. (5.1)

Then ‖Z‖Φ 6
∥∥‖Z ‖Φ,ξ

∥∥
Φ .

Proof. One needs to prove that E[Φ(Z/‖‖Z ‖Φ,ξ ‖Φ)] 6 1:

E
[
Φ
(

Z

‖‖Z ‖Φ,ξ ‖Φ

)]
6 E

[
Φ
(

Z

‖Z‖Φ,ξ

‖Z‖Φ,ξ

‖‖Z ‖Φ,ξ ‖Φ

)]
6 E

[
Φ
(

Z

‖Z‖Φ,ξ

)
Φ
(

‖Z‖Φ,ξ

‖‖Z ‖Φ,ξ ‖Φ

)]
.

The last inequality follows from (2.1). By independence of ξ and ζ and by (5.1)

E
[
Φ
(

Z

‖‖Z ‖Φ,ξ ‖Φ

)]
6 E

[
Φ
(

‖Z‖Φ,ξ

‖‖Z ‖Φ,ξ ‖Φ

)
Eξ

[
Φ
(

Z

‖Z‖Φ,ξ

)]]
6 E

[
Φ
(

‖Z‖Φ,ξ

‖‖Z ‖Φ,ξ ‖Φ

)]
.

We conclude by using the definition of the norm ‖ · ‖Φ . �
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Lemma 5.3. If the Orlicz function Φ satisfies (2.1) then for any E-valued random variable X
we have ‖X‖1 6 ‖X‖Φ .

Proof. Using Jensen’s inequality, we obtain

E
[
Φ
(

‖X‖

‖X‖1

)]
> Φ(1).

Note that Φ(1) 6 Φ(1)2 by (2.1) and then that Φ(1) > 1. We conclude that ‖X‖1 6 ‖X‖Φ by
using the definition of the norm ‖ · ‖Φ . �

Lemma 5.4. Let u0 > 0 and (un)n∈Z be a real sequence such that |un| 6 u0 if n < 0. Assume
that

un =

p∑
i=1

ai un−i , ∀n > 0, (5.2)

where a1, . . . , ap are fixed non-negative numbers with a =
∑p

i=1 ai < 1. Then,

sup
k>n

uk 6 an/pu0, ∀n > 0.

Proof. By a recursion argument, one first shows that supk6n uk 6 u0. Then (un)n∈N is bounded
by u0. Let vn = supk>n uk for n ∈ Z. Using the relation (5.2), we get vn 6 avn−p for all n > 0.
Then recursively vn 6 a−[−n/p]vn+p[−n/p]. From |un| 6 u0 if n < 0, vn+p[−n/p] = v0 = u0
because n + p[−n/p] 6 0. The result follows from −[−n/p] > n/p. �

5.2. p-Markov stationary approximations

In order to construct a solution to (1.1) we consider, for each fixed p > 0 and q > 0, the
p-Markov process (X p,q,t )t>0 defined by X p,q,t = 0 for t 6 −q and the recurrence equation

X p,q,t = F(X p,q,t−1, . . . , X p,q,t−p, 0, 0, . . . ; ξt ) if t > q. (5.3)

Using the notation of Lemma 5.1 with ξ = ξ0 and ζ = (X p,q,−1, X p,q,−2, . . .) and z(ξ, ζ ) =

F(ζ, ξ), the Lipschitz condition (3.1) implies that

‖X p,q+1,0 − X p,q,0‖Φ,ξ 6
p∑

i=1

ai‖X p,q+1,−i − X p,q,−i‖.

Applying Lemma 5.2,∥∥X p,q+1,0 − X p,q,0
∥∥
Φ 6 ‖ ‖X p,q+1,0 − X p,q,0 ‖Φ,ξ ‖Φ

6

∥∥∥∥∥
p∑

i=1

ai‖X p,q+1,−i − X p,q,−i‖

∥∥∥∥∥
Φ

6
p∑

i=1

ai
∥∥X p,q+1,−i − X p,q,−i

∥∥
Φ

6
p∑

i=1

ai
∥∥X p,q+1−i,0 − X p,q−i,0

∥∥
Φ .
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The last inequality follows from the fact that by the definition of X p,q,−i and X p,q−i,0, these
quantities have the same law for each triplet of positive integers (p, q, i). We now consider
vn =

∥∥X p,n+1,0 − X p,n,0
∥∥
Φ for n ∈ Z, with vn = 0 if n < 0. For n > 0

vn 6
p∑

i=1

aivn−i .

From Lemma 5.4 we obtain

vn 6 an/pv0 6 an/p
‖X p,1,0‖Φ 6 an/p

‖F(0, 0, . . . ; ξt )‖Φ 6 an/pµΦ .

Hence, for each p, (X p,n,0)n∈N is a Cauchy sequence in LΦ ; it converges to some X p,0 ∈ LΦ .
From its construction, it is clear that X p,n,0 is measurable with respect to the σ -algebra generated
by {ξt , t 6 0}. The LΦ-convergence ensures that this is also the case for X p,0. Hence there
exists some measurable function Hp such that X p,0 = Hp(ξ0, ξ−1, . . .). As n ↑ ∞, a continuity
argument on F implies that X p,0 = F(X p,−1, . . . , X p,−p, 0, 0, . . . ; ξ0) and shifting the lag
t ∈ Z leads to the equalities

X p,t = Hp(ξt , ξt−1, ξt−2, . . .) = F(X p,t−1, . . . , X p,t−p, 0, 0, . . . ; ξt ).

Then the sequence (X p,t )t∈Z is a stationary solution of the recurrence equation (5.3) for each
p > 0.

Consider

µΦ,p = ‖X p,t‖Φ, ∆Φ,p,t = ‖X p+1,t − X p,t‖Φ .

The definition of µΦ,p given here for p > 0 extends to p = 0 since X0,t = F(0, 0, . . . ; ξt )

satisfies ‖X0,t‖Φ = µΦ by Eq. (3.3).

Lemma 5.5. Assume conditions (3.2) and (3.3) hold for some Orlicz function Φ satisfying (2.1).
Then

µΦ,∞ = sup
p>0

µΦ,p 6
µΦ

1 − a
and ∆Φ,p = sup

t∈Z
∆Φ,p,t 6 ap+1

µΦ

(1 − a)2 .

Proof. From Eq. (3.2), we have that

µΦ,p 6 ‖X p,t − X0,t‖Φ + µΦ 6
p∑

j=1

a j‖X p,t− j‖Φ + µΦ 6 µΦ,p

p∑
j=1

a j + µΦ,

and hence µΦ,p 6 (1 − a)−1µΦ and µΦ,∞ 6 (1 − a)−1µΦ follow. In a similar way, we obtain
the inequalities

∆Φ,p,t =
∥∥F(X p+1,t−1, . . . , X p+1,t−p−1, 0, 0, . . . ; ξt )

− F(X p,t−1, . . . , X p,t−p, 0, 0, . . . ; ξt )
∥∥
Φ

6
p∑

j=1

a j‖X p+1,t− j − X p,t− j‖Φ + ap+1‖X p+1,t−p−1‖Φ

6
p∑

j=1

a j∆Φ,p,t− j + ap+1‖X p+1,0‖Φ .
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This implies that ∆Φ,p 6 ap+1(1 − a)−1µΦ,p+1 and the result of Lemma 5.5 is shown. �

5.3. Proof of the existence of a solution to (1.1)

Note first that Lemma 5.5 implies that X p,t →p→∞ X t in LΦ since this space is complete.
The continuity of F ensures that X t is a solution of Eq. (1.1). Furthermore, as a limit in
LΦ of strictly stationary processes, X t is also stationary (in law) and ‖X t‖Φ < ∞. Finally,
X t = H(ξt , ξt−1, . . .) is the limit in LΦ of X p,t = Hp(ξt , ξt−1, . . .).

5.4. Proof of the weak dependence properties

The weak dependence property of a solution to (1.1) is formulated in terms of the L1-norm
in the definition of the coefficients τ . As shown in Lemma 5.3, ‖X‖1 6 ‖X‖Φ for any E-valued
random variable X . Then assumptions (3.2) and (3.3) are always satisfied, replacing ‖ · ‖Φ with
‖ · ‖1. We first prove Corollary 3.1:

Proof. We use coupling techniques to evaluate the coefficients τ ; see Section 2. Let (ξ ′
t )t∈Z be

an independent copy of (ξt )t∈Z. We define the process (X∗
p,t )t∈Z as

X∗
p,t =

{
F(X∗

p,t−1, . . . , X∗
p,t−p, 0, 0, . . . ; ξ ′

t ), for t 6 0;

F(X∗

p,t−1, . . . , X∗
p,t−p, 0, 0, . . . ; ξt ), for t > 0;

Using arguments similar to those of Section 5.2, there exists a sequence of measurable variables
with respect to the σ -algebra generated by ξ ′

t , t 6 0 denoted by (X∗

p,n,0)n∈N such that it

converges in LΦ to X∗

p,0 ∈ LΦ . The LΦ-convergence ensures that X∗

p,0 are also measurable
variables with respect to the σ -algebra generated by ξ ′

t , t 6 0. Then, by definition of ξ ′
t , t 6 0,

X∗

p,0 is independent of X p,0. If there exists a non-increasing function δp(r) of r such that
‖X p,r − X∗

p,r‖1 6 δp(r), we have τp,r 6 δp(r). This follows from the coupling property of
weak dependence coefficients τ explained in [8].

Assumption (3.2) and Lemma 5.3 yield

‖X p,r − X∗
p,r‖1 6

p∑
i=1

ai‖X p,r−i − X∗

p,r−i‖1.

Defining wr = ‖X p,r − X∗
p,r‖1 for r ∈ Z, we again use Lemma 5.4 and the relation

‖F(0, 0, . . . ; ξ0)‖1 = µ1 to obtain

wr 6 ar/pw0 6 2µ1ar/p 6 2
µ1

1 − a
ar/p.

Now choosing δp(r) := 2µ1(1 − a)−1ar/p leads to the result of Corollary 3.1. �

Now we finish the proof of Theorem 3.1, defining the process (X∗
t )t∈Z as the solution of the

equations

X∗

t∈Z =

{
F(X∗

t−1, X∗

,t−2, . . . ; ξ ′
t ), for t 6 0;

F(X∗

t−1, X∗

t−2, . . . ; ξt ), for t > 0;

We remark that (X∗
t )t is also a stationary chain with infinite memory. Lemma 5.5 gives

‖Xr − X p,r‖1 6
∞∑

k=p

∆1,k 6
µ1

(1 − a)2

∞∑
k=p

ak+1.
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The same bound holds for the quantity ‖X∗
r − X∗

p,r‖1. For each integer p,

‖Xr − X∗
r ‖1 6 ‖Xr − X p,r‖1 + ‖X p,r − X∗

p,r‖1 + ‖X∗
r − X∗

p,r‖1

6 2
µ1

1 − a

(
ar/p

+

∞∑
k=p+1

ak

1 − a

)
.

Because this bound is non-increasing with r , we conclude the weak dependence properties in
Theorem 3.1 by using the coupling technique.

5.5. Proof of Theorem 3.2

First we recall the assumption (D(q)) of [6] for q > 1,∫
‖X0‖1

0
((τ/2)−1(u))q−1 Qq−1

◦ G(u)du < ∞, (D(q))

where (τ/2)−1(u) = inf{k ∈ N/ τ(k) 6 2u}. Here Q denotes the generalized inverse of the
tail function x 7→ P(|X0| > x) and G the inverse of x 7→

∫ x
0 Q(u)du. Dedecker and Doukhan

proved in [6] the SLLN and the CLT under (D(q)) for respectively 1 < q < 2 and q = 2. The
SIP is proved in [8] under (D(q)) for q = 2. Write A(p) =

∑
j>p a j and A−1 its generalized

inverse A−1(u) = inf{k ∈ N/ A(u) 6 u},

Ψq(x) = Φ
(

x1/(q−1)
)

/x1/(q−1) and Ψ∗
q (x) = sup

y>0
{xy − Ψq(y)}.

Noticing that A−1(u) = k on ]A(k − 1); A(k)] and that Φ̃q(x) = Ψ∗
q (xq−1), there exists C > 0

such that∫ a

0
Φ̃q

(
c0(A−1(u) − 1) ln(u)

)
du 6 C

∑
k>1

akΦ̃q

c0k

1 − 1{ ∑
j>k

a j >0

} ln

∑
j>k

a j



.

Then assumption (3.4) implies that we work under the condition∫ a

0
Ψ∗

q

((
c0(A−1(u) − 1) ln(u)

)q−1
)

du < ∞. (5.4)

We want to prove that condition (5.4) implies (D(q)) for all q > 1. The first step is to prove the
bound

(τ/2)−1(u) 6

(A−1
(

1 − a

2µ1
u

)
− 1

) ln
(

1−a
2µ1

u
)

ln a

 , (5.5)

Theorem 3.1 gives (τ/2)−1(u) 6 inf B with

B =

{
k ∈ N such that ∃p > 1 with

µ1

1 − a

(
ak/p

+ A(p + 1)
)

6 u

}
.

Set v = (1 − a)(2µ1)
−1u; the integer p∗

= A−1(v) − 1 is close to the infimum of B. Then
all integers k with ak/p∗

6 v belong to B, for instance k∗
= [(A−1(v) − 1) ln v/ ln a] which
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is then larger than (τ/2)−1(u) by definition. Observe that A−1(v) = 1 as soon as v > a; thus
[(A−1(v) − 1) ln v/ ln a] = 0 for v > a.

Using this estimate of (τ/2)−1 in (5.5), condition (D(q)) holds if

∫ a

0

[
(A−1(v) − 1) ln v

ln a

]p−1

Q p−1
◦ G

(
2µ1

1 − a
v

)
dv < ∞. (5.6)

Let Ψ̃ be an Orlicz function and Ψ̃∗(x) = supy>0{xy − Ψ̃(y)} be its Young dual function. For
any functions f and g, Young’s inequality gives∫ a

0
f (x)g(x)dx 6 2 inf

{
c > 0 with

∫ a

0
Ψ̃
(

f (x)

c

)
dx 6 1

}
× inf

{
c > 0 with

∫ a

0
Ψ̃∗

(
g(x)

c

)
dx 6 1

}
.

In the following we apply this inequality with Ψ̃ = KΨp for some K > 0, f (x) =

Q p−1
◦ G(2µ1(1 − a)−1x) and g(x) 6 ((A−1(x) − 1) ln(1/x)(− ln a)−1)q−1. Note that the

Young dual function is here Ψ̃∗(x) = KΨ∗
q (x/K ) and then

∫ a
0 f (x)g(x)dx is equal to the left

hand side term (5.6) up to the choice of the constant K > 0; see below. In view of Young’s
inequality, the first term in the bound of (5.6) thus expresses as the infimum over c > 0 such that

K
1 − a

2µ1

∫
‖X0‖1

0

Φ (Q ◦ G (u) /c)

Q ◦ G (u) /c
du 6 1.

Replacing G(u) with x , one obtains the simpler inequality

K
1 − a

2µ1

∫ 1

0
Φ
(

Q(x)

c

)
cdx = K

1 − a

2µ1
cEΦ

(
|X0|

c

)
6 1.

The last equality is set using the definition of Q(x). If assumption (3.3) holds, the last inequality
is satisfied for K = 2µ1µ

−1
Φ and c = µΦ(1 − a)−1.

The second term of the Young inequality is expressed as the infimum over c > 0 such that

K
∫ a

0
Ψ∗

q

(
((A−1(x) − 1) ln(1/x))q−1

K (− ln a)q−1c

)
dx 6 1. (5.7)

Because Φ̃q(x) = Ψ∗
q (xq−1) we check that

0 <

∫ a
0 Φ̃q

(
c0(A−1(u) − 1) ln(u)

)
du ∨ 1

(K ∧ 1)(− ln a)p−1 =: c1

satisfies the relation (5.7). It is obvious by (5.4) that c1 < ∞ and then we have proved the
implications

(3.4) with q > 1 ⇒ (5.4) with q > 1 ⇒ (D(q)).

This ends the proof as the results of Theorem 3.2 are versions of the results in [6,8] that hold
under assumption (D(q)).
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5.6. Proof of Proposition 3.1

Let n be a fixed integer and sn 6 n − 1. Let (X t )t∈Z be the stationary solution of X t =

F(X t−1, X t−2, 0, 0, . . . ; ξt ). The Lipschitz assumption (3.1) implies for 1 6 k 6 n∥∥X̃k − Xk
∥∥
Φ 6

k−1∑
i=1

ai
∥∥X̃k−i − Xk−i

∥∥
Φ +

∑
i>k

ai‖X0 − ci‖Φ .

The sequence vk =
∥∥X̃k+1 − Xk+1

∥∥
Φ , k = 1, 2, . . ., satisfies the recursion

vk 6
k∑

j=1

a jvk− j + uk for all k > 1,

where uk = (‖X0‖Φ + c)
∑

j>k a j for k > 1. Notice that uk ↓k→∞ 0. We first prove the
boundedness of (vk)k∈N. Let ` be a fixed integer. For all k such that ` > k, vk 6 a supi6` vi +u1.
We deduce that supi6` vi 6 u1. Finally ‖v‖∞ 6 a‖X0‖Φ/(1 − a).
Now for all integers k, s > 1 such that ` > k + s,

v` 6
k∑

j=1

a jv`− j +

∑̀
j=k+1

a jv`− j + u` 6 a sup
j>s

v j + ‖v‖∞

∞∑
j=k+1

a j + uk+s .

This inequality holds for all ` > k + s. Then

sup
j>k+s

v j 6 a sup
j>s

v j + ‖v‖∞

∞∑
j=k+1

a j + uk .

We deduce that

sup
j>nk

v j 6 an
‖v‖∞ +

1
1 − a

(
‖v‖∞

∞∑
j=k+1

a j + uk

)
.

Using the inequality ‖v‖∞ 6 a‖X0‖Φ/(1 − a), one gets the result.
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Appendix

We give below general conditions for the existence and the boundedness of joint densities of
affine models defined in Section 4. Thus we extend the results for bilinear models given in [14].

Proposition 5.1 (Regularity of Affine Models). Here E = E ′
= Rd for some d > 1.

Suppose that the innovations (ξt )t∈Z in the model (4.2) have a common bounded marginal
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density fξ . Moreover, if inf(x j ) j>0 det M((x j ) j>0) = M > 0, the marginal densities fX1,...,Xn

of (X1, . . . , Xn) exist for all n > 0 and satisfy

‖ fX1,...,Xn ‖∞ 6 M−n
‖ fξ‖

n
∞.

Proof. The solution X t = H(ξt , ξt−1, . . .) obtained in Section 5.3 is independent of (ξ j ) j>t . If
G1 is a bounded continuous function on E with values in R, it holds that

EG(X1) = EG1(M(X0, . . .)ξ1 + f (X0, X−1, . . .))

=

∫ ∫
G1(M(u)s1 + f (u)) fξ (s1)ds1P(X0,X−1,...)(du)

6 M
∫ ∫

G(x1) fξ (M−1(u)(x1 − f (u)))P(X0,X−1,...)(du)ds1.

The last inequality follows by the substitution M(u)s1 + f (u) = x1 valid under the assumption
inf(x j ) j>0 det M((x j ) j>0) = M > 0 ensuring that M(u) is invertible for all u. We obtain

fX1(x1) 6 M−1
∫

fξ (M−1(u)(x1 − f (u)))P(X0,X−1,...)(du) 6 M−1
‖ fξ‖∞.

We proceed by induction for the cases n > 2. Assume that ‖ fX1,...,Xn−1‖∞ 6 M−(n−1)
‖ fξ‖n−1

∞

is satisfied. Let Gn be a bounded continuous function on En with value in R; one has

EGn(X1, . . . , Xn) = EGn(X1, . . . , Xn−1, M(Xn−1, Xn−2, . . .)ξn + f (Xn−1, Xn−2, . . .))

=

∫ ∫ ∫
Gn(x1, . . . , xn−1, M(xn−1, . . . , x1, u)sn + f (xn−1, . . . , x1, u))

fξ (sn)dsn f(X1,...,Xn−1)(x1, . . . , xn−1)dx1 · · · dxn−1dP(X0,X−1,...|X1,...,Xn−1)(u).

The substitution M(xn−1, . . . , x1, u)sn + f (xn−1, . . . , x1, u) = xn yields

fX1,...,Xn (x1, . . . , xn) 6 M−1
∫ ∫

fξ (M−1(xn−1, . . . , x1, u)(xn − f (xn−1, . . . , x1, u)))

× f(X1,...,Xn−1)(x1, . . . , xn−1)dx1 · · · dxn−1dP(X0,X−1,...|X1,...,Xn−1)(u).

Together with the induction assumption ‖ fX1,...,Xn−1‖∞ 6 M−(n−1)
‖ fξ‖n−1

∞ , this last inequality
yields ‖ fX1,...,Xn ‖∞ 6 M−n

‖ fξ‖n
∞. �
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[4] P. Bühlmann, A.J. Wyner, Variable length Markov chains, Ann. Statist. 27 (2) (1999) 480–513.
[5] F. Comets, R. Fernández, P.A. Ferrari, Processes with long memory: Regenerative construction and perfect

simulation, Ann. Appl. Probab. 12 (3) (2002) 921–943.
[6] J. Dedecker, P. Doukhan, A new covariance inequality and applications, Stochastic Process. Appl. 106 (1) (2003)

63–80.
[7] J. Dedecker, P. Doukhan, G. Lang, J.R. León, S. Louhichi, C. Prieur, Weak Dependence, Examples and

Applications, in: Lecture Notes in Statistics, vol 190, Springer-Verlag, Berlin, 2007.
[8] J. Dedecker, C. Prieur, Coupling for τ -dependent sequences and applications, J. Theoret. Probab. 17 (4) (2004)

861–855.



P. Doukhan, O. Wintenberger / Stochastic Processes and their Applications 118 (2008) 1997–2013 2013

[9] P. Diaconis, D. Freedman, Iterated random functions, SIAM Rev. 41 (1) (1999) 45–76.
[10] R.L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theory Probab. Appl. 15

(1970) 458–486.
[11] R.L. Dobrushin, S. Kusuoka, Statistical Mechanics and Fractals, in: Lecture Notes in Mathematics, vol. 1567,

Springer-Verlag, New York, 1993.
[12] P. Doukhan, Mixing, in: Lecture Notes in Statistics, vol. 85, Springer-Verlag, New York, 1994.
[13] P. Doukhan, S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic

Process. Appl. 84 (2) (1999) 313–342.
[14] P. Doukhan, H. Madre, M. Rosenbaum, ARCH type bilinear weakly dependent models, Statistics 41 (1) (2007)

31–45.
[15] P. Doukhan, P. Massart, E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H.
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