

Available online at www.sciencedirect.com

Physics Procedia 2 (2009) 587-601

www.elsevier.com/locate/procedia

Melt synthesis of oxide red phosphors La₂WO₆:Eu³⁺

Tadashi Ishigaki^{1,2*}, Nobuhiro Matsushita², Masahiro Yoshimura², Kazuyoshi Uematsu³, Kenji Toda^{1,4} and Mineo

Sato^{1,3}

¹ Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku Niigata 950-2181,

Japan

² Materials and Structures Laboratory, Tokyo Institute of Technology, 4259, Nagatsuta Midori Yokohama

Kanagawa, Japan

³ Department of Chemistry and Chemical Engineering, Niigata University, 8050 Igarashi 2-nocho, Nishi-ku

Niigata 950-2181, Japan

⁴ Graduate School of Science and Technology, Niigata University, 8050 Igarashi 2-nocho, Nishi-ku Niigata 950-

2181, Japan

* Corresponding author: tishigaki@eng.niigata-u.ac.jp

* Present affiliation: Niigata University

Keywords: melt synthesis, tungstate, La₂WO₆, red phosphor

Abstract

To synthesize various complex oxide materials and their solid solutions, we have applied a novel "meltsynthesis technique" rather than conventional solid-state reaction techniques. The synthesis of well-crystalline multi-component phosphor materials is sometimes difficult using conventional solid-state reaction techniques doi:10.1016/j.phpro.2009.07.045 because the reaction rates are slow as a result of slow mutual diffusion among solid-state species, thereby creating an inhomogeneous product. However, the melt reaction is rapid and homogeneous as it proceeds because of a solution reaction with fast diffusion. Red-phosphor $La_2WO_6:Eu^{3+}$ samples with 25 mol% Eu^{3+} were prepared in a short time using melt synthesis. Red emission was observed at 618 nm typical for the Eu^{3+} center. Meltsynthesized samples exhibited much higher emission intensities than those obtained for the sample prepared using a solid-state reaction.

Introduction

Rare-earth tungsten oxides are of considerable interest as laser hosts, phosphors, ferroelectrics, and nuclear or refractory materials. Nassau studied crystallographic and physical properties of $R_2(MO_4)_3$ (R= rare earth, M= W, Mo) [1]. Yoshimura reported a high-temperature phase diagram of the La₂O₃-WO₃ system with eight compounds (Fig. 1) [2]. Furthermore, Yanovskii and Voronkova studied the phase diagram with nine compounds [3]. These studies have been a standard for fundamental comprehension for the La₂O₃-WO₃ system. Recently, several studies have investigated rare-earth-doped La₂O₃-WO₃ compounds available for laser host materials. In fact, La₂W₃O₁₂ is well known as a candidate for laser host crystals, suggesting that the material is stable under near-UV-light exposure, similar to Yb³⁺:La₂(WO₄)₁ [4] and Nd³⁺:La₂(WO₄)₁ [5,6].

In contrast, (La, Eu)₂W₃O₁₂ is known as a red phosphor [7,8], but fewer reports describe photoluminescence (PL) properties under near-UV-light excitation [9]. Recently, many studies have investigated phosphors for white LEDs as energy-saving illumination.

Herein, we report the PL properties of tungstate red phosphors of La₂WO₆:Eu³⁺. The 4f-4f absorption

transitions of Eu³⁺ occur at around 395 nm and 4f–4f emission transitions occur at around 610 nm, almost independent of host crystal optical phenomena. The oscillator strength of the 4f–4f transition is much weaker than that of 4f–5d or the charge-transfer transition. Generally, complex oxides are not easily synthesized using conventional solid-state reaction techniques because mutual diffusion among solid-state species is too slow to form homogeneous compounds or solid solutions. In contrast, the melt reaction is extremely fast and homogeneous because of a solution reaction with fast diffusion in the liquid phase. Therefore, the melt synthesis technique is suitable for synthesizing multi-component oxides where homogeneous cation mixing is necessary. During melt synthesis, the mixture of oxides or their precursors is melted in a very short period of time (1–60 s) using a strong light radiation in an arc-imaging furnace. Combining these advantages of the melt synthesis with the arc-imaging furnace, we prepared La₂WO₆:Eu³⁺ phosphors at a rapid rate, with necessary homogeneous Eu³⁺ doping.

Experimental

The starting materials were high-purity oxide (Eu₂O₃ (99.99%, Shin-Etsu Chemical Co. Ltd.), WO₃ (99.99%, Kojundo Chemical Lab. Co. Ltd.), and La₂O₃ (99.99%, Shin-Etsu Chemical Co. Ltd.)) powders. They were mixed by dry mixing and wet mixing in a high-purity alumina mortar. The mixed powder or a molded sample was placed on a copper hearth and melted in air under normal pressure using an arc-imaging furnace, as described in earlier reports [10, 11]. By exposure of the focused radiation of a 10 kW Xe lamp, the sample was melted into a 3–5 mm spherical globule on the copper hearth and then cooled rapidly by closing a shutter to cut off the radiation. After closing the shutter, the change from the molten state at around 2,000°C to a solid state with a dark color at around

 600° C generally took 5–15 s. Therefore, the cooling rate was estimated as higher than 100° C/s. For comparison, samples of La₂WO₆:Eu³⁺ were prepared using the solid state reaction at 1000° C for 10 h. Powder X-ray diffraction patterns were obtained for the arc-melted samples ground in an alumina mortar. For phase identification in this study, X-ray diffractometer (MX-Labo; Mac Science Ltd., Tokyo, Japan) CuK*a* radiation, which had been monochromatized using a curved graphite, was used. For photoluminescence measurements of the powder samples, a spectrofluorometer (FP-6500; Jasco Inc.) equipped with a Xe lamp was used at room temperature.

Results and discussion

The La₂WO₆:Eu³⁺ phosphors with $0 \le x \le 0.33$ in $(La_{1-x} Eu_x)_2$ WO₆ were synthesized using melt technique within a short period of 5–60 s in a single step from a mixed oxide powder. The melt synthesis is a hightemperature approach for inorganic materials synthesis, whereas solid-state synthesis is a low-temperature approach. The melt synthesis might produce metastable or high-temperature phases from a molten state, which might not be formed by solid-state reactions, even after a prolonged heating process. Doped activator Eu^{3+} is replaced homogeneously by the La site, which is a rare-earth element. Homogeneous distribution of small amounts of activator ions in the host materials is quite important for synthesis of a phosphor. In this sense, the melt-synthesis is advantageous. The sample prepared using melt synthesis was of globular shape with about 5 mm diameter (Fig. 2). Figure 3 depicts X-ray diffraction patterns of the synthesized La₂WO₆:Eu³⁺ phosphor samples. The samples were doped with low concentrations of Eu³⁺ crystallize in a γ -type phase, although the samples with high concentrations crystallize in a β -phase. In the La₂O₃-WO₃ binary system, no detailed information exists for crystallographic data based on single crystal structure determination. According to reference [12], there are three morphologies of α -, β -, and γ -phases for La₂WO₆ deduced from the phase diagram. The phase transition between the α -phase and β -phase occurs reversibly at 1440±30°C. Both the α -phase and β -phase are high-temperature forms that are not stable at room temperature. In addition, the γ -phase is reportedly obtained by annealing treatment [12]. In fact, we obtained La₂WO₆ as a γ -phase by the solid-state reaction at 1400°C for 12 h or 1500°C for 12 h. In other words, the γ -phase seems to be a stable phase at room temperature for La₂WO₆. As depicted in Fig. 3, although the diffraction intensities of the γ -phase are small, the La₂WO₆ samples doped with 1% and 5% Eu consist mainly of γ -phase (γ -La₂WO₆). The La₂WO₆ samples doped with 25% Eu and 33% Eu consist mainly of high-temperature β -phase (β -La₂WO₆). Because the melt synthesis has a high cooling rate of more than 100°C/s, it is possible to obtain a phase that is stable just below the melting temperature. Furthermore, the large difference in ionic radius between La³⁺ and Eu³⁺ is one factor for β -phase stabilization. These results lead to the conclusion that the melt synthesis was able to vield a high-temperature phase easily.

Figure 4 presents emission and excitation spectra of the La₂WO₆:Eu³⁺ samples. The CIE chromaticity value of La₂WO₆:Eu³⁺ is (x, y) = (0.648, 0.338). In La₂WO₆:Eu³⁺ samples, the red emission spectral intensity of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (613 nm) increased with Eu³⁺ contents up to x=0.25. In most Eu³⁺-activated red phosphors, the luminescence intensity usually decreases when the Eu³⁺ concentration is greater than several mol% because of concentration quenching [13]. Regarding research of red phosphors showing less concentration quenching, several research groups have recently reported some molybdate and tungstate phosphors with sheelite-type structures that performed strong f–f excitations of Eu³⁺ around 395 nm [14–16]. The compound of La₂WO₆ is composed of a large anionic radius, which is, respectively, 1.03 and 0.60 for La³⁺ and W⁶⁺. It is assumed that, for large anion,

long distance between emission ions saves migration of the excitation energy between emission ions. All excitation spectra monitored at 618 nm consist of two interwoven broad excitation bands (215–350 nm), belonging to a strong charge-transfer band (CTB) of W^{6+} -O²⁻ at the UV region (215–280 nm) and another weak CTB of Eu³⁺-O²⁻ (λ_{max} -285 nm) at the near-UV region (250–350 nm), and several sharp excitation lines of Eu³⁺ 4f levels between 350–500 nm. When the CTB is excited, the energy absorbed from the charge-transfer state is transferred efficiently to the Eu³⁺ ion by a nonradiative mechanism. It generates red-light emission of the ⁵D₀ \rightarrow ⁷F_J transition of Eu³⁺ [17]. Figure 5 portrays a comparison of emission spectra. The melted sample shows the emission, which is twice the intensity to that of the solid-state reacted samples, because the single β -phase was not obtained using a conventional solid-state reaction at 1000°C, 6 h. In addition, the commercial red phosphor, Y₂O₃:Eu (Tokyo Kagaku Kenkyusho Co. Ltd.), shows about half the emission intensity of the La₂WO₆ melted sample. The internal efficiency of 25% doped La₂WO₆:Eu³⁺ sample was 22% at room temperature (λ_{ex} =395 nm). It is higher than Y_{1.98}Eu_{0.02}WO₆ [18].

Conclusions

- Oxide phosphors were synthesized using a rapid reaction via a melt-solidification technique with an arc-imaging furnace.
- A single high-temperature β -phase, and stable γ -phase of the phosphor La₂WO₆:Eu³⁺ were synthesized
- These PL measurement results show that the intensity ratio of ${}^5D_0 \rightarrow {}^7F_2$ differed according to the Eu³⁺ concentration.
- Because La₂WO₆ was composed of large anion, the Eu³⁺ concentration quenching slightly decreased in this

compound.

Acknowledgements

The authors are thankful to Dr. A. K. Subramani of the Tokyo Institute of Technology for meaningful discussions. This work was supported by the project of Center for Transdisciplinary Research, Niigata University and The MEXT project G-COE Young Researchers grant, Tokyo Institute of Technology.

References

- [1] K. Nassau, H. J. Levinstein, G. M. Loiacono, The journal of physics and chemistry of solids, 26, 1805(1965)
- [2] M. Yoshimura, A. Rouanet, Materials Research Bulletin, 11, 151(1976)
- [3] V. K. Yanovskii, V. I. Voronkova, Inorganic Materials (Engl. Transl.), 19, 357 (1983)
- [4] Y. Chen, X. Lin, Z. Luo, Y. Huang, Chemical physics letters, 381, 598 (2003)
- [5] X. Qi, Z. Luo, Q. Huang, J. Liang, Y. Chen, M. Huang, H. Qiu, Physica status solidi. A, Applied research, 114,

K127 (1989)

- [6] Y. Urata, T. Fukuda, H. Ito, S. Wada, Japanese journal of applied physics, 40, 6453 (2001)
- [7] R. E. MacDonald, M. J. Vogel, J. W. Brookman, IBM Journal of Research and Development, 6, 363 (1962)
- [8] Inorganic Phosphors: Composition, Preparation and Optical Properties, W. M. Yen, M. J. Weber, Editors, p.
- 198, CRC Press, Boca Raton, FL (2004)
- [9] S. Okamoto, H. Yamamoto, Electrochemical and Solid-State Letters, 10, J139 (2007)
- [10] T. Ishigaki, K. Seki, E. Nishimura, T. Watanabe, M. Yoshimura, *Journal of alloys and compounds*, 408-412, 1177 (2006)
- [11] T. Ishigaki, E. Nishimura, K. Seki, T. Watanabe, M. Yoshimura, Journal of electroceramics, 17, 885 (2006)
- [12] M. Yoshimura, F. Sibieude, A. Rouanet, M. Foex, Journal of Solid State Chemistry, 16, 219 (1976)
- [13] E. Nakazawa, in Phosphor Handbook, S. Shionoya, W. M. Yen, Editors, p. 108, CRC Press, Boca Raton, FL (1999).
- [14] S. Neeraj, N. Kijima, A. K. Cheetham, Chemical Physics Letters, 387, 2 (2004)
- [15] Z. Wang, H. Liang, M. Gong, Q. Su, Electrochemical and Solid-State Letters, 8, H33 (2005)

- [16] Z. Wang, H. Liang, J. Wang, M. Gong, Q. Su, Applied Physics Letters, 89, 071921 (2006)
- [17] S. Shi, J. Gao, J. Zhou, Journal of The Electrochemical Society, 155, H525 (2008)
- [18] G. Blasse, A. Bril, Journal of Chemical Physics, 7, 2360 (1966)

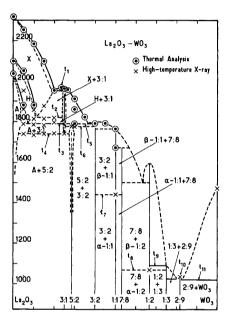
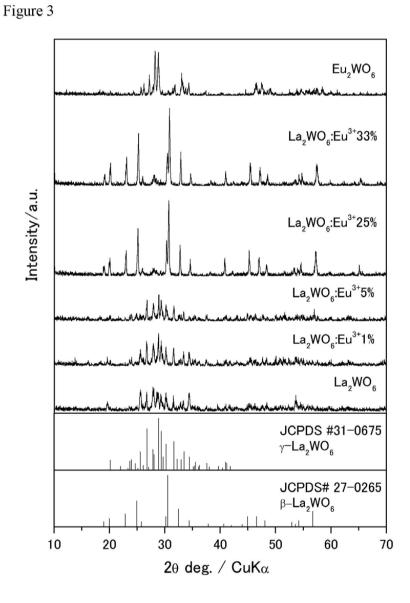
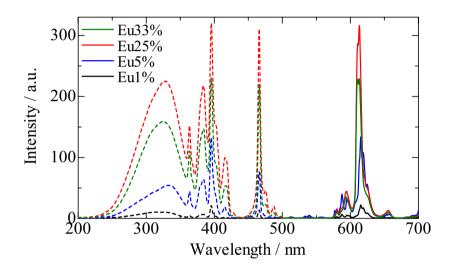
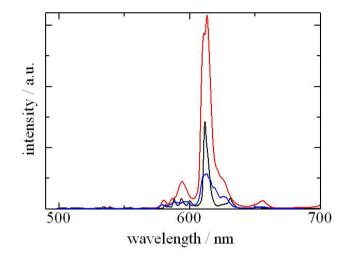





Figure 3

Phase diagram of the system La₂O₃-WO₃. Refer to [2].

 $[t_n^{\circ}C]: t_l = 1960 \pm 30, t_2 = 1820 \pm 30, t_3 = 1790 \pm 30, t_4 = 1740 \pm 30, t_5 = 1790 \pm 30, t_6 = 1770 \pm 30, t_7 = 1440 \pm 30, t_8 = 1067 \pm 10, t_8 = 1067 \pm 1067 \pm$

 $t_9 = 1068 \pm 10, t_{10} = 1030 \pm 10, t_{11} = 1020 \pm 10.$

Figure 2

Schematic illustration of melted sample La₂WO₆:Eu³⁺.

Figure 3

XRD patterns of the sample La_2WO_6 : Eu^{3+} ; depend on Eu^{3+} concentration, comparison with JCPDS #31-0675(γ -La_2WO₆) and #27-0265(β -La_2WO₆).

Figure 4

Emission and excitation spectra of La₂WO₆:Eu³⁺ phosphor samples showing (La_{1-x}Eu_x)₂WO₆: 0.01<x<0.33.

Dotted lines are excitation spectra (λ_{em} =613 nm); solid lines are emission spectra (λ_{ex} = 395 nm).

Figure 5

Emission spectra comparison of synthesis, melt, solid-state reaction, and commercial sample (λ_{ex} = 395 nm).

Red, melted sample (La_{1-x}Eu_x)₂WO₆ (x=0.25); Blue, solid state reaction (La_{1-x}Eu_x)₂WO₆ (x=0.25); Black,

commercial Y2O3:Eu.