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Abstract 

This work is motivated by the periodic vehicle routing problem (PVRP) where a vehicle is to perpetually visit customers 
within a given area. In this work there is no sense of horizon or days as in classic PVRP. Instead, it is assumed that each 
customer has a rate at which it must be visited for the vehicle to satisfy its mission. The vehicle's fuel limitations are taken 
into account and fuel depots with a fixed fuel price are included. The problem of finding paths that satisfy the locations' revisit 
rates and minimize the total cost of fuel is treated. An algorithm that provides solutions to this problem under given 
constraints is presented. 
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1. Introduction 

There are a number of customers in a given area. A vehicle is tasked with perpetually visiting these customers. 
Each customer must be visited at a certain rate for the vehicle to satisfy its mission. The vehicle has a finite fuel 
tank and consumes fuel at a given rate while in transit. Fuel depots with different fuel prices are included to allow 
the vehicle to refuel. The objective is to generate a path for the vehicle that satisfies the customer visitation rates 
and minimizes the cost of fuel. 

1.1. Literature review 

The problem stated here is based on the Vehicle Routing Problem (VRP) but is also similar to patrol problems. 
Thus research addressing these topics is reviewed.  
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The vehicle routing problem and methods to solve it are introduced in (Christofides, 1976). In VRP, a vehicle 
is tasked with performing pickup and delivery operations from a depot to a set of customers in a given area; the 
goal is to find a path for the vehicle that minimizes a given metric whether it be time, distance, or cost. The 
Period Vehicle Routing Problem (PVRP) is presented in (Christofides & Beasley, 1984) where a multiple day 
horizon is introduced and some customers must be visited on several days at a given frequency. In (Desrochers, 
Lenstra, Savelsbergh, & Soumis, 1988) the Vehicle Routing Problem with Time Windows (VRPTW) is studied, 
in this VRP variation each customer must be visited within a certain window of time. A heuristic to solve the 
periodic vehicle routing problem with time windows, which is a combination of PVRP and VRPTW, is presented 
in (Cordeau, Laporte, & Mercier, 2001). The emissions VRP is introduced in (Figliozzi, 2010) where the goal is 
to minimize the emissions and fuel consumption of the vehicle. 

When the pickup and delivery aspects of VRP are removed, the problem is reduced to the Traveling-Salesman 
Problem (TSP). In TSP the goal is to find the shortest tour for a salesman starting from a given location, visiting 
each of a specified group of locations, and then returning to the departure point. For TSP, exact algorithms suffer 
from computational complexity that increases as a function of the number of visiting locations. Instead, heuristics 
provide good solutions within reasonable time, but they do not guarantee finding the optimum. For existing TSP 
heuristics, see (Oberlin, Rathina, & Darbha, 2010). 

The patrolling problem consists of continuously visiting, with one or more agents, locations of interest in an 
area such that the time between visits to the same location is minimized. Heuristics to solve the patrolling 
problem under given conditions are presented in (Wolfer Calvo & Cordone, 2003). The patrolling problem with 
multiple agents is treated in (Chevaleyre, 2004). The formulation and solution of a patrolling problem with 
incidents occurring with a known distribution in time and space where the goal is to minimize the expected wait 
time between the occurrence of an incident and its detection are described in (Huynh, Enright, & Frazzoli, 2010).  

In (Basilico, Gatti, & Amigoni, 2009) a method for a patrolling agent to combat intrusion is given. The authors 
define the problem using a graph, where each node is a potential target and has an intrusion time indicating how 
much time it will take an intruder to break into the node. The method derived results in the patrolling agent 
visiting the nodes perpetually where the time between consecutive visits for a given node is less than its intrusion 
time. This work is extended to multiple patrolling agents in (Basilico, Gatti, & Villa, 2010). 

While the current literature examines many variations of VRP and patrolling problems, no method implements 
continuous visitation frequencies and accounts for the fuel costs of the vehicle. The current paper addresses this 
subject. 

1.2. Original contributions 

 Formulation of minimization of fuel cost for persistent visitation with fuel constraints problems. 
 Proof of existence of periodic solutions. 
 Complete algorithm to solve for tours that minimize fuel cost. 

1.3. Relevance to past work 

 Previously, we posed the persistent visitation problem without fuel constraints where a mobile agent was 
tasked with visiting objects of interest perpetually while satisfying heterogeneous revisit deadlines for the objects. 
We investigated the periodicity properties of solutions and presented incomplete heuristics to solve the problem 
(Las Fargeas, Hyun, Kabamba, & Girard, 2012). 
 

1.4. Paper outline 
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The remainder of the paper is as follows. In Section  2, the modeling for the revisit deadlines of the customers 
and the refueling process are presented. In Section  3, important characteristics of the vehicle path under given 
conditions are derived. In Section  4, the problem is formulated. In Section  5, we present the algorithm to find 
tours that, if infinitely repeated, solve the problem. Conclusions are discussed in Section  6.  

2. Modeling 

In this problem, operations occur in a two dimensional area with a single vehicle,  customers, and  fuel 
depots. The vehicle is assumed to be traveling at a constant velocity . The  customers each have Cartesian 
coordinates  and a finite positive revisit deadline . The vehicle has a finite fuel capacity 
of  and consumes fuel at a finite constant rate of  per unit time where , the vehicle endurance is thus 

. The  fuel depots have Cartesian coordinates  and a finite constant positive fuel cost 
. The fuel depots store an infinite amount of fuel. The vehicle can select how much fuel to 

purchase when visiting a fuel depot. Visits and refueling are assumed to have negligible durations in comparison 
to the time spent in transit. 

2.1. Revisit deadlines 

In classic PVRP, planning is done over a finite number of days and customers have a frequency of visitation 
(per unit day). The PVRP formulation allows for the decoupling of scheduling, which customers to visit on which 
days, and the vehicle path planning, what path to take to visit a given set of customers on a certain day. 

In this work, there is no sense of days and visits are done continuously. The frequency of visitation for a 
customer is per unit time. The revisit deadline is the inverse of the frequency of visitation. The vehicle cannot 
bank time between visits to the same customer, the finite revisit deadline indicates that the time between 
consecutive visits to customer  must be less than or equal to . This work does not include the pickup and 
delivery of goods aspect of VRP; in this regard it is more similar to TSP. 

2.2. State space model 

The following states are introduced:  indicates which customer or depot is being visited 
upon completion of step , where a step is the act of the vehicle traveling from one location or depot to the next, 

 indicates the total time elapsed upon completion of step . Note that this discretization of the vehicle 
movements in steps works because there is only one vehicle operating; if there were multiple vehicles the steps 
would not be synchronized and another methodology would have to be used, likely including the position and 
heading of the vehicles. Let  contain the following discrete time states: 
  (1)  

The continuous time states are now introduced:  is the slack time of customer , which 
indicates how much longer the vehicle can wait before a visit to customer  is overdue and  is the 
amount of fuel the vehicle is carrying at time  . The mission state  contains the following 
continuous states: 
 . (2)  

The input used is , it contains which customer or depot the vehicle will visit next 
and how much fuel the vehicle will purchase if the next visit is a depot visit (  indicates the step at which this 
input is applied and  where  indicates that  corresponds to the visiting 
location and   indicates that  corresponds to the fuel amount being purchased). Fuel can only be 
purchased at fuel depots thus: 
  (1)  
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Note that the discrete time states for step  are determined by the discrete time states and the input for 
step . Also, note that the time rate of change of the mission state at time  is a function of the time , the 
customer or the depot being visited upon completion of step , and the history of the amounts of fuel purchased. 
Considering this, the following model is used: 
  (2)  
  (3)  

2.3. Initial conditions 

The initial conditions of the state space variables are as follows, 

  (4)  

The amount of fuel the vehicle carries initially  is an additional input to the model. 

2.4. Dynamics 

The dynamics of the visitation schedule  and the total time elapsed  are as follows: 
  (5)  
  (6)  
   (7)  
The dynamics of the slack time for customer  is: 

  (8)  

where  is the continuous Dirac delta function and  is the discrete Kronecker delta function. The 
dynamics of the fuel the vehicle is carrying is given as, 

  (9)  

3. Vehicle path characteristics 

3.1. Periodicity 

A path is defined as an infinite sequence of visitations such that no customer visitation is ever overdue and the 
vehicle’s fuel is always bounded by zero and the fuel tank size. 

Definition  3.1. A tour is defined as a sequence of visitations starting from one customer and ending at that 
same customer such that all other customers have been visited. 

A path can thus be expressed as an infinite sequence of tours. The following remark and lemmas are used to 
prove the existence of periodic tours within paths. 

Remark  3.2. Viewing a path as an infinite sequence of tours, the initial mission state of these tours belongs to 
the compact set . 

Lemma  3.3. If a path exists, then a path with a periodic mission state exists. 
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Proof: If a path exists, then an infinite sequence of tours exists. Each tour has an initial mission state; hence if 
a path exists there exists an infinite sequence of initial mission states of tours. The initial mission state of tours 
belongs to a compact set (Remark  3.2), thus the sequence of initial mission states of tours is bounded. The 
Bolzano-Weierstrass Theorem states that every bounded sequence has a convergent subsequence. Hence a 
convergent subsequence can be extracted from the infinite sequence of initial mission states of tours. Let  be the 

 tour in the path, thus  
  (10)  

Thus a path can be constructed consisting of infinite repetitions of the tour  where . Therefore, a path 
with periodic mission states exists. 

Lemma  3.4. If no depot or customer is equidistant to two other depots, then there exists a unique sequence of 
visitations describing the mission state on  where at least one visit to a customer occurs in . 

Proof: Impulses in a slack time in the mission state are uniquely described by visits to the customer the slack 
time represents. Thus visits to customers can be extracted from the impulses slack times in the mission state, this 
is called labeling. Thus all slack time impulses can be labeled directly. Impulses in the amount of fuel in the 
mission state are not uniquely described by visits to a certain fuel depot as multiple depots exist thus they cannot 
be uniquely labeled directly. Because no customer is equidistant to two depots, the time in transit from any 
customer to a depot is unique. Thus the time between an impulse in a slack time and an adjacent impulse in the 
amount of fuel uniquely determines which depot visit caused the impulse in the amount of fuel. Thus impulses in 
the amount of fuel adjacent to an impulse in a slack time can be labeled. No depot is equidistant to two other 
depots, thus the time in transit from a depot to another is unique. Therefore, an impulse in the amount of fuel 
adjacent to a labeled impulse in the amount of fuel can be labeled. Hence all impulses occurring in the elements 
of the mission state on a given time interval can be labeled if at least one slack time impulse occurs within the 
time interval.  

Theorem  3.5. If a path exists and no depot or customer is equidistant to two other depots, then a periodic 
path exists. 

Proof: If a path exists then according to Lemma  3.3 a path with a periodic mission state exists. Let  be the 
mission state during a period. In  at least one visit to a customer occurs since for a slack time to return to a 
higher value an impulse must occur, and no depot or customer is equidistant to two other depots thus according to 
Lemma  3.4   is described by a unique sequence of visitations. Therefore, the sequence of visitations of the 
path with periodic mission state is periodic. 

Depots can be moved by infinitesimal amounts to circumvent the equidistance issue and guarantee the 
existence of tours. 

3.2. Finite number of tours 

Theorem  3.6. There exists a finite number of tours that start at customers which if infinitely repeated can 
solve the persistent visitation problem. 

Proof: The time in transit from one location to another is finite, thus a finite sequence of visitations takes finite 
time to complete. The duration of a tour that starts at a customer is constrained by the revisit deadline of the 
starting customer. There are a finite number of combinations of visits that can be achieved within a finite time 
interval. Thus the number of tours starting from a given customer that can solve the problem is finite. There are a 
finite number of customers, hence there exist a finite number of tours that start at customers and solve the 
persistent visitation problem if infinitely repeated. 

4. Problem formulation 



1042   Jonathan Las Fargeas et al.  /  Procedia - Social and Behavioral Sciences   54  ( 2012 )  1037 – 1046 

The goal of the agent in the persistent visitation problem with fuel constraints is to find the tour that minimizes 
the cost per unit time while satisfying the fuel and slack time constraints. Thus, the tour needs to satisfy 
continuity constraints for the slack times and the fuel. The time in transit between consecutive visits to a 
customer must be less than or equal to that customer’s revisit deadline. The fuel consumed in transit between 
consecutive visits to fuel depots must be less than or equal to the vehicle fuel capacity. In addition, infinite 
repetitions of this tour must form a solution. Thus, the tour must satisfy closure properties. The time in transit 
between the last visit and the first visit to a customer must be less than that customer’s revisit deadline and the 
fuel consumed between the last depot visit and the first depot visit must be less than the vehicle fuel capacity. 

Let  be a tour of length L. Let O be the matrix of visitation indices, O has n+1 rows where the 
first n rows correspond to visits to customers and the last row corresponds to visits to fuel depots. Oi(k) is the 
index of the kth visit to customer i in the tour and On+1(k) is the index of the kth visit to a fuel depot in the tour. Let 
li be the length of Oi, ln+1 be the length of On+1. For example, if O(2) contains {2,5,7} then customer 2 was visited 
at steps 2, 5, and 7, equivalently T(2)=T(5)=T(7)=2. If there are four customers, then O(5)={3,4,6} means that 
fuel depots were visited at steps 3, 4, and 6, equivalently T(3)>4, T(4)>4, and T(6)>4 (since there are four 
customers the fuel depots are represented by integers higher than 4). Let h(i,j) be the distance between location i 
and location j. 

Based on the model above, we formulate the problem as follows: the vehicle is to find a tour  such that the 
total fuel cost per unit time is minimized and the following conditions on continuity and closure of slack times 
and fuel hold: 

 . 

 

(11)  

 The first two equations are the continuity constraints and the last two equations are the closure 
constraints. The slack time continuity and closure constraints are equivalent to the intrusion time constraints used 
in (Basilico, Gatti, & Amigoni, 2009). 

5. Problem solution 

5.1. Main Algorithm structure 

The main algorithm to solve this problem is composed of multiple parts. The first part of the main algorithm 
(Algorithm 1) finds all tours that satisfy the slack time constraints and can satisfy the fuel constraint without 
solving for the amounts of fuel to be purchased; it uses the functions presented in Algorithm 2 and Algorithm 3 for 
constraint verification. The second part of the main algorithm solves a constrained minimization problem for 
each tour to calculate the amounts of fuel to be purchased that satisfy the fuel constraint and minimize the total 
cost spent on fuel during the tour. The third part of the main algorithm selects the tour with the minimum total 
cost divided by the time length, thus choosing the tour with the minimum cost per unit time.  
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5.1.1. Algorithm to find tours 
This algorithm finds all tours that can solve the problem and start from customers. The algorithm uses three 

main variables in its computation: T is the sequence of visitations of the current tour, O is the matrix of visitation 
indices, and Π is the set of valid tours.  

The recursive algorithm used is presented in Algorithm 1. The algorithm iterates through the possible locations 
to be visited, appends a visit to the current tour, and checks whether the current sequence satisfies the continuity 
and closure conditions. Specific steps proceed as follows; steps 2 through 13 are the loop for potential next visits. 
Step 3 forces tours to start at customers and step 4 does not allow consecutive visits to the same location. Step 7 
adds an index to the matrix of visitation indices for the new visit. Step 8 checks the continuity conditions of the 
mission state, step 9 checks whether the tour has completed, and step 10 checks the closure conditions of the 
mission state if the tour has completed. In step 11, if all conditions are satisfied then the tour is added to the set of 
valid tours, while if the tour satisfies the continuity conditions and is incomplete the search on that tour is 
continued as indicated in step 12, otherwise the tour is rejected. 

Algorithm 1. Algorithm to find all valid tours starting from customers. 

Π=findTours(T,O,Π) 
1.  L←length(T) 
2.  for i←1:(n+q) 
3. if L=0 and i > n then go to step 2 
4. if L ≥ 1 and i=T(last) then go to step 2 
5. T’←T.add(i) 
6. O’←O 
7. if i ≤ n then O’(i) ←O’(i).add(L+1) else O’(n+1) ←O’(n+1).add(L+1) 
8. if missionStateContinuity(T’,O’) then a←true else a←false 
9. if T’(1)=T’(last) then b←true else b←false 
10. if b and missionStateClosure(T’,O’) then c←true else c←false 
11. if a and b and c then add T’ to Π  
12. else if a and  then Π=findTours(T’,O’,Π) 
13.  end 
14.  return Π 

Algorithm 2. Function to verify continuity of mission states. 

missionStateContinuity(T,O) 
1. L←length(T) 
2. K←length(O(n+1)) 
3. if K=0 then v1,v2 ←1 else if K=1 then v1←1,v2 ←O(n+1) else v1,v2 ← last two entries in O(n+1) 
3. t ←  
4. if t >  then return false 
5. t ←  
6. if t >  then return false 
7. for i←1:n 
8. K←length(O(i)) 
9. if K=0 then v1,v2 ←1 else if K=1 then v1←1,v2 ←O(i) else v1,v2 ← last two entries in O(i) 
10. t ←  
11. if t >ri  then return false 
12. t ←  
13. if t >ri  then return false 
14. end 
15. return true 
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Algorithm 1 calls two other functions to check the continuity and closure conditions of the mission state. These 
functions implement the restrictions in Equation (11) and are presented in Algorithm 2 and Algorithm 3 
respectively.  

The mission state continuity function, Algorithm 2, first verifies the continuity conditions for the fuel and then 
verifies the continuity conditions for all the slack times. From one iteration in Algorithm 1 to the next, the length 
of the sequence can be changed by zero or one thus there is no need to verify that all continuity constraints in 
Equation (11) are satisfied; instead this function verifies the last two visits to customers and depots. The fuel 
continuity verification is achieved by checking that the time between the last two depot visits and the time 
between the last depot visit and the current step are less than the vehicle endurance. The slack time continuity 
verification is achieved by checking that the slack time for customer i between the last two visits to customer i 
and the time elapsed from the last visit to customer i and the current step are less than the revisit deadline for 
customer i.  

Similarly, the mission state closure function, Algorithm 3, checks that the time elapsed between the last fuel 
depot visit and the first is less than the vehicle endurance and that the time elapsed between the last visit to 
customer i and the first visit to customer i is less than the revisit deadline for customer i.  

5.1.2. Tour fuel cost minimization 
For each tour, a constrained minimization problem is solved to calculate the fuel to be purchased at each depot 

such that the total cost of fuel is minimized. Let T be a tour, the sequence of fuel depot visits, D, can be extracted 
from T:  where di is the ith depot visited. We define  as the time spent 
traveling between di and di+1,  is the time in transit between dm and d1. Let ∆fi be the amount of fuel 
purchased by the vehicle when visiting di.  

During the tour, the fuel the vehicle is carrying must always be bounded by zero and the vehicle fuel capacity. 
Thus the amount of fuel purchased at a given step must be large enough for the vehicle to reach the next depot 
but small enough as to not surpass the fuel capacity. This requirement results in the following constraints on the 
amount of fuel purchased: 

  (12)  

     These constraints can be recasted in the following matrix inequality form: 

missionStateClosure(T,O) 
1. L←length(T) 
2. v1←last entry in O(n+1),v2 ←first entry in O(n+1) 
3. t ←  
4. t ←  
5. if t > F/  then return false 
6. for i ←1:n 
7. v1←last entry in O(i),v2 ←first entry in O(i) 
8. t ←  
9. t ←  
10. if t >ri  then return false 
11. end 
12. return true 

Algorithm 3. Function to verify closure of mission states. 
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  (13)  

     In addition, the amount of fuel purchased must always be greater than or equal to zero and less than or equal 
to the fuel capacity: 
  (14)  
     The goal of the vehicle is to minimize the cost per unit time, since the duration of the tour is already fixed the 
time aspect can be ignored thus the minimization is expressed as follows: 

  (15)  

     Equations (13), (14), and (15) form a constrained minimization problem which can be solved using linear 
programming methods. 

5.1.3. Minimum cost per unit time tour 
The third part of the algorithm selects the tour that will result in the path with minimum cost per unit time: 

 
 (16)  

     The initial conditions for the path generated by infinite repetitions of a tour are as stated in  2.3 where 
.  

5.2. Algorithm correctness, completeness, and complexity 

The tour finding algorithm verifies that slack time and fuel continuity are satisfied whenever a visitation is 
added; in addition slack time and fuel closure are verified before a tour is admitted, and thus the tour finding 
portion of the algorithm is correct. The tour fuel cost minimization portion of the algorithm ensures that the 
amount of fuel purchased at each depot is such that the amount of fuel the vehicle is carrying is always positive 
and less than or equal to the fuel capacity. Hence the tour fuel cost minimization portion of the algorithm is 
correct. Therefore, the algorithm is correct. 

The tour finding algorithm searches for all possible combinations of visits within the search depth set by the 
revisit deadline of the starting customer and returns tours that satisfy the slack time and fuel constraints. As such, 
the algorithm is complete by exhaustion. Because of this search methodology, the algorithm’s performance at 
best is of the order . However, the slack time and fuel constraints mean that in reality the 
algorithm will reject a sequence of visitations that violates a constraint before searching the maximum depth. 

The algorithm can be extended to allow tours to start at depots as well as customers however a finite number 
of tours would no longer be guaranteed thus additional constraints to guarantee termination might be required. In 
addition, if this extension were implemented the algorithm would no longer be complete since there would be no 
limit to the length of solutions. 
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6. Conclusions 

In this paper, a formulation of a periodic vehicle routing problem with continuous revisit deadlines and 
allowing fuel purchases is presented. Properties of paths that solve the problem are derived. A complete 
algorithm to find tours starting at customers which solve the problem is given. 

Acknowledgements 

 The research was supported in part by the United States Air Force grant FA 8650-07-2-3744. 

References 

Basilico, N., Gatti, N., & Amigoni, F. (2009). Developing a deterministic patrolling strategy for security agents. Proceedings of 
theIEEE/WIC/ACM International Joint Conferences on Web Intelligenceand Intelligent Agent Technologies, 2, pp. 565-572. 

Basilico, N., Gatti, N., & Villa, F. (2010). Asynchronous multi-robot patrolling against intrusions in arbitrary topologies. Proceedings of the 
24th AAAI Conference on Artificial Intelligence, (pp. 1224-1229). 

Chevaleyre, Y. (2004). Theoretical Analysis of the multi-agent patrolling problem. Proceedings of the IEEE/WIC/ACM International 
Conference on Intelligent Agent Technology, (pp. 302-308). 

Christofides, N. (1976, February). The Vehicle Routing Problem. Revue Française d'Automatique, Informatique, et Recherche Opérationelle, 
10(2), 55-70. 

Christofides, N., & Beasley, J. (1984). The period routing problem. Networks, 14, 237-256. 
Cordeau, J.-F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time windows. Journal of 

the Operational Research Society, 52, 928-936. 
Desrochers, M., Lenstra, J., Savelsbergh, M., & Soumis, F. (1988). Vehicle routing with time windows: Optimization and approximation. In 

E. S. Publishers, Vehicle Routing: Methods and Studies (pp. 65-84). 
Figliozzi, M. (2010). Vehicle Routing Problem for Emissions Minimization. Transportation Research Record: Journal of the Transportation 

Research Board, 1-7. 
Huynh, V., Enright, J., & Frazzoli, E. (2010). Persistent patrol with limited range on-board sensors. Proceedings of the 49th IEEE Conference 

on Decision and Control, (pp. 7661-7668). 
Las Fargeas, J., Hyun, B., Kabamba, P., & Girard, A. (2012). Persistent Visitation with Heterogeneous Revisit Rate Requirements. 

Manuscript submitted for publication.  
Oberlin, P., Rathina, S., & Darbha, S. (2010, December). Today's Traveling Salesman Problem. IEEE Robotics Automation Magazine, 17(4), 

70-77. 
Wolfer Calvo, R., & Cordone, R. (2003). A heuristic approach to the overnight security service problem. Computers & Operations Research, 

30(9), 1269-1287. 
 


