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Abstract

There are two natural ways of defining the numerical range of a partial matrix. We show
that for each partial matrix supported on a given pattern they give the same convex subset of
the complex plane if and only if a graph associated with the pattern is chordal. This extends
a previously known result (C.R. Johnson, M.E. Lundquist, Operator Theory: Adv. Appl. 50
(1991) 283-291) to patterns that are not necessarily reflexive and symmetric, and our proof
overcomes an apparent gap in the proof given in the above-mentioned reference. We also
define a stronger completion property that we show is equivalent to the pattern being an equi-
valence. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Matrix completion; Partial matrix; Numerical range; Inner and outer numerical ranges; Chordal
graph

1. Introduction

A patternZ is arelation or{1, 2, ..., n} for some positive integar, i.e. a subset
of n x n={(j, k) : 1< j, k <n}, and apartial matrix on 2 (or a Z-matrix) is a
complex-valued function defined eh Informally, a partial matrix is a square matrix
whose entries may not all be specified.
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If 71 andT» are partial matrices on pattera®, and 22,, respectively, we write
T1 < T> if 21 C 2, and Ty is the restriction off» to 221. If 2 is a clique, i.e. a
non-empty subset of x n consisting of all pairs of the fornd, j), wherei and
j belong to some subset ¢1, 2, ..., n}, then anyZ?-matrix can be regarded as a
square matrix and an operator 6 for some positive integen < n. We say that
T» is acompletionof 71 if T> is a square matrix anth < 7. Similarly, we say that
T1 is asubmatrixof Ty if 77 is a square matrix anfh < 7».

Matrix completion problems are typically concerned with finding completions of
partial matrice§ which preserve certain propertiesioin many cases their solutions
can be easily described in terms of properties of an underlying g¢fggh. This is
the directed graph whose vertex sefls2, ..., n} and whose edge set i, i.e.
there is an edge from vertgxo k if and only if (j, k) € 2. Chordality often has an
important role. We say tha? is chordalif every cycle in%(2) of length 4 or more
has a chord. Grone et al. [1] showed tha¥iis reflexive and symmetric, then every
‘partially positive’ 2-matrix has a positive completion if and only# is chordal.

A related result concerning numerical ranges was proved by Johnson and Lund-
quist [4]. Thenumerical rangeof a bounded linear operatdron a complex Hilbert
spaces’ is the setW(T) = {(Te,e) : e € H, |e| = 1}. The Toeplitz—Hausdorff
theorem states th&k (T') is always convex. A useful computer algorithm for plotting
the numerical range of matrices is given in [5].

There are two ways of defining the numerical range of a partial matrthein-
ner numerical rangéV1(T) is the convex hull of the numerical ranges of all subma-
trices ofT, and theouter numerical rangéVo(T) is the intersection of the numerical
ranges of all completions df. If AandB are square matrices add< T < B, then
W(A) € W(B), and it follows thatW1(T) € Wo(T) and thatWy(T) = W(T) =
Wo(T) if Tis also a square matrix. We say that a patt@rhas thenumerical range
completion propertyf W1(T') = Wo(T) for everyZ?-matrixT. The main resultin [4]
states that a reflexive symmetric pattern hasiimaerical range completion property
if and only if it is chordal.

We have discovered what appears to be a gap in the proof of the ‘only if’ part of
this result. Their proof correctly shows that4f is not chordal and is a partially
positiveZ-matrix with no positive completion, then there is a negative nurhlleat
is contained in the intersection of the numerical ranges of all Hermitian completions
of T. The problem is their assertion at this point of the proof that it follows that
is in the numerical range of every completionTofSince ReW (T) = W(ReT), it
follows that the numerical range of every completiorTafontains a number whose
real partisk. However, it is conceivable that this may not imply their claim. We have
not been able to prove or disprove their claim, but we have been able to construct a
family of examples where their claim holds, and use this family to complete their
proof. We also examine inner and outer numerical ranges of partial matrices defined
on patterns which are not necessarily reflexive or symmetric.

In Section 4, we define a stronger numerical range completion property and prove
it coincides with the patter# being an equivalence.
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2. Subpatterns

Thereflexive partZr, of a patterrn? is the largest reflexive subpattern®f Thus
Pris given byZr = 2 N CI(2), where C(2) is the clique((j, k) : (j, j) € 2 and
(k, k) € 2}. Similarly, thereflexive symmetric par#rs, of Z is the largest reflexive
and symmetric subpattern &f, and is given by?rs = Zr N (ZRr)*, where for any
pattern2, 2* = {(k, j) : (J, k) € 2}. Clearly #rs C Z?r C 2. We shall show that
a pattern has the numerical range completion property if and only if its reflexive
symmetric part has the same property. This claim is made in [4], but no proof is
given there.

For anyZ-matrix T, we let7Tr andTrs denote the restrictions dfto #r andZRs,
respectively. Clearly, i’ < T, then any completion of is also a completion of”’
and any submatrix of” is also a submatrix of. So it follows thatW1(T") € W1(T)
andWo(T’) € Wa(T). Furthermore, any submatrix @fis also a submatrix ofrs.
So we have

W1(Trs) = Wi(Tr) = W1(T) 1)
and
W2(Trs) € Wa(Tr) S Wa(T). 2

We shall show that equality holds in (2), and for this we need some preliminary
results.

Lemma 1. Suppose that# is a finite-dimensional Hilbert spacei, E € B()
and that E is an orthogonal projection. Then

ﬂ WOEL +A) = W(EA|gy), whereEt =1—E.
reC

Proof. The inclusion> follows easily from the fact thatE+|z, = 0. So we
need to show that any open half-plane containiWgEA|g,) also contains
MNicc WAEL + A). By replacingA by €A + u1 for suitably chosen positive real
numbersy) andu, we may assume thaV (EA|g ) is contained inz : Rez > 0}.
Since W(EA|gy) is compact,W(EA|gx) C {z : Rez > r} for somer > 0. Let
A=r"1 ||A/||2 + |A’|, whereA” = Re A. Then for anye € 7,

Re((AEL + A)e, e) = (LE* + Ae, ¢)

2
= H Eie‘ F(A'Ete, EYe)+(A'Ete. Ee)+(A'Ee, ELe)+(A'Ee, Ee)

> (A= lA"ll) IETell” — 21l A'[I|E"ell| Ee]| + || Ee|/?

2
= (A NNE el = rlEe])” > 0,

and soW (AE + A) is contained in the right half plane, as required
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Remark 1. Lemma 1 is a generalization of the equalfty, .o W(AI 4+ A) =,
which holds for any operat@k on a Hilbert space.

Remark 2. A simple modification of the proof of Lemma 1 shows thatif is
infinite-dimensional, then

W(EA|gx) S (| WOET + A) S W(EA|gx)
reC

for any operatoA and any orthogonal projectidain B(#).
To see that the closure is necessaryAet= 7" & ", where#" is an infinite-
dimensional Hilbert space, and chod3e= B(.#") such thatW (D) = (0, 1]. Let

0 1 0 O
A:<I D) and E:(O 1>.
ThenD = EA|gx, but(),.c WAEL + A) = [0, 1].

Lemma 2. Suppose that” is a Hilbert space A € B(2#) and that./ is a linear
subspace oB(#). Then

(N WA+X)= [ WA+X+Y5.
Xe X, Yeu

Proof. The inclusion2 is obvious. Now suppose thdit(A + X + Y*) C {z : Re
€%z > r}, whereX, Y e .# andd andr are real numbers. Then

Re(ei"(A X+ Y*)) - Re(eie(A X+ e‘2i0Y)) .
SOW(A+2Z)Cc{z:Red’z >r}, whereZ = X + e 29y ¢ ./, and the reverse

inclusion follows. O

We say that a matrid = (a;;) is orthogonalto a pattern? and we writeA 1.2
if a;; = Oforall i, j) € 2. If Ayis any completion of &-matrix T, thenA; is also
a completion ofT if and only if (A1 — A2) L 2.

Lemma 3. For any partial matrix T we have
Wa(Trs) = Wa(Tr) = Wa(T).
Proof. Suppose thaf is a#-matrix and thatdg is a completion offg. ThenA; =

Ao + B is a completion ofl for someB L CI(#). Let E denote the diagonal matrix
diag(e;)’_,, where

(1 ifG e
70 i) ¢ 2

ThenE+ L2, andT < LE+ 4+ A1 foranyx € C. So by Lemma 1,
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Wa(T) € [\ WRE" + A1) = W(EA1|gen).
reC
But EA1|gcr = EAolecr, andW(E Aglgcn) € W(Ap). SO

Wa(T) € N{W(Ap): Ag is a completion offr} = W2(TR).

The reverse inclusion is in (2), and 8&(T) = W2(TR).

For the second equality, observe tlais a completion offr if and only if B =
Ao+ X for someX | ZRr, and thatC is a completion offrs if and only if C =
Ao+ X + Y* forsomeX, Y L #r. So by Lemma 2

Wa(Tr)= [ WA+ X)= (| W(Ao+X+Y"=Walrg). O
X 12R X, Y12R

Theorem 4. Suppose tha? is a pattern which has the numerical range completion
property. Then so does any patte?rfor which?rs = 2gs.

Proof. This follows easily from (1), (2) and Lemma 3]

3. Chordality and numerical range

In this section, we prove that a pattern has the numerical range completion prop-
erty if and only if its reflexive symmetric part is chordal. This extends the result of
Johnson and Lundquist to patterns which are not reflexive and symmetric, and our
proof overcomesthe apparent gap in the proof givenin [4]. We need to establish some
preliminary results. The first shows that the numerical range completion property is
hereditary.

Lemma5. Any induced subpattern of a pattern with the numerical range comple-
tion property also has the numerical range completion property.

Proof. Suppose tha# has the numerical range completion property and that
the clique{(i, j) : i, j € S} forsome subsedof (1, 2, ..., n}. LetT’ be aZ’-matrix,
whereZ’ is the induced subpattera N 4. We need to show thav1(T') = Wao(T").
If Wi(T") = @, then?r = . Let A be a completion of’. Thenil + A is also
a completion of for any scalan, and soW»(T") C (), cc WA + A) = 0.
If Wi(T") # 9, then choos@ € W1(T’) and letT denote the?-matrix T = (zjx)
which is an extension df’ and satisfies
t__{x if j =k,
K00 i j#k,
for each(j, k) € 2\ 2'. ThenW1(T) = W1(T’). Furthermore, sinc&’ < T, and
W2(T") € Wa(T), Wo(T') € Wao(T) = Wi(T) = Wi(T"). So Wi(T") = Wa(T"),
and hence?’ has the numerical range completion property]
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For eachm >4 let %, = {(i, j) : i — jI < LB U{(@, m), (m,1)} (Them x m
pattern?,, consists of the main ‘tri-diagonal’ and the ‘corners’.). The next lemma is
the key technical result we need to establish the main theorem.

Lemma 6. Suppose that V is the m-square mat(coq(j — k)@))’]’.szl, where

m > 4andf = /(2(m — 1)). Then

1. Vis positive definite

2. rankV = 2, and

3. for each D1%,, there is a non-zero vecto¢ € C" such thatVe =0 and
(De,e) =0.

Proof. Properties 1 and 2 follow from the fact thét= A*A, where

A 1 co®® cosd ... cogm—2)60 O
“\0 sing sin»® ... sinm-—-20 1 )°

For property 3 let
¢ = (cosh, cosd, ..., coqm—2)0)", s=(sing,sind,...,sin(m—2)0)*,

and write
0 D12 0
D= \|Dxx Dy D3|,
0 D32 0

where D 1%,,, D21, D23, D35, D3, € C™=2, and whereD25 is an (m — 2)-square
matrix. Thene € kerV if and only if e = (—x*c, x*, —x*s)* for somex € C"~2.
For such are, (De, ¢) = —(Tx, x), where

T = ¢D12+ D21c™ — D2 + s D3z + Dass™,

and so we need to show thatOW (T').

Suppose that @ W (7). By multiplying by ¥ for a suitable real number, we
may assume that RE is strictly positive definite. WriteD12 + D3, = 2(§1, &2, .. .,
&m—2), and D3z + D35 = 2(n1, M2, . .., nm—2), and lett;, andé jx denote thej, k)
entries of RET and ReD», respectively. Then

tjk = & COSjO + & COSkO + ny SiN jO + 777 SINkO — & ji..
Let 7; denote the 2« 2 principal submatrix

( ot )
Li+1.j  Tj+1j+1

of ReT forl1< j <m—3.Sinces;x =0if |j — k| < 1, we have

oo 2 vtz
1 yj — iZj 2Mj+1 ’
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where
u; = Re(§j cosjo +n;sin jo),

yj = Re(§j11€08j0 +&; codj + 1)6 + nj118inj6 + n; sin(j + 1)0),
z; =Im(§j41c08j0 —&; cogj + 1)0 + nj11Sinj0 — n;sin(j + 1)0).

Since ReT is strictly positive definite, so too is eadh). Sou; > 0for 1< j <
m —2anddef; = 4ujuj1 — y2 —z5 > 0for1< j <m — 3. Therefore du;1
>y, and sax;x;1 > y; wherex? = 2u;. It follows that

m—3 m—3

D x> )V

j=1 j=1
Now

vj = (u; +ujy1)cosd — (v; —vjy1)sing,
where
v; = Re(§; sinjo — nj cosjo).

So
m—3 m—3
Z yj = Z (uj 4 ujy1) cOSO + (vu—2 — v1) SING.
j=1 j=1

SinceD 1%, it follows thaté, = n,,—» = 0. So

v1Sin6 = —Ren1cosh Sind = —uj COSH,
Up—2SIiN0 = Re&,,_2 sin(m — 2)0 sinf = u,,_» cOsH.

Therefore
m—3 m—3 m—2 m—2
ijxj+1> Zy,-:ZZu,-COS@:ZxJZ-COS@. 3)
j=1 j=1 j=1 j=1
On the other hand, the tridiagonal matéixe .#,,_» given by
2coy -1 o - 0 0 0
-1 2co® -1 . - 0 0
0 -1 2co¥ . . 0
G = )
0 . . 2cow -1 0
0 0 .. =1 2co¥ -1

0 0 o .- 0 -1 2co9
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is positive definite. (In fact de& = sin(m — 1)6/ sin6 = cotd > 0, and the deter-
minant of any principal submatrix @ is the product of positive factors of the form
sink6/sind, where 2< k <m — 1.) So

m—2 m—3
(Gx,x)=2 ijz-cose - ijxjH >0
j=1 j=1
forallx = (x1, x2, ..., xm_2)* € R"~2, and since this inequality contradicts (3), we

conclude that no suchexists. So G W(T') and property 3 holds. [

Corollary 7. No pattern of the forn¥,, for m > 4 has the numerical range com-
pletion property.

Proof. Suppose that: > 4 and thafT is the %,,-matrix whose(1, m) and (m, 1)
entries are both 0 and whose other entries are all 1. WigiT) C [0, co). Now
let V andé be as in Lemma 6, and l&® = (se®)V + (1 —sed)I. ThenB is a
completion ofT and, by Lemma 6, = 1 — se® < 0is an eigenvalue of multiplicity
m — 2. Moreover, ifAis any other completion &f andD = B — A, then by Lemma
6 there is a unit vectar € Ker(B — A1) such that De, ¢) = 0. Sor € W»(T), and
thereforeW1(T) + Wo(T). O

Theorem 8. A pattern has the numerical range completion property if and only if
its reflexive symmetric part is chordal.

Proof. Inview of Theorem 4 we can assume thais reflexive and symmetric. The
‘if’ part is proved in [4]. So suppose tha? is not chordal. Ther¥(P) contains a
chordless cycle with at least four vertices, and there is an induced subpatt@rn of
of the form¥,, (after a possible reordering of the vertice®1 .., n). It follows
from Corollary 7 and Lemma 5 that neith@}, nor 2 has the matrix completion

property. [J

4. Strong numerical range completion property

We conclude with a related result. We say that a pat#eiras thestrong numer-
ical range completion propertif every #-matrix T has a completio for which
W1(T) = W(A). This property is indeed stronger than the numerical range comple-
tion property becaus®@/1(T) € W2(T) € W(A) for any completionA of a partial
matrix T. We show tha#” has this property if and only if it is an equivalence relation,
that is, up to permutation similarity? is a block-diagonal pattern.

The following proof is a great simplification of our original proof and was kindly
provided by the referee.
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Theorem 9. A pattern has the strong numerical range completion property if and
only if it is an equivalence.

Proof. The only if part is obvious. Conversely, suppose the patiehas the strong
numerical range completion property. Suppose #hig a pattern and thatrsis its
reflexive and symmetric part. We define a partial maltix (¢;1) onZ as follows:

- 0 if(j,k) € Prs,
=11 if(j,k) e 2\ Prs

SinceW(T) = W1(Trs), it follows that

Y if Zrs =19,

W) = {{0} if Prs # 0.

Suppose thaA is a completion ofT. If 2 #+ Zrs, thenA # 0. ButW(A) =0 if
and only if A = 0 [2], and hencéV (A) #+ W1 (T). Since this is a contradiction we
conclude tha? = ZRrs. This proves reflexivity and symmetry, and it remains to be
shown that? is transitive.

If 2 is not transitive, it has an induced33 subpatter®’1 of the form

k k
k k k
ES *k
Let T be theZ1-matrix
0 1

1 0 i
i 0
and letA be theZ-matrix whose restriction t&?1 is T and whose other entries are all
0. One readily checks tha¥1(A) is the convex hull of1, —1, i, —1}. Suppose that
A’ is a completion ofA so thatW(A’) = W1(A), and thatT” is the corresponding
3 x 3 completion off'. Then
W1(A) € W(T') € W(A") = W1(A),

and so W(T') = W1(A) and has four non-differentiable boundary points,
namely 1-1,i, —1. Each of them must be an eigenvalue T6f by Horn and
Johnson [3, 1.6.3], which is impossible. Hengenust be transitive, and the proofis
complete. O
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