metadata, citation and similar papers at core.ac.uk brought to you by . C

provided by Elsevier - Publisher Conr

Available at
www.ElsevierComputerScience.com ArtiflCial
; A POWERED BY SCIENCE @DIRECT° Intelligence
ELSEVIER Artificial Intelligence 154 (2004) 43-93

www.elsevier.com/locate/artint

Stable repeated strategies for information exchange
between two autonomous agents”

Rina Azoulay-Schwartz 2, Sarit Kraus?P*

@ Department of Computer Science, Bar-1lan University, Ramat-Gan, 52900 Israel
b Ingtitute for Advanced Computer Sudies, University of Maryland, College Park, MD 20742, USA

Received 16 November 2001

Abstract

This paper deals with the problem of designing a strategy profile which will enable collaborative
interaction between agents. In particular, we consider the problem of information sharing among
agents. Providing information in a single interaction as a response to queries is often nonbeneficial.
But there are stable strategy profiles that make sharing information beneficial in the long run. This
paper presents these types of mechanisms and specifies under which conditions it is beneficia to
the agents to answer queries. We analyze a model of repeated encounters in which two agents ask
each other queries over time. We present different strategies that enable information exchange, and
compare them according to the expected utility for the agents, and the conditions required for the
cooperative equilibrium to exist.
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1. Introduction

In this paper, we consider the problem of enabling helpful behavior of agents, for
situations where helpful behavior is not beneficial in the short run. We consider situations
where an agent can ask for help from another agent. However, if no help was received, the
agent cannot observe whether the other agent attempted to help or not. The asking agent
(B) needs the help of the other agent (A), but this help is costly for A. Furthermore, we
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consider situationswhere no payment mechanism exists to compensate an agent for its help
(for example, information agents that do not charge money for using them, or information
agents of private persons). Thus, each agent will be motivated to get help, but has no
motivation to provide any help to its opponent. Thistype of problem appearsin information
sharing among self-motivated agents. Information sharing is necessary in environments
where autonomous agents are required to solve problems, and additional information may
improve their performance, i.e., reputation systems, load balancing, reviewing papers,
solving problems which require specialization, etc. Information sharing among agentsin
such environmentsis supposed to increase their average utility, since the cost of one agent
to find an answer to a query is usualy less than the utility derived by the agent receiving
the response.

Research on information sharing among agents usually assumes that the agents are
motivated to share information with each other and to help each other to find the best
solution to their problems [10,14,22]. This assumption does not hold in multi-agent
environments, where each agent belongs to another owner, who wants to maximize its
own utility. When answering a query an agent bears the costs of searching for the answer
and sending it to the questioner, and it may also bear indirect costs. For example, if the
query is about the resource with the lowest load [16], answering it may increase the load
of the resource, and this can harm the responding agent that publicized this information.
The responding agent does not receive any payment for its answer, since there is no
mechanism to enable such a payment. Moreover, the value of an answer cannot objectively
be evaluated. Payment for answers may reduce the efficiency of the overall system sincean
agent may give up on sending queries, only because its estimation about the benefits from
them istoo low.

Given the above domain, each agent would like to receive answers to its own queries,
while ignoring queries directed to it. Thus, as we show in Section 3.2 below, it is clear
that in equilibrium of a single interaction no agent will answer any query. However, if the
interactions are repeated, strategy profiles exist in which it is worthwhile for the agents to
attempt to answer queries, since their long term utility will increase. In these strategies an
agent that does not answer a query is punished by the inquiring agent. The punishment is
implemented by ignoring queries of the punished agents.

To simplify the problem, we analyze a model of repeated interactions in which two
agents contact each other and repeatedly ask queries. We check under which conditionsiit
will be worthwhile for an agent to answer the queries of its opponent. In order to consider
the general case where several agents are connected, each pair of agents can be analyzed
separately. Furthermore, the benefits of an answer obtained by a certain agent should be
evaluated given the fact that answers can also be obtained by other agents.

The problem of enabling cooperationin answering queriesis different from the classical
prisoner’s dilemma[8] with respect to two main issues. First, the agents do not make their
decisions simultaneously: in each interaction, one agent asks a query, and a decision is
made by the second agent. Second, an agent, when attempting to answer a query, may fail
to find an answer, and the questioner cannot know whether it did not receive an answer
because the other agent ignored its query, or because the other agent failed to find an
answer. The agent which has to answer may consider to send a message indicating that
it failed to find an answer. However, such a response is strategically equal in our model
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to not responding, since in that case, the questioner cannot know whether the agent really
attempted to answer its query or not. We also assume that an agent cannot send a fictive
answer, since such an answer will beimmediately revealed. For example, in the commerce
domain, information about a seller cannot be given if the informer does not know actual
details about it. Similarly, technical help which is not useful will immediately be found to
be worthless, etc.

The paper is organized as follows. Section 2 provides a survey of related work on
artificial society and on reputation mechanisms. Section 3 describes the basic model of
information sharing. First, we consider the case in which an agent punishesthe other agent
each time the other agent has not responded to its query, which is presented in Section 4.
In Section 5 we consider the general case, in which the n last queries presented to agent A
are observed in order to decide whether to punish agent A. Finally, Section 6 providesthe
conclusions and suggests directions for future research. The paper’s proofs and a table of
symbols appear in appendices.

2. Related work

This paper deals with enabling information sharing among two agents. The motivation
behind this issue is in the formation of societies of agents which share information. We
claim that agents share information with each other due to the fact that interactions are
repeated, and equilibrium can be based on punishment which is implemented by ignoring
gueries of the punished agents. In this section, we survey related work on two issues. We
present previous work on interactions of agents in repeated gamesin Section 2.1, and in
Section 2.2 we discuss the previous work on gathering and sharing information among self
interested agents.

2.1. Cooperation among self interested entities

Research conducted in DAI concerning cooperation and coordination in repeated games
deals mainly with learning the best strategy to play in this kind of game. The typical
approach is to assume that the adversary’s strategy is a member of some natural class of
computationally bounded strategies. In this section we describe related work on strategies
and learning techniques used by agentsin repeated games.

Axelrod’'smodel [2] of the evolution of cooperation was based on the iterated Prisoner’s
Dilemma. He considered a group of players playing the prisoner’s dilemma repeatedly,
thereby permitting partial time histories of behavior to guide future decisions. He found
that avery simple strategy called “tit for tat” was the winning strategy. This strategy simply
cooperates on the first move and then does whatever the opponent has donein the previous
move. In our problem, we use a variation of tit-for-tat, adapted to the queries answering
domain when actions are not formed simultaneously.

Sandholm and Lesser [15] suggest that agents use Q-learning [9] in repeated games, in
order to learn how to play optimally against an unknown opponent. In their simulations,
agents using a Q-learning algorithm succeed in learning to play optimally against tit-
for-tat agents, but they face difficulties when playing against other learners. The agents
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which fared best among the Q-learning agents, in the iterative prisoners dilemma, were
agents with learning based on lookup table memories, with long history windows and
long exploration schedules. In our work, we study a game different from the prisoners
dilemma, and we study agents using deterministic strategies rather than learning methods.
Nonetheless, in our research we also found that agents observing longer histories obtain
higher expected utilities.

Carmel and Markovitch [5] described a model-based approach for learning in multi-
agent systems, which split the learning process into two separate stages. In the first
stage, the learning agent infers a model of the other agents based on past interaction. In
the second stage, the agent utilizes the learned model for designing effective interaction
strategy for the future. Intheir simulation, the model -based agents outperform the Q-agents
significantly in learning to play against random opponents.

Freund et a. [7] present efficient algorithms for learning to play two types of repeated
games: penny-matching and contract games. They consider two new types of adversaries:
recent history adversaries, whose current action is determined by some simple Boolean
formulaof the recent history of the game, and statistical adversaries, whose current action
is determined by some simple function of the statistics of the entire history of the game.
For both classes of adversaries, they developed efficient algorithms for learning to play
contract games. Finally, they consider the classical finite automata adversaries, and present
an efficient algorithm for learning to play any game against any finite automata.

Sen and Sekaran [18] consider the problem of coordinating automated agents, both in
cooperative and non-cooperative domains. They investigate a robot navigation problem
and a resource sharing problem, and apply the Q-learning algorithm to both domains.
They reveal that agents can learn to achieve their goalsin both cooperative and adversarial
domains. They also reveal that classifier systems achieve near-optimal solutions quicker
than Q-learning, but for morerigid convergencecriteria, they achieve abetter solution than
Q-learning, only when using alarger number of trials.

Parkes and Ungar [12] review possible models of learning in multi-agent systems. They
show the influence of learning on the compensation mechanism, which is a mechanism for
an efficient coordination of actions within a multi-agent system.

Sen and Arora[17] propose a scheme for learning to identify and exploit the weakness
of aparticular opponent by repeatedly playing against it over several games. They propose
an expected utility maximization strategy which alows players to benefit by taking
calculated risks that are avoided by the traditional min-max strategy. Their proposed
mechanism improves the ability of the computer player to play more effectively against
aweaker opponent.

The research described above considers learning about your opponent in asimple game
which repeats itself. Our research also deals with repeated games, but we take the classic
game theory approach of finding whenever a pair of strategiesis an equilibrium. Thus, we
do not deal with learning the strategy of the opponent, but rather with identifying stable
strategies and finding the best strategy to be taken by each agent given its opponent’s
strategy and vice versa.

Chalasani et a. [6] developed a model where querying agents send queries to
information agents. They designed a randomized symmetric strategy which minimizesthe
expected completion time of a query. However, they do not explain the motivation of an
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agent to use the symmetric strategy. In our research, we also consider information agents,
but the strategy profiles considered are proved to be in equilibrium. We combine theoretical
proofs with particular examples that demonstrate the behavior of the strategy profiles for
particular parameters.

2.2. Sharing information in an artificial society

Certain research in economics and in DAl concerns the operation of gathering
information about several topics. In this section, we survey related work on this issue.
The common éattribute of the research below is the fact that the agents are connected in
a distributed network (or society) and they learn from each other about external issues.
This learning may be done explicitly, by sharing information, or implicitly, by observing
actions.

Bala and Goyal [4] theoretically analyzed a model in which payoffs from different
actions are unknown, and the agents decide which action to use according to their own
and their neighbors past experience. They prove that in the long run, agents belonging
to the same connected society will choose actions with the same payoff. They also prove
that if a ‘Royal family’ (a small set of agents who are observed by every agent) exists
then there is a positive probability that the society will eventually choose a sub-optimal
action. However, in the absence of a‘royal family’, in the long run the society will choose
the optimal action. This result demonstrates that distribution of information sharing is
important, and the existence of a central knowledge source may cause sub-optimal results.
Bala and Goyal aso studied the conditions for different groups of agents to decide to take
different actions (having the same payoffs) in the long run. Finally, they simulate a group of
farmers learning the productivity of a new crop, in order to study the temporal and spatial
patterns of diffusion.

Mor [10] developed a theoretical reputation model. In his model, there is one agent «,
that plays against agents from group A. Agent « plays the Prisoner’s Dilemma against
a player from A, and it may defect or cooperate with the agent. An agent in A informs
other agentsin A when it is damaged by «. Mor proves that in such a system, beneficial
defection by « is intractable, i.e., it is an NPC problem for « to find a game sequence
in which it receives a higher payoff than its payoff when it always cooperates. Mor aso
specifies a scheme of behavior of the agentsin group A in which beneficial defection by
agent « isintractable. Mor assumes that the agentsin A are cooperative. In our research
we deal with the stability of information sharing, and thisincludes the case of cooperation
inside group A, assuming that each of the agentsin the group is self motivated.

Seredynski [21] studies a model of N-person repeated games in which the interaction
between agents can be represented by aring. It is assumed that each player actsin the game
independently and selects his action to maximize his payoff. To develop aglobal behavior
in the system Seredynski applied two Approaches; the first is a loosely coupled genetic
algorithm, and the second is a loosely coupled classifier system. Seredynski applied the
developed evolutionary system to solve two problems: the dynamic mapping problem and
the scheduling problem.

Sen [20] developed an adaptive probabilistic policy for agents in open environments.
He developed a probabilistic reciprocity scheme of strategiesto be used by self-interested
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agents to decide on whether or not to help other agents. Experiments show that agents can
use reciprocal behavior to adapt to the environment, and improve individual performance.
He showed that if the group composition changes only slowly, and there is interaction
between the agents, probabilistic reciprocity based strategies can maximize the utility of
each of the agents. He also found by simulationsthat in the long run, selfish agents perform
worse than reciprocative agentsin amixed group.

Sen et al. [19] considered agentsthat sharetheir opinions concerning other agents. Using
simulations they showed that sharing information on experienceswith other agents among
reciprocative agents will limit the exploitative gains of selfish agents. They provided a
trust-based evaluation function and showed that this function resists both individual and
group deception on the part of selfish agents.

In our research, we consider a similar problem of agents that require the help of
each other. We develop strategies for stable cooperation, and find under which conditions
cooperation is possible. The agents' strategies, in contrast to the work of Sen, are
deterministic, since we found that the performance is better than that of mixed strategies.
Moreover, we prove theoretically that the strategies are in equilibrium, i.e., no agent can
gain from deviation.

Aoyagi [1] studies a model of a two armed bandit process played by several players,
where they can observe the actions of other players, but not the outcome of these actions.
He proved that under a certain restriction on the probability of Distribution of the arms,
the players will settle on the same arm in any Nash equilibrium of the game. This shows
that each agent learns from the behavior of the other agents, even if explicit informationis
not delivered. In our research, we do not assume that the players can observe the actions
of each other, so explicit information is required in order to learn from the other players
experiences.

Zacharia [22] investigates a mechanism called Histos, which is based on information
sharing among human societies. The mechanism is founded on the idea that | am probably
willing to trust my friend’s opinion about the (unknown) user more than the opinion of a
few people | have never interacted with. Histos uses a pairwise rating of the users. The
rating is represented by a directed weighted graph. Nodes represent users and weighted
edges represent reputation ratings. When auser Ag submits a query to Histos asking about
the reputation value of user A1, the system finds all directed paths connecting Ag to A1,
of alength less or equal to N. Then a personalized reputation value for A1 is computed.
The reputation of A1 is aweighted average of the reputation values given to A; by users
which are directly connected to it. The weight given to each user isits own reputation. This
evaluation is based on the assumption that if somebody trusts user x as abuyer or a seller,
he will also trust it as an information supplier about other users. One of the limitations of
thismodel is the fact that people need to have incentives in order to send their evaluation
of others, and atraditional reputation mechanism does not provide such incentives. In this
paper, we consider the stability of sharing such information between the software agents.

In the aboveresearch, theissue of learning from each other is considered. In most of the
research surveyed, it is assumed that agents explicitly share information with each other
and use information from each other in order to learn common issues. In this research, we
study the issue of stability of the sharing information processitself, in environmentswhere
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providing information to another agent is costly, but there is no payment mechanism and
no valuations of the obtained answers.

3. Methodology

In this section, we present definitions of notions and concepts which will be used in
the models that we developed in this work. We describe the basic costs and benefits
due to queries answering. In addition, we present the stage game, which considers one
period of the game, in which one agent asks another agent a single query, and no future
encounters are considered. Then, we suggest a trigger strategy equilibrium [8] to be used
by the agents in the repeated game. This kind of strategy is appropriate for cases where
the action performed by one agent is unobserved by the other one, but the action yields
an outcome observed by both players. However, the same outcome may be the result of
different actions.

Thetrigger strategies are based on the ability to “punish” an agent that does not answer
gueries and atrigger equilibrium is based on trigger strategies. In this type of equilibrium,
the agent will use the outcome of its opponent’s action in order to decide whether or not to
punish its opponent.

We suggest that agent B punish agent A, by ignoring a future query (or queries) of
agent A. However, in order to find out the cost of such a punishment to agent A, we will
first consider the discount factor of the punishment. Thus, in this section we also develop
the structure of the discount factor over time, which will be used in the different models
we will develop.

3.1. Notation conventions

As this paper involves severa kinds of models, it includes extensive notation. In Ap-
pendix A we present a table which contains the basic notation used in this paper. In the
following paragraphs, we describe some of the basic criteria used to choose these nota-
tions.

In general, we consider a pair of agents and denote them agent A and agent B. When
considering an arbitrary agent, we denote it as agent i, communicating with agent j # i.
Any terminology related to the expected utility of an agent is described in uppercaseletters
(E,U,V or F), with a subscript denoting the index of the agent for whom the expected
utility is calculated, and a superscript describing the relevant model. For example, Uyx
denotes the expected utility of agent A in the alternating model, when it sends a query to
agent B.

Parameters of the model are described in lowercase letters, English (most of the
parameters) or Greek (8, and w), sometimes with a subscript describing the agent the
parameter is associated with. Finally, macro notations, which are used only for readability
purposes, are denoted by calligraphic letters, sometimes with subscripts.
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Fig. 1. Stage game: agent B sends a query, agent A decides whether to answer or not.

3.2. The one-period interaction

Consider the following interaction of two agents, i and j: Agent j isready to ask a
guery, and it can either send it to agent i or not. If it sendsthe query, then agent i can either
attempt to answer the query or not. If agent i attempts to answer the query, then with a
probability of p; it will succeed in answering the query, but with a probability of 1 — p;
it will fail, where 0 < p; < 1. (This probability can be calculated as the proportion of past
successful queries to the agent w.r.t. al the past queriesto it.) If agent j does not receive
an answer, it does not know whether agent i attempted to answer it and failed, or whether
it even tried.

Agent i incurs an obligatory cost o; for searching for an answer when attempting to
answer a query. If it succeeds in finding an answer then it incurs an additional cost of ¢;,
which contains the expenses of retrieving the answer (i.e., itstotal costiso; + ¢;). If agent
i does not attempt to answer the query at al, then it will have a utility of 0. The asking
agent (agent j) obtainsautility of v; only if it receives an answer to the query. In any other
case, its utility will be 0. The stage gameis described in Fig. 1. As mentioned above, alist
with the notations used here as well as other notations used in the rest of this paper appear
in Appendix A.

Consider the one-period interaction in which agent B isready to send agent A aquery.
Therearetwo pure equilibriafor thisinteraction: in thefirst, agent B will send the query to
agent A, but agent A will not attempt to answer it. Note that agent B still sendsits query,
since we assume that it incurs no cost for sending queries. In the second, agent B will
not send the query at al. In both equilibria, the utility of both agentsis 0. In this paper
we present strategy profiles to be used by agents participating in the repeated version of
the above interaction. We prove that under certain conditions, responding to queriesisin
equilibrium, and improvesthe agents expected utility.

This problem can be stated more generally. Agent j can ask agent i to perform any
arbitrary action, rather than answer a query. The action is costly to agent i, and it may
succeed or fail. However, if the required results of the action are not achieved, agent j
cannot observe whether this happened because of afailure of the action taken by agent i,
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or since agent i did not even attempt to perform the action. This problem is different from
the classical repeated principal-agent problem [13] since each agent takes the role of a
principal in part of the interactions, and a role of an agent in the other interactions. In the
rest of the paper we refer to query answering, although our results are also appropriate for
the general problem. In most of the paper, we consider the stage game in which agent B
has a query and agent A has to decide whether to answer it or not. Of course, symmetric
definitions and conclusions are appropriate for the symmetric case, where agent A has a
query for agent B.

3.3. Therepeated interaction

In the repeated interaction there are several occurrences over time of the single
interaction described above. We consider an alternating queries model in which agent A
asks a query, then agent B, and vice versa. We assume that if agent A isready to ask a
guery when it isagent B'sturn, it will ask the query somewhere else, and not wait until its
next turn. In [3] we relax this assumption and assume that each agent may have a query to
be asked at each time period.

Timeisdiscreteandisindexedby r =1, 2, .... If itisagent i’sturn to ask aquery, then
the probability for it to have a query at a given time period is ¢;, and this probability is
known to both agents. Although the agents know the probability distribution of the queries
appearance, they do not know the actual time when queries will appear. This meansthat at
agiven time each agent does not know when exactly it will be ready to send its next query,
or the time its opponent will send its next query. If a query is ready, then the one-period
interaction occurs and we assume that it takes one time period. We consider a discounted
utility function, and denote the discount factor of the utility function §, where0 < § < 1.
We assume that interactions continue indefinitely. Our model also suits situationswherein
each interaction, there is a positive probability 1 — p that no more interactions will occur,
asdescribed in [11]. In thiscase, if the probability for a next interaction to occur is p, then
§=p.

The configuration vector  includes al the relevant parameters. The contents of the
configuration vector are asfollows:

o= (PA, PB,9A.qB,8,VA, VB, CA,CB,0A,OB),

where p4 is the probability for agent A to succeed in answering a query if it attempts to,
pp istheprobability for agent B to succeed, g4 and gp arethe probability for agent A and
agent B, respectively, to have a query in a particular time period, § is the discount factor,
v4 and vg arethe utilities of agent A and agent B from receiving an answer to a query, o4
and op arethe cost for agent A and B when attempting to answer a query, and c4 and cp
are the additional costs whenever they succeed in answering the query. The set £2 denotes
the set of all possible configuration vectors.

In this paper, we suggest a trigger strategy equilibrium [8] to be used by the agents
in the repeated interaction. Trigger strategies are appropriate for cases where the action
performed by one agent is unobserved by the other one, and it yields an outcome that
is observed by both agents. However, the same outcome may be the result of different
actions, with different probabilities. In this type of equilibrium, an agent uses the outcome
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of its opponent’s action in order to decide whether to behave cooperatively, or to punish
its opponent, and apply the non-cooperative strategy. Trigger strategies surveyed in
the literature are for simultaneous games, and in most of the cases for the prisoner's
dilemma. We apply this type of strategies to the queries answering problem, which is a
nonsimultaneous game.

4. A one-period observation model

In this section, we consider a strategy profile where punishment is performed after each
time an answer is not obtained from the opponent, though in some cases the outcome is
not deliberately caused by the opponent. Using atrigger strategy profile causes the agents
to attempt to answer each other’s queries, thus increasing the agents expected utility with
regards to the case where the equilibrium of the one-period interaction is implemented.
However, there are cases where agents are punished due to failure in answering queries.
We begin this section by defining the trigger strategy profile.

4.1. Srategy profile

We suggest that the agents use atrigger strategy profile which is based on three possible
“phases’: Normal, Punish, and Punishg. In phase Normal, each agent attempts to answer
the query of the other agent. In phase Punish;, agent j # i ignoresthe queriesof agent i, but
if agent j asksaquery, agent i will attempt to answer it. At the beginning, the agentsarein
phase Normal, and remain there provided each agent answers its opponent’s query. Given
phase Normal, when an agent i does not answer a query, the agents switch to Punish;.
This punishment phase holds until agent i answers a query of agent j, in which case, the
agentsreturn to phase Normal. This strategy profile promotes cooperation and information
sharing.

4.2. Expected discount over time

In this section, we discuss the discount factor of the expected utility over time. This
discussion will be valid for the one-period observation model, and aso for the n-period
observation and the k-model of punishment after £ unanswered queries from n. D; isthe
expected discount ratio from the time agent j asks a query, until the time agent i will be
ready to ask aquery. With aprobability of ¢; the delay will be for onetime period, in which
case, adiscount of § should be considered. With a probability of ¢; (1 — ¢;) there will be
adelay of two time periods (a discount of §2), and with a probability of (1 — ¢;)%g; there
will be adelay of k + 1 periods, and the discount ratio will be §¥*1. D; is the sum of the
above infinite geometric series. Thus, the value of D; is

_ 8qi
T 1-8(1—gqi) @)

We proceed by evaluating the discount ratio in a case of punishment. Consider acasein
which agent A has to be punished. This means that the last query was sent from agent B,

D; =8q;i +8*(L—qi)qi + -
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and no response was obtained from agent A. Since the agents alternate their queries, the
next query will be sent by agent A, but it will beignored by agent B. The consequent query
will be sent by agent B, and agent A will attempt to answer it, as defined in Section 4.1.

Denote the present time when agent A does not send an answer fg, the time when agent
A has a query t4, and the time after ¢4 in which agent B sends a query to agent A, 5.
Denote the overall expected discount ratio from 7o until 7z, D. The minimal value of D is
inthe casewhererp = 14 + 1. Namely, immediately after the period in which agent A asks
aquery whichisignored, agent B asks a query back. This event occurs with a probability
of gp, and in this case, the total discount factor will be D = D468. With a probability of
q8(1— gp), the delay will be for two time periods. In this case, D = D452. In the general
case, with a probability of g (1 — ¢p)’, the delay will be for i + 1 time periods, and the
discount factor will be D = D487 +1,

Again, we obtain a geometric series of the expected discount ratio:

D =Dadqp +Dad*(L - qp)gp + Dad>(L—qp)°qp + - --
1)
_p, B
1-8(1—gp)

and according to Eq. (1), thisisequal to

D= 5261A6]B _
(1-81—-ga)N1—-68(1—gp))

Symmetricaly, D is also the expected discount in the case of punishing agent B. In the
following lemma, we provethat 0 < D; < 1,andalsothat 0< D < 1.

DuD5. )

Lemma4.l. Given0< 38 < 1,foreachi e {A, B},if0< ¢q; <1,then0< D; < 1, and if
0<ga,gp <1, then0<D < 1.

The proof of thislemma, as well as the proofs of the lemmas and theoremsin the rest
of this paper, appear in Appendix A. Theterms D, D4 and Dy will be used in the rest of
this paper, to calculate the expected utility from the next interaction. The expected utility
of avalue v obtained in the next interaction will be v multiplied by the appropriate D or
D;,since0< D <1, D and D; can be considered standard discount factors.

4.3. Expected utility

In this section, we specify the expected utility of the agents when they follow the
strategies profile described above, and the conditions under which this profile is in
equilibrium. The expected utility of each agent is based on the fact that the agents follow
the equilibrium strategies. In the following, we define the terms that will be used for these
specifications.

Definition 4.1. The following terms express the expected utility of the agents, from the
present until infinity.
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o V;: the expected utility of agent i if it attemptsto answer the query of agent j (whether
it succeeds or not).

o U;: theexpected utility of agent i whenitisagent j’sturnto answer i’squery (whether
j succeeds or not).

e F;: the expected utility of agent i as the agents move to phase Punish; (either since
agent i ignored the last query, or because of agent i’s failure to answer it).

Generally, we consider the expected utility and the trigger equilibrium condition of
agent A. B’s specifications can be detailed symmetrically. We consider an unrestricted
horizon model, so the utility terms are defined recursively.

Attribute4.1. Thevaluesof V4, Uy, and F4 are computed as follows.

Va=—0a+ pa(—ca+DaUs)+ (1 — pa)Fa, (3)
Ua=pp(va+DpVa)+(1— pp)DU,, (4)
Fu =DVjy. ©)

V4 is the expected utility of agent A from attempting to answer a query. It consists of
the obligatory cost 0 4, and the expected future utility when the attempt to answer succeeds,
and the expected utility when it fails, with the corresponding probabilities for both events.
In case of success, the utility of agent A consists of the cost of ¢4, and of its utility from
asking agent B a query (U,), after an expected discount of Dy4. In case of failure, agent
A’sutility is Fy.

U 4 isthe expected utility of agent A when it asksaquery. If agent B succeedsto answer
agent A’s query, then agent A receives an immediate utility of v,4, and the agent staysin
state Normal, i.e., after adelay of Dp, agent A will be required to answer agent B's query,
with an expected utility of V4. If agent B failsto answer the query, then after adelay of D,
it will be required to answer the next query of agent A, i.e., agent A’s expected utility is
Ua.

F,4 isthe utility of agent A when it does not answer the query of agent B. Agent A will
be punished, and after an expected discount ratio of D, again, it will be its turn to answer
agent B's query, i.e., its expected utility will be V4.

4.4. Equilibrium conditions

We proceed by identifying the conditions under which the trigger equilibrium exists.
In particular, we use the strategy profile defined in the beginning of Section 4.1, and we
specify the condition under which an agent prefersthe trigger strategy over deviation and
ignoring its opponent’s queries, given that the second agent uses the trigger strategy. If the
condition of each agent holds, then the trigger strategy profileisin equilibrium.

In order to prove that the strategy profile is in equilibrium, we have to prove that
whenever agent i follows its equilibrium strategy, it is worthwhile for agent j to keep
its equilibrium strategy too. In the following lemma, we prove under which condition this
holds.
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Lemma 4.2. The trigger equilibrium of the one-period observation strategy profile is in
equilibriumif V; > F;,for i € {A, B}.

The above condition claims that whenever the utility of answering a query is higher
for the agent than its utility from ignoring the query, a trigger equilibrium exists.
In the following lemma, we found an explicit formula which defines V4, by using
formulas (3)—(5).

Lemma 4.3. The expected utility of agent A when attempting to answer a query, can be
formalized asfollows.

—04 — paca+ paDasA

V4= , 6
AT 1= paDaB-A— pa)D ©
where
PB * VA
=T p T @)
1+D(pp—1)
and
DB * DB
= -7 8
1+D(ps — 1) (8)
After manipulating, the expected utility can be formalized also as follows:
V= (14+Dpp —D)(—oa — paca) + pADAvaA. ©)

(1+Dpp —D)1—-D+Dpa) — paDps

Using Lemma 4.2, and the definitions of F4 and Fg, we can progress by finding the
explicit conditions for the existence of the trigger equilibrium. The condition of agent i
can be displayed as arequired ratio between v; and ¢; + o;/p(i) for agenti € {A, B}. We
start with two propositions. First, we prove that the denominator of V4 is positive.

Proposition4.1. Theterm1— paDaB —D(1— p,) ispositivewhenever 0 < Dy, pa < 1.
We proceed by proving the conditions required for the equilibrium to hold.

Lemma 4.4. If the agents are risk-neutral, then the one-period observation strategy isin
equilibriumfor agents A and B, if the following condition holdsfor bothi = A, j = B and
i=B,j=A.
v; ><1—8+8qi 56]]'([7]'—1) )
ci+oi/pi 8qipj pil=58+89)))

(10)

Using the above lemmas, important properties can be identified concerning the strength
of the equilibrium and the influence of the configuration parameterson the conditionsof the
equilibrium and on the agents expected utility. We present our conclusionsin the following
section.
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4.5. Properties of the expected utility and of the equilibrium conditions

Inthis section, we study the existence of thetrigger equilibrium and the agents’ expected
utility V4. According to Lemma 4.2, the value V4 — F4 should be non-negative for the
equilibrium to exist. As this value increases, the trigger equilibrium exists for a larger
set of configurations. Some of our conclusions are proved formally, while others are
demonstrated for a particular configuration of parameters w = (¢; = 0.1, p; = 0.5,8 =
0.9,¢; =1,0; = 0.1, v; = 10). In the following lemma, we prove the influence direction
of p; and of the cost and benefit parameters of the utilities and of the equilibrium
conditions.

Lemma4.5. Asvu, pa OF pp increases, and asoy or c4 decreases, the expected utility of
each agent increases, and the trigger equilibrium holds for more configurations.

The above conclusion is intuitive. That is, as v4, the benefits an agent obtains from
answering queries, increases, the utility of agent A increases, and it is more worthwhilefor
it to answer queries. It isaso expected that the directions of theinfluenceof o4 and ¢4 will
be opposite: asthey increase, attempting to answer queries is more costly, so the utility, as
well as the tendency of agent A to answer queries, decreases. Similarly, as p4 increases,
V4 increases, since if agent A succeeds in answering more queries, its utility increases.
As pp increases, agent B succeeds in answering more queries of agent A, and agent A’s
utility increases (more cases where a utility of v, isobtained), aswell asits willingnessto
answer B’squeries.

In the following lemma, we prove the influence direction of §, g4 and ¢, both on the
expected utility of the agent and on its tendency to use the trigger strategy.

Lemma4.6. As$, g4 Or gp increases, the expected utility of each agent increases, and the
trigger equilibrium exists for more configurations.

As§ increases, the expected utility of agent A also increases, as well asits tendency to
attempt to answer agent B's query, because agent A bears present costsin order to achieve
future benefits. Thus, as the discount of time decreases, the weight of the future benefits
increases, and this causes the utility to increase, and the tendency to answer queries to
increase too.

As g4 increases, agent A is supposed to ask queries more frequently, consequently its
utility from receiving answers increases. Thus, it is more beneficial for it to answer other
agents queries, since this will enable it to receive answers to its own queries. Thus, its
tendency to attempt to answer queries, and its expected utility in this situation, increase
with g4. The influence of ¢p is not intuitively clear. On the one hand, as g increases,
agent B will ask a query more often, and this causes future costs for agent A. On the other
hand, since the agents alternate in asking their queries, more frequent queries of agent B
will cause agent A to also ask queries more often, and this may improve its utility, and
its motivation to answer agent B’s queries. However, as we proved in Lemma 4.6, the
aternating effect is stronger, and as ¢p increases, the expected utility increases and the
equilibrium exists more frequently.
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In [3] we aso considered the influence of gp in situations where queries are not
aternating, but at any given time, each agent can send a query. In these situations the
influence of ¢p is negative: as agent B is supposed to have more queries, the expected
utility of agent A decreases.

To summarize, we have shown theinfluence of several parameterson the expected utility
of agent A, and on its willingness to attempt to answer queries. Symmetric conclusions
hold for agent B’s utility and its trigger equilibrium condition. We can see that as the
factorschangein adirection that increasesthe utility of the agent, it will be more motivated
to attempt to answer its opponent’s queries. This conclusion does not hold for the situation
that is presented in Section 5, with the change in the length of the history that istaken into
consideration.

5. A model with n observation periods

The equilibrium structures described in the previous section enable the agents to share
information with each other, due to the fact that an agent that did not respond to a query,
will be punished by the sender of the query. However, an agent is not punished only when
itignoresaquery. Any event of aquery with no response yields a punishment, regardlessif
this was caused by itsignoring the query, or because of afailure to answer the query after
acostly attempt.

One can suggest arefined strategy profile, where punishment is done only after agiven
number of queries with no response. The benefits of such a protocol are based on the fact
that punishment will be done more rarely. Such a protocol is more fair, since it reduces
the probability of punishing an agent that attempts to answer all the queries it receives.
Increasing the number of failuresrequired for punishment al so increases the average utility
of the agents. However, since the threat to punish is weakened, the equilibrium based on
this approach is weaker than the equilibrium based on punishment after each missing
response. This means that as the number of periods required in order to decide about a
punishment increases, there are more situations where an agent can beneficially ignore
queries.

We consider three variations of the n-period observation model. First, for demonstra-
tion, in Section 5.1 we present a model where n = 2, and we compare this model to the
one-period model (n = 1) discussed in Section 4. Second, in Section 5.2, an agent is pun-
ished after n consequent queries with no answer by this agent. Finally, in Section 5.3,
punishment is implemented after k¥ unanswered queries, from the n last queries to that
agent.

In this paper, we consider only pure trigger strategies for these cases, whereas in [3]
we considered a mixed strategy profile. In the mixed strategy an agent i randomly decides
whether or not to attempt to answer a query for some histories. There are two situationsin
which mixed actions can be used: (a) in a punishment phase, where agent i is alowed to
punish agent j; (b) in the normal phase, where agent i is supposed to answer j’'s query. We
proved that a mixed strategy profile in a punishment phase (case (a)) is not stable. A mixed
strategy profile may be stable in the Normal phase (case (b)), but we proved that the
conditionsfor the existence of the equilibrium are equivalent to those of the corresponding
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pure strategy, while the expected utility of the agents when using a mixed strategy profile
is lower than their expected utility when using the corresponding pure strategies. Thus,
mixed strategies are not recommended for use in our model and throughout the rest of this
paper we refer only to the pure strategies.

In order to consider thelast n periods when deciding on a punishment, the agent should
save the history of the last n — 1 results (answered or ignored) of queries sent to its
opponent, and add the result of the present queries. We denote by #; the results of the
n — 1 last events when agent i was required to answer queries. The history of agent i
is composed as follows. h; = (hj(n — 1), ..., hi(2), h; (1)), where h; (1) represents the
last event of a query sent to agent i. h; (k) = O if k's last query to agent i received no
answer, and h; (k) = 1 if k’s last query was answered by agent i. Theterm h = (h, hp)
contains the n — 1 last events with respect to the queries that agent A received, and the
n — 1 last events with respect to queries that agent B received. In particular, the notation
((1,...,1),(0,...,0)), indicatesahistory of n — 1 consequent successful answers of agent
A, and n — 1 consequent queriesto agent B, with no response. Concatenating a new event
to h;, h; < new_event, means deleting the oldest event in 4;, and adding a new event
to h;. Findly, the function zero(k;) returns true if al the eventsin h; are unanswered
queries. Formally, zero(h;) = true if Zz;} h; (k) = 0. Using these notations, we proceed
with describing and analyzing the two variations of the n-period model.

5.1. Punishment after two unanswered queries

In this section, we consider a special case of punishment after two consequent periods
of no response from an agent. If a two-period strategy profile is in use, the agent will be
concerned with bothits own history, and the history of its opponent, when deciding whether
to answer aquery or not. If no punishment mode is reached, then it will only be concerned
with the last event in the history of both. If its last event was an unanswered query, then
if it will also not answer in the current period (either because of a failure or because of
ignoring the query), an immediate punishment will be implemented. In contrast, if the last
event in its history contains a successful response, then an unanswered query at this time
may be forgiven, and in some cases, it may be beneficial for the agent to ignore queriesin
this state.

We denote a successful event 1 and an unanswered query event 0. Since we are
interested in the last event of each of the servers, we denote the current state (a, b).
a € {0, 1} isthe last event of agent i (1 if agent A succeeds in answering, O if it did not
send an answer). Similarly, b € {0, 1} isthe last event of agent B.

5.1.1. Structure of the utility function

In order to analyze the two-period model, we will use the same notation as used in
Section 4. However, we use additional terms with respect to the expected utility of the
agents, since there are four different possible states, as described below, and for each of
them, the expected utility will be slightly different.

Denote by V" the expected utility of agent A, when the last event performed by agent
A is x, and the last event performed by agent B is y, and it is now agent A’s turn to
answer a query. However, none of the agents are in a punishment phase. Since the agents
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are assumed to hold the strategies defined above, agent A will attempt to answer the query.
Denote by Uf\y the expected utility of agent A, when the last event performed by agent A
isx, thelast event performed by agent B is y, and it is how agent B’sturn to answer agent
A’s query. Again, both agents are not in a punishment phase. Thus, agent B will attempt
to answer agent A’s query.

In the following formulas we specify the expected utility for each of the 4 cases. Vit
is the utility of agent A when a query was sent to it, and the last event of both agents
was a success. With a probability of p4, agent A will succeed in answering, and with a
probability of 1 — p4, it will fail. In both cases it incurs a cost of 04, and in the case of
success, it incurs a cost of c4. The actual event, success or failure, determines agent A’s
history when continuing to the next time period, where agent A sends a query.

VR = 04+ pa (—ca+ DAU/}I) + 1= pa)DaUSL (11)

Vjo is the expected utility of agent A when it has to answer a query, and its last event
was a success in answering agent B’s query, but it did not receive an answer to its last
query from agent B. The explanation is similar to that of Vi1,

Vi0=—04+ pa(—ca +DaU) + (1~ pa)DaUL. (12)

In states (0, 0) and (0, 1), the last query sent to agent A is not answered. Thus, if for
the current query it will also not receive an answer, a punishment is implemented. The
punishment is skipping itsturn to obtain an answer to aquery, asin the one stage alternating
model.

V0= —0a+pa(—ca+DaU°) + (L — pa)DaDpVy° (13)
and finaly,
V= o4+ pa(—ca+DaUs") + (1— pA)DaDpV™ (14)

Thefollowing formulas specify the utility of agent A whenitisagent B’sturn to answer
its queries. Again, the utility depends on the history of the last events of both agents.

UL =pp (va +Dp Vgl) + (1 - pp)DaDpUP, (15)
U= pa(va+DpViY) + (1— pp)DaDpU’, (16)
Ugl = p3B (UA +Dp Vgl) + @1 - pp)DpVP, (17)
UM = pp(va +DpViY) + (1 — pp)DpVi°. (18)

The above recursive equations can be solved in order to find a solution which givesthe
compl ete description of the utility in each state. We solved the equations using Maple, and
found the explicit expected utility, and the conditionsfor an equilibrium to exist. However,
sincetheresults contain avery complex structure of the solution we refrain from presenting
them here.! In the next section we demonstrate the behavior of the expected utility and the
conditions for the equilibrium, and compare them with that of the one-period model.

1 A full version including the explicit expected utility is available in http://www.cs.biu.ac.il/~schwart/
articles/rep-full.ps.
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5.1.2. Properties of the model

Intuitively, for most of the possible configurations, if punishment is done after two
periods of observation instead of after one period, then the expected utility of an agent is
higher, assuming that both agentsfollow the trigger strategies. Thisis because punishment
is caused only in situations that an agent failsto answer queriesin two consecutive periods
(under the assumption that it always attempts to answer). The probability for such an event
ismuch lower than the probability for one failure, which causes punishment to the agent in
the one-period model. It is aso intuitive that in the current model the motivation to follow
the trigger strategy is much lower, since deviation from equilibrium does not always yield
immediate punishment.

In order to compare the equilibrium conditions in the two-period model with that of
the one-period model, we can focus on state (1, 0), where, assuming that in the past both
agents used the trigger strategies, agent A succeedsin answering thelast query of agent B,
while agent B failsto answer the last query of agent A. We check whether it is worthwhile
for agent A to answer agent B in thisturn. In particular, we verify whether

vi—D,uP >0

i.e., whether the utility of attempting to answer a query in state (1, 0) is higher than the
utility of ignoring the query.? We denote the equilibrium existence index V1% — D,U%.
Whenever the index value is positive, an equilibrium exists for this set of parameters. As
the value of theindex increases, an equilibrium exists for more sets of parameters. We aso
define the equilibrium existence index of the one-period observationmodel as V4 — D V4.
Whenever this index is positive, an equilibrium exists. As the index value increases, the
equilibrium becomes stronger, and holds for more values of the other parameters.

In order to evaluate the expected utility, we use V4 for the one-period observation
model, and we use V1! for the two-period model, since we consider a situation with no
failure or deviating in the past. In the following paragraphs we demonstrate the influence
of several parameters on the expected utility and on the equilibrium conditions for a
particular configuration of parameters. The basic configuration is w = (¢; = 0.5, p; =
0.5, S = 0.9, C; = 0.1, 0] = 0.1, Vi = 10).

Influenceof v, c4 andoy. First, we consider theinfluenceof ¢4 and v4 onthe expected
utility. As explained above, we assess the influence on VAll. As expected, the increase of
v4 and the decrease of ¢4 cause an increase of V1. Weillustrate thisinfluencein Fig. 2.

In Fig. 3, we present the values of both Vil and V, of the one-period model, for
different values of v4, assuming c4 = 1. We revealed that Vit is higher than V4, and
the difference increases as v, increases. We can see that for v4 near zero, the curves are
crossed. For the above set of parameters, the expected utility in both models is equal for
both modelswhen ¢4 = 3.296299245 x v4 . However, if such arelation exists between ¢4
and vy, then equilibria of both types will not exist. If the cost of answering a query is
more than the benefit of a possible answer in the future, then an agent has no motivation to
answer queries.

2 Proof of why it is sufficient to consider state (1,0) in order to prove the existence of an equilibrium is
provided for the n-period casein Lemmab.1.
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Fig. 2. Two-period observation model: V1! asafunction of v and c.
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Fig. 3. Two-period observation model: Vit and V4 asfunctions of v4 (given cq = 1).

Next, we checked the influence of ¢4 and v4 on the equilibrium existence index for
the two-period model. The results are presented in Fig. 4. It is clear that, as in the one-
period model, as c4 and o4 increase, and as v4 decreases, the equilibrium exists for a
larger set of configurations. In Fig. 5 we compare the equilibrium existence index of the
two-period model with that of the one-period model, for different values of v4, and for
ca = 1. We can see that for these values, equilibrium of the two-period model does not
exist, while equilibrium of the one-period model exists from a given value of v,4. For the
above sets of parameters, we checked for which values of v4 and c4 equilibrium exists,
and we found that the equilibrium of one-period model existsfor v4 > 4.498245616 % c4,
while the equilibrium of the two-period model exists only for v4 > 80.15503155x% c4.

Influence of §. In order to demonstrate the influence of § on the expected utility of the
agents and on the strength of the equilibrium, we set ¢4 as 0.1. This enabled equilibrium
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Fig. 4. Two-period observation model: the influence of v4 and c4 on the equilibrium existence index
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Fig. 5. Two-period observation model: the influence of v4 on the equilibrium existence index V4 — DVy
(one-period model) and on V1% — D4 U (two-period model).

to exist for different values of § also for the two-period model, though for c4 = 1, as
previously determined, equilibrium does not hold.

Thus, the set of parameters we used in the following figuresis g4 = gp = 0.1, ps =
pg=05c¢=010=01andv=10.

The influence direction of § on the expected utility and on the equilibrium existence
index of the two-period model is, as expected, similar to the influence of the direction in
the one-period model: As § increases, the expected utility of the agent also increases, as
well asthe set of configurationsfor which the equilibrium conditions hold. (Theinteresting
phenomena, as demonstrated below, is the clear influence of § on the difference between
the utilities of both models, and on the difference between the equilibrium existence indices
of both models.) Fig. 6 shows V11, V9 and V4, asfunctions of 5.

The expected utility for § = 0 isthe samefor the three functions. This can be explained,
since the expected utility for § = 0, where the agents do not regard the future expected
utility, contains only the current costs of c4 and o4. As § increases, the future becomes
more important, so the difference between the curves also increases.
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Fig. 6. Two-period observation model: the influence of § on the expected utility in the two-period model and in
the one-period model.
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Fig. 7. Two-period observation model: the influence of § on the equilibrium existence index in state (1, 0).

Our next set of figures demonstrates the influence of § on the value of the eguilibrium
existence index. Fig. 7 demonstratesthat as § increases, the equilibrium becomes stronger.
Thisisintuitively clear, sinceas § increases, the futureis moreimportant, so an equilibrium
exists more frequently. For small values of §, the value of the equilibrium existence index
isnegative, i.e., thetrigger equilibrium does not exist for the considered parameters profile.
The equilibrium existence index in the one-period model and the index in the two-period
model are showninFig. 7. They givethe same (negative) valuefor § = 0, but as§ increases,
the condition tends to hold more for the one-period model, and the difference between the
equilibrium existence indices increases as § increases. The reason being that in the one-
period model, punishment is performed more often in the future, so as § increases, and the
future becomes more important, the punishment becomes more threatening.

Influenceof g4 and gp. Fig. 8 demonstrates the influence of g4 and ¢p on the expected
utility, and Fig. 9 shows their influence on the tendency to answer queries. We found that
increasing the tendency to ask queries (g4) or to receive queries (¢p) increases the util-
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Fig. 9. Two-period observation model: the influence of g4 and ¢ on the equilibrium existence index in state
(1,0).

ity of the agents and its tendency to answer queries. These results are intuitively clear, as
explained in the one-period model.

We also found that as g4 or ¢ p increases, the difference between the expected utility in
the two-period model and the expected utility in the one-period model increases. In other
words, as the frequency of queries increases, the expected utility in the two-period model
is influenced more than the expected utility in the one-period model. The intuition for
this result is similar to the intuition for the influence of & on the difference between these
two models. As g4 or gp increases, the future obtains a higher weight since it depends
on the difference in punishments in future interactions. Thus, the difference between the
one-period model and the two-period model increases.

Influence of po and pp. The influence of p4 and pp on the expected utility is
demonstrated in Fig. 10. Theinfluenceisclearly positive, for the same reasons as explained
in the one-period model. Fig. 11 shows the influence of p4 and pp on the conditions. It is
clear from the figure that as pp increases, agent A will tend to attempt to answer queries,
since the probability of its own queriesto be answered increases.

However, the influence of p4 on the equilibrium existence index depends on the entire
environment configuration, and this is also demonstrated in Fig. 12. In this figure, the



R. Azoulay-Schwartz, S Kraus/ Artificial Intelligence 154 (2004) 43-93 65

Fig. 10. Two-period observation model: the influence of p4 and pg on the expected utility in the two-period
model.
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Fig. 11. Two-period observation model: the influence of p4 and pp on the equilibrium existence index in state
(1,0).

equilibrium existenceindex is shown asafunction of p4 for both the two-period model (the
descending line) and the one-period model (the ascending line), while pp isfixed at 0.5.

We can see that while in the one-period model, as p4 increases, an equilibrium exists
more often, the influence of p4 on the equilibrium in the two-period model depends on
the environment. For pp = 0.5, an increase of p4 causes the equilibrium existence index
to increase until p4 = 0.472, but from this maximum point, the influence of p4 becomes
negative. The explanation for this phenomenon is that for higher values of p4, the threat
of punishment due to ignoring one query decreases, given state (1, 0). The reason for this
reductionisthat punishment of agent A will be performed only if the next query to agent A
will not be answered, and this probability decreases as p 4 increases. Thus, for high values
of pa, as p4 increases, there may be more environmentsin which agent A can alow itself
to ignore queries, given that no immediate punishment will be performed.

When comparing Vit with V4 in the examples we checked, as predicted, we found
that the expected utility when using the two-period observation model is higher than
the expected utility in the one-period alternating model. This remains true even when
comparing V$* and V.
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Fig. 12. Theinfluence of p4 on the equilibrium existence index in the two-period model, where pg = 0.5.

Nevertheless, in our testing we found that Vgl > V4 for different values of parameters.
In other words, if we compare the expected utility of an agent after one failure in the two-
period model, the expected utility is still higher than in the one-period model, for the values
of parameters where equilibrium exists.

However, in both cases failure of agent A to answer the current query will yield an
immediate punishment. This phenomenon can be explained by the fact that the utility
function of the agent is recursive and it also includes future events: even if in the next
period, success of agent A will cause agent B to attempt to answer it, and failure to
answer will cause agent B to ignore its query, the utility function also includes future
events, in which the two-period model yields a higher expected utility than the one-period
observation model.

5.1.3. Summary

Nevertheless, the two-period strategy profile, athough yielding a higher expected
utility, has a significant disadvantage. There are much more situations where it is not in
equilibrium. In fact, the basic profile we used for demonstration in the previous sections
of this paper, § = 0.9, g4 =g =0.1, pa = pp =0.5, v4 =10,ca =1, 04 = 0.1, was
appropriatefor the one-period profile, but the two-period profile was not in equilibrium for
these parameters.

The main conclusion of the above observation is that the agents designers, when
designing information sharing agents, should consider the environment parameters and
decide which model to use according to the configuration parameters. This conclusion can
be generalized for the n-period model presented bel ow.

5.2. Equilibriumwith punishment after n unanswered queries

In this section, we analyze amodel in which punishment of an agent is performed after
n consecutive events of queries with no responses, assuming an aternating queries model.
The strategies and phases of the n-period model are defined asin Section 4.1, but moving
from phase Normal to phase Punish; will occur only after n consecutive queries with no
response from agent i. A strategy is an n-period trigger strategy if it tells each agent i to
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answer queries of its opponent j, unlessthelast n queries sent to j received no answer. In
this case, agent i ignoresthe queries of agent j, until it receives an answer to aquery from
agent j. Denote by £2,, C §2 the set of all w € £2, such that the pair of n-period strategies
isin equilibrium given configuration w.

5.2.1. Expected utility

Assuming that both agents use their n-period strategies, Vz’h is the expected utility
of agent A when it obtains a query from agent B given history i. Similarly, UZ’h isthe
expected utility of agent A when it waits for an answer from agent B. Suppose that the
agents arein the Normal phase:

suca(h) = (—()A —cCA +,DAUZ’(hA<<l’hB))

is the expected utility of agent A from successfully answering a query of agent B. This
includesthe cost c 4, and the expected utility of asking aquery after adelay of D4. Denote

by
fa”A(h) = _OADA UZa(hA<<0,hB)

the expected utility of agent A from afailureto answer agent B’s query, if thisdidn’t cause
an immediate punishment. It includes an expected utility of asking a query after a delay
of Dy, but the failure is noted in i 4, and may cause a future punishment, if there will be
future consecutive failures. Finaly,

punA(h) =—o04+ DV:s(hA<<0,hB)

is the expected utility of agent A from a punishment. After a delay of D, agent A will
be expected to answer agent B’s query. The expected utility of agent A when required to
answer aquery, denoted Vz’h, is defined asfollows:

v {pA -suc4(h) + (1 — pa)puny (h) zero(ha) =true,
W=

pa-sucq(h) + (1 — pa)fail 4,(h) otherwise. (19)

Since agent A attemptsto answer the query, it bears a cost of 0 4. With a probability of
pa it will succeed in answering the query, and then its expected utility is suca (k). With a
probability of 1 — p4 it will fail, which will be noted inits history. If the current history of
agent A includes only zeroes, then Punishy is reached and the expected utility of agent A
ispun, (k). Otherwise, its expected utility isfail 4 (h).

Similarly,

sucg(h) =va + Dp st(hAahB<<l)
isthe expected utility of agent A when agent B succeedsin answering its query,
fail 3 (h) = Dp VX,(hA,hB<<O)

is A’s utility when agent B failsto answer A’s query, but punishment of B is not required,
and pung (h) = DU’ "4 "5<9 is 4’5 tility when punishing agent B is reguired. Using
the above, the expected utility of agent A, when it forwards a query to agent B, given n
and h, denoted U""  is defined as follows:
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Ut { pB -sucg(h) + (1 — pp)pung(h) zero(hp) =true,
nh

pB - sucg(h) + (1 — pp)fail g (h) otherwise. (20)

With a probability of pp, agent B will succeed in answering, and agent A’s expected
utility will be sucg (k). With a probability of 1 — pg, agent B will fail to answer agent
A’s query. In this case, if punishment is required, then the expected utility of agent A is
pung (h). Otherwise, its expected utility is fail 5z (h).

For the expected utility calculation, the agent has to use an algorithm based on the
formulas of V:{’h and U;’\’h. These formulas depend on each other. In order to implement
the calculation, a predefined depth (number of future periods) should be taken into
consideration. A divide and conquer algorithm, or a dynamic programming algorithm, can
be used in order to calculate the values of the formulas. The dynamic programming method
is based on filling the value of VX”’ and UZ”’ for each possible history. In the n-period
model, all historieswith alast success are equivalent (since punishment will be performed
after n unanswered queries), and al the histories with last k failures are equivalent (since
punishment will be performed after an additional » — k unanswered queries). Thus, the
state, for which the utilities and the equilibrium conditions are defined, is the number of
last consecutive failures. Thus, only n + 1 different states have to be observed, for each
possible number of last subsequent failures, from 0 to n. Since there are two agents, there
are (n + 1)2 different states to be considered. The utility of both agents will be evaluated
for each state.

5.2.2. Properties of the n-period model

In the following paragraphs, we analyze important properties of the n-period history
model. In particular, we test the influence of n on the expected utility of the agents and on
the conditionsrequired for the existence of an n-period strategy equilibrium.

In this section we use the following notations. Denote by exp_u; (w, n, history) the
expected utility of agent i from a model in which punishment is imposed after n
periods, given history of n last periods for each agent. Given configuration w, history =
(hist4, histg), and the n-period observation model, the agent can evauate the difference
between its utility after answering a query, and its utility after ignoring a query. Formally,
denote by ignr_loss; (w, n, history) the loss of agent i when it does not answer a query,
w.r.t. the case when it does answer. The definition of ignr_loss, (w, i, history) for the
model of punishment after n consecutivefailures, is as follows:

ignr_losss (w, n, (hists, histg))
Da(va +exp_us(w,n, (histy < 1, histg))

_ —exXp_ua(w,n, (histy <0, histp))) zero(histy) # true, 21)
| Daep_ua(w,n, (histy < 1, histg))
—eXp_ua(w,n, (histy <0, histp))) otherwise.

This means that the loss of agent A from avoiding answering a query is an immediate
punishment, if it is required, but it also contains the future losses due to the effect of this
unanswered query in the future. In order to prove our claims about the n-period strategy
profile we start with an auxiliary lemma that will help us reveal when the equilibrium
conditions hold.
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Lemma 5.1. Consider a trigger equilibrium based on the n-period strategy profile. The
equilibriumwill exit, if it is worthwhile for agent A to attempt to answer agent B after a
history of ((1,...,1),(0,...,0)), andif it isworthwhile for agent B to attempt to answer
agent A after a history of ((0,...,0), (1,...,1).

After ahistory of ((1,...,1),(0,...,0)), afuture punishment of agent A dueto current
ignorance of a query has the lowest probability after the longest delay. Thus, if it is till
worthwhile for A to hold the equilibrium strategy given this history, it will be worthwhile
for it to do so after any other history. Similarly, if it is worthwhile for agent B to hold the
equilibrium strategy given a history of ((0,...,0), (1,..., 1)), thenit will be worthwhile
for it to do so after any other history. Based on Lemma 5.1, in order to determine whether
or not an n-period equilibrium exists, we only need to consider the ((1, ..., 1), (0, ..., 0))
history of agent A, and the ((0,...,0),(1,...,1)) history of agent B. Based on this
reasoning, in order to check whether an equilibrium exists or not, we only have to check
the ((1,...,2),(0,...,0)) condition. We will use this attribute in order to prove that
ignr_loss, (w, n, ((1,...,1),(0,...,0))) increases as n decreases. When we consider an
n + 1-period model, the history includes 2n eventsinstead of 2(n — 1).

However, in order to compare ignr_loss, of the n-period observation model with
that of the n 4+ 1, we check when an equilibrium exists given a history of ((x, 1,
...,1),(,0,...,0)) (at least n — 1 successful events of agent A, and exactly n — 1 failure
eventsof agent B) when considering the n + 1-period model. Thisis because a history with
n consequence failures will cause an immediate punishment of agent B. In the following
lemma, we provethat as n increases, the loss of an agent from ignoring a query decreases.

Lemma 5.2. Given a history of exactly n — 1 consecutive queries to agent B with no
answer, and at least n — 1 consecutive successes of agent A,
ignr_loss, (w,n+1,((x,1,...,1),(1,0,...,0))
<ignr_loss, (w,n, ((1,...,1),(0,...,0))).
In addition,

ignr_loss, (w,n + 1, ((x,1,...,1),(1,0,...,0))
< (- paignr_loss,(w,n, ((1,...,1),(0,...,0)).

In the following lemma we prove that there are more configurations in equilibrium in
the n-period observation strategies than in the n + 1-period observation strategies. In other
words, as we observed when comparing the models of n = 1 and n = 2, as n increases
the equilibrium conditions become more restrictive. This will be proven in the following
lemma

Theorem 5.1. For eachn € N, 2,41 C £2,. Moreover, for eachw € 2, n € N exists, such
that w ¢ §2,,, butfor eachO <n’ <n,w € 2,.

The motivation in the above lemmais that as n increases, the probability of punishment
because of a present disregard of a query becomes lower, and the time when this
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punishment will beimplemented becomes more distant. Thus, there are more combinations
for which the threat on an agent is not strong enough. The above theorem provides a
simplerulefor finding the optimal strategy profile for agiven configuration. If an n-period
equilibrium does not exist, the agents should reduce #, until they obtain n’ for which »’'-
period equilibrium does exist. They should find the largest possible »’, since, as proven
in Theorem 5.2, increasing n increases the expected utility of the agents. In the theorem
below, we prove our main claim about the change in the agents’ utilities: as n, the number
of periods considered to decide about a punishment, increases the agent’s average utility
also increases.

More generally, we can show that for each configuration of parameterswe can find the
largest n, such that for any smaller n’ < n, answering will bein equilibriumfor any history,
given this configuration. Thisisimportant, sinceit will be possible to determine the largest
n given a configuration, and, as we prove later, thiswill attain the optimal expected utility
for the agents.

Lemmabs.3.n € N existsfor each w € £2 suchthat w ¢ £2,,, but for eachn’ < n, w € 2,.

In the above lemma we show that a smaller n enables more configurationsto be stable.
However, we will now show that as we observed when comparing the models of n =1
and n = 2, alarger n increases the expected average utility of the agents. Thus, given a
configuration, it is beneficia to find the largest n for which answering is in equilibrium
for this configuration. We start with an auxiliary lemma, and then we proceed with our
conclusions.

Lemma 5.4. Given n € N, for each w, such that w € £2,,, for each history, the expected
utility of agent A from receiving an answer from agent B, is higher than the expected
utility if the query receives no answer.

In the following lemma we prove our main claim about the change in the agents
utilities: as n, the number of periods considered to decide about a punishment increases,
the agent’s average utility increases too. This was demonstrated in Section 5.1.2 for the
case of changing n from one-period to two periods. In the following theorem, we prove
that the same direction of influence exists for any positiven.

Theorem 5.2. For each agent i, for eachn € N, for each w, suchthat w € 2, N 2,41, and
for each history h, V/"*1" > vt

We demonstrate our main conclusions in Fig. 13, for a particular configuration of
parameters (¢; = 1, o; = 0.1, v; = 100, p; = 0.5, D; = 0.9).2 The figure demonstrates
that as n increases VX”’ also increases, as proven in Theorem 5.2, but the increase is not
linear: the increment level decreases as n increases. However, as provenin Lemmabs.1, as

3 The value v; is much larger than its value in the one-period model since we consider models with a more
restricted set of configurations for which the equilibrium exists.
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Fig. 13. n-period model: expected utility and equilibrium existence index asafunction of n.

n grows, the set of appropriate configuration values becomes smaller. Thisis demonstrated
in the lower dotted curve, which shows the difference between the expected utility of agent
A if it attempts to answer a query after a history of ((1,...,1),(0,...,0)), and its utility
if it ignores the query. If the difference is positive, then an n-period equilibrium exists,
aswas proven in Lemmab5.1. It is also clear that as the difference increases, the n-period
equilibrium will exist for a larger set of parameters. As can be seen in the figure, the
trigger equilibrium does not exist for n values higher than 6. This limit will be different
for different parameter values, but the conclusionis clear. Thereis atrade off between the
expected utility and the existence of a trigger equilibrium: as n increases, the expected
utility of the agents increases, while the trigger equilibrium exists for a smaller set of
configurations.

The conclusion from this section is that given a configuration of parameters, w, the
agents can decide about the optimal n to be used. Thus, they will choose the largest n
for which atrigger equilibrium still exists, i.e, it is still beneficial for agent A to answer
gueries given a history of ((1,...,1),(0,...,0)), and it is till beneficia for agent B to
answer queries given a history of ((0,...,0), (1,...,1)). Testing these conditions can be
done by using a computation method based on the formulasof V" and U, as described
in Section 5.2.

5.3. Punishment after k& unanswered queriesfromn

In the previous sections, we considered strategies in which punishment is done after
one, two or any other predefined number of subsequent unanswered queries. We found
that as the number of unanswered queries required for punishment increases, the expected
utility of the agents increases, but the number of configurations for which equilibrium
exists decreases. In this section, we consider a new type of strategy profiles. As in the
previous section, n periods of history are considered by the agent when it has to decide
when to punish its opponent. The differencein this strategy isin the fact that it isampleto
observe k < n queries with no answer in order to decide about a punishment. The model
considered in Section 5.2 isa specia case of this model, with the restriction of k = n.
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In fact, our model includes more possible combinations of strategies that may yield a
higher expected utility. In particular, there are configurations, and values of n, for which
the equilibrium of the n-period model does not exist, but there are strategy profiles in
equilibrium, in which punishment is done after k unanswered queries from n, for the
same n. Such a strategy profile may often be more beneficial than choosing a smaller n
and using the n-period observation strategies. In this section, we will consider the k£ from
n-period observation model. First, we present important notations and we discuss some of
the properties of the k/n-model. Finally we suggest how to choose the best value of k and
n given aparticular configuration.

We denote £2;, to be the set of configurations for which the strategy profile of
punishment after k unanswered queries from », is in equilibrium. We denote by i =
(ha, hp) the history of the n last results of queries sent to agent A and the n last queries
sent to agent B. We denote Vl.k’"’h the utility of agent i when it isits turn to answer, given
history /, and assuming amodel of punishment after £ unanswered queriesfrom n queries.
Similarly, Ul.’"”’h isthe utility of agent i when it isitsturn to ask aquery, given history 7,
for amodel of punishment after k¢ unanswered queriesfrom n queries.

Similar to Section 5.2, the expected utility Vﬁ’"’h of agent A when required to answer a
query, is defined as follows:

(DU a0y sum_zeroes(hp) > k,
—oa+pa-(—ca+ DAUﬁ’"’(hA«l’hB))
g B G pa)(DV L (1a<Ohs)y sum_zeroes(ha <0) ()
>k,

k.n,(ha<l,h
_0A+pA'(_CA+DAUAn( Ak 3))

+ (1= pa)(Da Uf\’"’(h/‘«O’hB)) otherwise
and the expected utility Uf"”’h of agent A when it asks a query, is defined as follows:

(DU "By sum _zeroes(h4) > k,

pB - (va +Dp Vj’"’(hA,h3<<1))

Uyt = +@1- pB)(DUf{"’(h*"hB<<°)) sum_zeroes(hp < 0) +1 >k, (23)

k,n,(ha,h 1
PB'(UA-FDBVAH( AnBK ))

+ 1 —pp)(Ds Vﬁ’”’(h*"“«m) otherwise.

The intuition behind these formulas is the same as in the model of punishing after n
consequent failures. If it isagent A’s turn to answer a query, then it may just ignore it, if
there are at least k failures from n last queries to agent B. If it has to attempt to answer
the query, then with a probability of p, it will succeed and with a probability of (1 — py4)
it will fail. In a case of afailure, a punishment mode can be reached, if there are at least
k unanswered queries from n last queriesto A, including the current failure. (If agent A
punishes agent B and ignoresits query, this punishment will not be saved in the history.)

Similarly, if it is agent A’s turn to receive an answer to a query, and agent A has at
least k unanswered queries, i.e., it is agent A’s punishment phase, then its query will be
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ignored. Otherwise, agent B will attempt to answer the query. It will receive an answer with
aprobability of pp and with a probability of (1 — pp) agent B will not find an answer. In
this case, if there are at least & failures of agent B, then agent A will punish agent B.

The difference between the two modelsis the condition for a punishment event to take
place. Punishment in the n-period model isimplemented after n unanswered queries, i.e.,
if al then — 1 eventsin the history of an agent are zeroes. Punishment in the k/n-period
model is implemented when there are k unanswered queries from the history of length =,
i.e., if the sum of unanswered queriesis greater than or equal to k.

For the expected utility calculation the agent has to use an agorithm based on the
formulas V4" and U%"™". As in the n-period model, the formulas depend on each
other and can be solved using a divide and conquer algorithm or a dynamic programming
algorithm. However, in this model, al the possibilities of histories with a length of n
have to be considered since the utility of one history depends on the utility of other
histories (with an additional success, or with an additiona failure). A failure can cause
afuture punishment even if there was alater success after thisfailure. (Only the number of
consequent last failures has to be considered in the n-period model, since a failure with a
later success has no meaning.) Thus, all the possible combinations of histories of length n
have to be considered in our model, i.e., there are 22" possible combinations of histories to
be evaluated.* Given that this number is exponential in , the best algorithm for evaluating
Vf\"”’h or for checking the existence of the equilibrium should take at least exponential
time.

5.3.1. Properties of the model

Given the ability to use atrigger strategy profile in which punishment is imposed after
k from n unanswered queries, we would like to suggest how the values of & and » should
be chosen by the agents. This is an important decision that influences the utilities of the
agents, aswell astheir motivation to use the equilibrium strategies. In this section, we will
check the influence of k& and n in order to suggest how the agents should choose them.
We start by formally proving certain properties, and we proceed by testing other important
properties via simulations.

5.3.2. Theinfluence of k

In order to prove the influence of k on the equilibrium existence, we start with two
auxiliary lemmas. First, we prove that an equilibrium exists whenever it is worthwhile for
each agent i to answer the query of its opponent even with the best history for i. Denote
by best_case; (k, n) the best history for agent i. This history includes no failures of i, but
the maximum number of allowed failures of ;. In other words, in best_case, (k, n) there
aren — 1 last successes of agent A, and £ — 1 recent failures (from n) at the end of the
history of agent B. If it is worthwhile for agent i to answer the query of agent j evenin
this history, it will be worthwhilefor i to answer the queries for any other history.

4 During agent A’s punishment mode queries to agent or from agent A are ignored until it succeeds in
answering a query. Thus, a history of n length for agent A and n length for agent B is sufficient to represent
all the required information for future decisions.
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Lemma 5.5. Consider an equilibrium of a strategy profile where each agent answers the
gueries of its opponent, unless there was no response to at least k queries from the last n
gueries sent to this opponent. An equilibrium will exist, if it is worthwhile for each agent
i to attempt to answer agent j after the best_case; (k, n) history of n — 1 consecutive
answered queries by agent i, and k — 1 consecutive unanswered queries of agent ;.

According to the above lemma, the equilibrium of the k from n-period observation
strategies is stable if, and only if, these strategies are stable after the history of n — 1
consecutive answered queries by agent i, and k — 1 consecutive unanswered queries of
agent j,fori = A, j = B andfori = B, j = A. In order to check whether an equilibrium
exists or not, based on this reasoning we only have to check the condition for the history
of best_case4 (k, n) and best_caseg (k, n).

Lemma 5.6. Given the best_case; (k, n) history of exactly k — 1 consecutive last failures
of agent j and n — 1 consecutive successes of agent i,

ignr_loss; (w, k, n, best_case; (k, n))
> ignr_loss; (w, k + 1, n, best_case; (k + 1, n)).

Based on the above lemmas, the next theorem summarizes our results concerning the
influence of k& on the conditions of the equilibrium. We prove that as k increases an
equilibrium holds for a smaller set of configurations.

Theorem 5.3. If k1 < k2 < n, then 242, € 2k1.5-

According to the above theorems, the equilibrium tends to be weaker as k increases
when keeping n fixed. This result is intuitively clear, since as k increases punishment
becomes rarer. This causes the threat of punishment to decrease, and it may also harm
the stability of the strategy profiles. Thus, we can assume that as k increases, the expected
utility of the agentswill increase, but the equilibrium will hold more rarely.

5.3.3. Smulation results

In order to check the influence of different valuesof k and n on particular configurations
and histories, we developed an algorithm based on dynamic-programming, as explained
above. Thisalgorithmisableto runfor different strategy profiles, based on different values
of k and n.

After implementing this algorithm, we ran a simulation which randomly generated
configurations w and histories 2, and checked how different values of k and » influence
the utility, and the equilibrium existence, given w and k. The values of the configurations
were generated as follows: g4, gp, pa and pp were drawn randomly from O to 1. § was
drawn randomly from 0.9 to 1. The value of § is near 1, since the loss from a delay of
one-period should be small. v4 was drawn from 0 to 100, c4 was drawn from 0to 0.1, and
04 was drawn from 0 to 0.01. We chose these cost parameter values since we wanted the
equilibrium to exist for different values of k and n. This type of relation between the cost
of acquiring information and the benefits from it often appear in knowledge sharing, where
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Table 1
Influence of n and k on: (a) the average utility; (b) theratio of configurations for which an equilibrium exists. The
format is (a)/(b)%

n k=1 k=2 k=3 k=4 k=5 k=6

1 74.6/99.59%

2 59.7/99.72% 98.2/71.3%

3 53.5/99.74% 84.8/81.2% 110.1/50.0%

4 50.5/99.74% 78.3/82.8% 99.2/57.7% 117.0/33.4%

5 48.9/99.74% 74.9/83.2% 93.2/58.5% 108.3/42.5% 121.4/22.3%

6 47.9/99.74% 72.9/83.7% 89.8/58.1% 103.2/43.1% 114.5/30.7% 124.4/14.7%

the agent which asks a query can greatly benefit from an answer, but the agent which has
to answer it incurs a cost. Though the cost may be low it may still be significant.

For simplification, we checked only the expected utility of agent A, and the equilibrium
existence from the point of view of agent A. The influence on agent B should be, on
average, identical, since it has the same utility function and equilibrium existence index,
and the configuration values are randomly generated.

We first ran a simulation with 10,000 sets of parametersin order to check the influence
of k and n on the average utility and on the equilibrium existence index. Table 1 presents
the average values of the expected utility of agent A, and the ratio of the configuration in
equilibrium from all the configurations checked, given different configuration values.

InTable1, wecan seethat ask increases, and asn decreases, the average expected utility
increases, and the ratio of the configurationsin equilibrium decreases. Theintuition behind
thisresult isthat as the number of unanswered queriesrequired for punishing, k, increases,
then punishment isinflicted morerarely. Thus, in general, the expected utility of the agents
increases while their tendency to follow the equilibrium decreases. As the number of
periods tested in order to punish, n, increases, punishment will be performed more often,
and for a longer time. Conseguently, the expected utility of the agents decreases but the
threat of a punishment is stronger showing that the equilibrium exists more frequently.

The above table presents the average direction of the influence of k and n. However, we
also wanted to test whether this direction of influence exists for all configurations, and not
only on the average. In order to do so, we ran a simulation for each of the above changes
ink orinn, and tried to find a counter example with the opposite direction of the average
change. First, we checked how the increase of k influences each configuration tested. As
we explained above, as more unanswered queries are required in order to punish, agent i’s
punishment is performed more rarely, increasing the expected utility of agent i. However,
as k increases, the punishment of the opponent j is also performed more rarely, meaning
that agent i hasto attempt to answer more queries.

We first ran an additional set of simulations for varied histories. In most of our
simulations, results show that as k increases the expected utility of an agent increases.
But, there were also examples, given varied histories, where increasing &, causes the
expected utility Vj 11 1o decrease. We observed that al the cases where the expected
utility decreases when k increases were always in situations where the history includes at
least one failure of one of the agents.
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However, the process of determining the values of & and n is performed before the
repeated interaction starts. Thus, the agentsdecideto prefer (k1, nl) over strategy (k2, n2),
if strategy (k1,n1) has a higher expected utility, given the history before the repeated
interaction starts. Sincetheinteraction startswith no unanswered queries, the agents should
consider only a history of ((1,...,1), (1,...,1)) when they decide about their strategy,
given that this decision is done once and before any query was even sent: the choice of
n and k cannot to be taken during the interaction itself. We ran our simulation for 10,000
configuration values, given the history of ((1,...,1), (1,...,1)). Inal the configurations
we tested, the expected utility of the agents increases as k increases. (We did not prove
this formally, because of the complexity of the model.) This result is interesting, since it
showsthat the direction of the influence on the utility also dependson the history of agiven
sequence of interactions and not only on the configuration. The intuition behind this effect
is that there are other histories, for example, best_case, (k, n), where the punishment of
agent B will amost certainly be performed. In such situations, agent A may sometimes be
motivated to use a more threatening mechanism, since this will aimost surely affect agent
B and increase the utility of agent A. However, as we explained above, the history given
when the agents decide about their strategiesis ((1, ..., 1), (1,..., 1)). Soonly thishistory
has to be considered.

Recall from Theorem 5.3 that as k increases, the equilibrium holdsfor amore restricted
set of configurations. We can summarize these two conclusions and say that given avaue
of n, ask increasesthe utility of the agentsincreases, but the equilibrium holds morerarely.
Thus, we can concludethat given the value of n, the agentswill be motivated to choose the
highest possible k for which the (k, n) pair isin equilibrium.

However, thereis no uniform rule of how to choose n. In our simulations we found that
on the average, as n increases the utility decreases while the equilibrium exists for more
cases. However, there were also counter examples. Even when we check the influence on
the utility function given a history of ((1,...,1),(1,..., 1)), there ill are casesin which
the increase of n causes Vﬁ’"’h toincrease.

We ran our simulation for k = 2 and n increases from 5 to 6, and we ran 10,000
configurations. For 83.7% of the configurationsthat are in equilibrium, we found that asn
increases the utility decreases. For 3.3% of the configurations that are not in equilibrium
for n =5 or for n = 6, equilibrium starts to exist as n increases to 6, and for 1.1% of
these configurations, the equilibrium starts to exist as n decreasesto 5. So we can conclude
that given a configuration w, the direction of the influence of » on the utility and on the
existence of equilibrium, depends on w, athough the averagedirectionisclear. Thus, if the
agents would like to be certain that they are taking the best value of n for a given k, they
should check all the possible values of 7, given a configuration w.

Table 2 summarizes our conclusions considering the change of » in the n-model, and
the changeof k or n inthe k/n-model. Theresults are based on asimulation of over 10,000
configurations of parameters. There are cells with proven directions, and according to our
simulations there are cells with and without uniform directions.

A typical demonstration is presented in Fig. 14, for aparticular configuration w = (¢; =
1,0, =0.1,v; =20, p; = 0.5, D; = 0.9). In this example, we can see that as k increases,
and as n decreases, the expected utility of agent A increases, while the equilibrium
exists more rarely. In this example, the pair k = n = 3 maximizes the expected utility
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Table 2

The influence of changing n or k, on the expected utility and on the existence of an equilibrium, as found
theoretically or by simulations. The influence direction of cells with the indication (simulation), was obtained
by simulation. The influence direction of cells with the indication (proven), was proven

Utility Utility Number of configurations
any history history ((1,..., 1,@4,..., 1) in eguilibrium

n-model, n increases 0 1 {
(proven) (proven) (proven)

k/n-model k increases on average 1 aways 1 1
(simulation) (simulation) (proven)

k/n-model n increases on average | on average | on average, 1
(simulation) (simulation) (simulation)

Np—e—F 5 F §F & F & 9 § F § § F & 9 5 ¢

Expected Utility ——
Equilibrium conditions  +

50 i

expected utility, equilibrium condition

1 1 1 1 1 1 1 1 ! 1 ! 1 1 1 1 ! 1 1 1

-1C
171 172 173 1/4 1/5 1/6 2/2 2/3 2/4 2/5 2/6 3/3 3/4 3/5 3/6 4/4 4/5 4/6 5/5 5/6 6/6
k/n

Fig. 14. Punishment after k failures from n: expected utility and trigger equilibrium conditions as a function of
k/n.

of both agents, whilethetrigger equilibrium still exists. Thus, the agents should choose the
equilibrium based on this pair. However, for other examples, the optimal pair is different,
and the optimal value of & is often different from n.

We can see that different values of k and n may yield different values of the expected
utility and their particular value determines the existence of the trigger equilibrium. Recall
that given a configuration of parameters, the agents have to find the pair of k and »n for
which the trigger equilibrium exists, and to choose the optimal pair (k,n) from among
them. As we explain above, in order to evaluate the expected utility and the equilibrium
conditions, the agents should examine all the possible histories, since the utility given a
particular history depends on the utilities for other histories (with an additional success, or
with an additional failure). There are 2! possible values of histories. Thus, the evaluation
of onepair (k, n) requiresexponential time, in view of thefact that all the possible histories
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can occur. Accordingly, only feasible values of n should be examined, and the agents
should determine a value max,,, which is the largest value of n that is feasible and check
dl thevaluesof n =1, 2, ..., max,.

Given a particular value of n, according to our conclusions, as k increases, the utility
increaseswhilethe conditionshold less frequently. Thus, we can concludethat for each fea-
sible value of n, the agentswill run abinary search in order to find best_k(n), which isthe
largest value of k for which the equilibrium holds, for a given n. Then, they will compare
the values of the different pairs (n, best_k(n)), and choose the optimal value among them.

There may be situations in which each agent will prefer a different pair (k, n) due to
different parameters’ values of the different agents. For example, suppose that there are
two possible pairs in equilibrium: k =2,n =4 and k = 3,n = 5. Suppose aso that one
agent prefersthe pair k = 2, n = 4, while the other agent prefersthe pair k =3,n =5. In
such cases, the agents can determine a rule of how to choose (k, n), such as, maximizing
their average expected utility or maximizing the product of the expected utility.

6. Conclusion

In this paper, we present the problem of sharing information among self motivated
agents. An agent receives queries and decides whether or not to attempt to answer them.
Mainly, we considered an alternating model, where at each time period each agent may
have a query. First, we introduced the one-period strategy profile, in which each agent
observesthe last history event of its opponent in order to decide whether or not to answer
it. Second, we introduced the model of punishing an agent after n unanswered queries. We
found that as n increases the expected utility of the agents increases, while there are more
situations in which a trigger equilibrium does not exist. We also considered the general
case, where punishment is implemented after k¥ unanswered queries from n queries, and
we checked the influence of changing k and .

In conclusion, we found that different punishment-based strategy profiles can be
appropriate to attain responses in situations where attempting to answer queries is costly
and may result in success or failure. These profiles are stable and increase the expected
utility of the agents. Moreover, given a specific configuration the agents may choose a
strategy profile which maximizes the average or product of their expected utility, while a
trigger equilibrium still exists.

Appendix A. Table of symbols

TableA.1

Table of symbols

Symbol Explanation Appears
A, B components of U; in the dternating model Lemma4.4
v; the utility of agent i for answering its query 4

¢ the cost of agent i in the case of success 4

8 the discount factor of the utility function of the agents 4.2
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Table A.1 (continued)

Symbol Explanation Appears

D the expected discount ratio from the current time, when it is 4.2
agent i's turn to answer until the next time when it is its turn
to answer

D; the expected discount ratio from the current time until #; 4.2

history the histories of both agents. (history 4, historyg)

history; theresults of then — 1 last events of queries sent to agent i (each
result is 1 for an answered query, O for a query with no answer)
(n-period model)

n the number of periods observed in order to decide about a 5
punishment

k the number of failures from n observed periods, for which 5.3
punishment is done

0; the cost of agent i when it tries to answer a query 4

ignr_loss; (w, n, history) the expected loss of agent i due to failure or ignoring a query 5

{Normal, Punish,, Punishg}  thethree phasesincluded in the strategy profile Lemma4.2

Di the probability of agent i to succeed in answering, if it tries to. 4

qi the probability for agent i to have aquery in agiventimeperiod 4.2
(in the stochastic mode)

I00) the current time 4.2

t the time when agent i will send a query 4.2

U; the expected utility for agent i when it is its turn to receive 4.3
an answer from agent j # i (whether agent i succeeds or not)
(dlternating model)

U’ the expected utility of agent i in the two-period model, whenthe 5.1
last event of agent A was x, the last event of agent B was y, and
itisi'sturn to receive an answer from agent j # i (two-period
model)

Uihismry’" the expected utility for agent i when it isits turn to receive an 5.2
answer from agent j # i given history, in the n-period model

Vi the expected utility for agent i if it decides to answer the query 4.3
of j #i (whether it succeeds or not) (alternating)

v the expected utility of agent i in the two-period model, whenthe 5.1
last event of agent A was x, the last event of agent B was y, and
itisnow agent i’sturn to answer a query

Vl."’hiStOIry the expected utility for agent i when it isits turn to answer the 5.2
query of j # i, inthe n-period model

F; the utility of agent i from deviating to the one-stage equilibrium, 4.3
and ignoring the query of agent j # i (alternating)

1) acombination of the parameters of the model

ko) aset of al the combinations of model parameters

o a set of al the combinations of the model parameters which

are stable for a strategy profile based on punishment after n
consequent failures
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Appendix B. Proofs

Proof of Lemma 4.1. Based on equation (1), D4 is defined as §ga/(1 —38(1—ga)). In
order to provethat D4 > 0, we haveto provethat the numerator is greater than or equal to 0,
and that the denominator is positive. Since § > 0 and g4 > 0, it isclear that the numerator
is greater than or equal to 0. The denominator is positive whenever 1 —5(1—g4) > 0.
Thisholdswhenever §(1 —g4) < 1, andthisistrue, sinced <land0<gs < 1.

In order to prove that D4 < 1, we haveto provethat §g4 <1—38(1—ga),i.e, 8 <1,
and thisis true by definition. Symmetrically, also Dy is between 0 and 1, and the proof is
based on Eq. (1).

Asproven,0 < Dy < 1. Symmetrically, 0 < Dy < 1. Accordingto Eq. (2), D = DA Dp.
Thus,0<D <1 0O

Proof of Lemma4.2. Consider the strategy profile definedin Section4.1. 1f V4 > F4, and
agent B uses the above strategy, then any attempt of agent A to deviate from any history,
will reduceits utility.

Suppose agent B sendsaquery to agent A; There are three possible phases of the game:

Punishg: Inthisphase, if agent A punishesagent B, then it savesthe cost of ¢ 4. Whether
it answers or not, the next state will be Punishg. Thus, itisclear that A prefersto
punish B in state Punishp.

Normal and Punish,: In both phases, if agent A will attempt to answer agent B's query,
then its utility will be V4, and if it decides to deviate and ignore the query, its
utility will be F4. Thus, the condition for answeringis V4 > Fy.

The same arguments also apply to the case when agent A sends a query to agent B. So
the conditions needed for the equilibriumto holdare V4 > F4,and Vg > Fg. O

Proof of Lemma 4.3. By manipulating the formulas of Attribute 4.1, and solving the
recursive formulas, we obtain

_ PB*UA Dp x ppVa
1+D(pg—1) 1+D(pp—-1)°
We use the notation

PB * VA

Ua

_ 7 (B.1)
1+D(pp -1
and
__Dsxpp (B.2)
1+D(pp—1) ’

O Us =A+ BVy.
Recall from Attribute 4.1, that V4 = —o04 + pa(—ca +DaUs) + (1 — pa)Fa.
By substituting F4, we obtain,

Va=—04a+ pa(—ca+DsUxs) + (1— pa)DVa.
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By substituting U 4, we obtain,
Va=—0a+ pa(—ca+Da(A+BVa)+ (1 — pa)DVa.
By eliminating V4, we obtain,
Va(l— paDaB— (1 —pa)D) = —0a+ pa(—ca+DaA)
and thevaueof V, is
_ —oa—paca+paDaA
1—paDsB—(1—pa)D
and when opening the formula, we finally obtain

Va

Vi = (1+Dpp —D)(—0a — paca) + paDappva
(14 Dpp — D)X —D+Dpa) — paDpp

Proof of Proposition 4.1. Substituting 53 in Eq. (8), we obtain

Dg * pp
1-ppaDp—— — D1 - 0.
PAPAT D o = 1) (1—=pa)>

Sinceitisclearthat 1+ D(pp — 1) > 0, we only have to prove that
1+D(ps —1) — paDaDp * pp +D(pa —D(1+D(pp — 1)) >0
andsince D =Dy + Dp,
14+ D(pg —1— paps — 1+ pa) + D*(paps — pa — P + 1)
and
14+D(=2+ pa+ pg — paps) + D*(L— pa — ps + paps)
and thisisequal to
1+ (D? = 2D) + paps(D? = D) + (pa + ps)(D — D?).
(D? — 2D) is minimized when D approaches one, thus (D? — 2D) — —1, so we are left
with
paps(D*—=D) + (pa+ ps)(D—D?)
whichisequal to (D — D?)(pa + ps — paps) Whichispositive. O
Proof of Lemma 4.4. According to Lemma 4.3, the expected utility of an agent when
attempting to answer aquery, is

_ —oa—paca+paDsA

1— paDaAB—D(1—pa)’

According to Lemma 4.2, there is an equilibrium when V4 > F4 and Vg > Fp.
Accordingto Attribute4.1, F4 = DV4. AsweprovedinLemma4.1,D € [0, ..., 1). Using
thisis a necessary and sufficient condition to provethat Fs < V4 isV4 > 0.

According to Lemma 4.2, there is an equilibrium whenever V4 > F4, and Vg > Fp.
However, according to Attribute 4.1, F,4 is defined to be DV,4, and D was proved in

Va
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Lemma 4.1 to be between 0 and 1. Thus, V4 > F4 whenever V4 > 0, since in any case
when V4 >0, Fy =DV < Vy

According to Proposition 4.1, the denominator of V4 is positive. In the following
formula, we will find under which conditions the numerator will also be positive. In other
words, we haveto find whenever paDaA > paca+o4a. pa €(0,1),50 pa > 0. Thus, we
can maintainthat D4 A > c4 + 04/ pa. Substituting A with its formula, we receive,

DBVA oA
Dy 2 A+ —
1+D(pp -1 pPA
and,
1+D(pp—-1) (A+D(pp—-1)
VA = CA + 04
Daps papsDa
and,
1 D -1 1 D -1
vA}CA( + B(pB )>+EA< n B(PB )>'
Daps PB paPBDa PADB

Substituting D4 with 8g4 /(1 — 8 + 8q4) and D with gz /(1 — 8 + 8¢5), and D with
DsDg, weobtain
(1—54‘5% Sqp(pp — 1) )
3gADPB pB(1—358+8gp)
(1—5+561A Sqp(pp —1) )
+o4a .
PADPBSqA (1-8+38g9B)paprs

VA = CA

In other words,
0 1-6+6 ) -1
va > <CA + —A>< 9 da5(ps— 1 ) (B.3)
pPA 3gADPB pe(l—36+68qB)

Symmetrical arguments will lead to the symmetrical formulafor the case where agent
B hasto answer. 0O

Proof of Lemma 4.5. First, in Eq. (10) of Lemma 4.4, the equilibrium condition is
presented as a ratio between vaps and capa + 04, and this ratio should be larger than
another term, that is a function of the other parameters. So it is clear that as v increases,
the condition isinclined to hold, and as c4 or 04 increases, the condition may be violated.

Theinfluence of c4, 04 and v4 on the utility function can be shown using the formula
of V4. Accordingto Lemma4.3,

Vi = (1+ Dpp — D)(—04 — paca) + paADappva
(1+Dpp —D)A—-D+Dpa) — paDps

and we aready proved in Lemma4.1 that the denominator is positive. Thus, it is clear that
the influence direction of 04 and c4 is linearly negative, with less influence of 04, while
the influence direction of v, islinearly positive (sinceit is easy to show that its coefficient
is positive).

We proceed by proving that as p4 or pp increases, the expected utility of each agent
increases, and the set of parameter values for which equilibrium exists, increases too.




R. Azoulay-Schwartz, S Kraus/ Artificial Intelligence 154 (2004) 43-93 83

We start with proving that p4 and pp positively influence V4. Manipulating Eq. (6) of
Lemma4.3,
V= (1+Dpp —D)(—0a — paca) + PADAPBUA.
(1+Dpp —D)A—-D+Dpa) — paDps
Whenisolating p4, we obtain
V= —0A(1+Dppca — D) + pa(—ca —Dpp —Dca + 'DAPBUA).
(1—D)(1+Dpg — D)+ pa(D+D2pg — D% — Dpp)

SinceD < 1, —oa(1+ Dppca — D) < O, if the equilibrium holds, then the numerator
ispositive. S0 (—cqg — Dpp —Dca +Dappva) > 0. The denominator includestwo parts,
but sinceD <1, (1—D)(1+ Dpp — D) > 0. Thus, as p4 is multiplied, the numerator

increases more than the denominator, so the value of V4 increases.
A similar proof istrue for the influence of pg on V4. Theformulaof V4 can bewritten

as
PB(—0AD — paDca + paDava) + (—oa +0aD — paca + paDca)
pe(D — D2 4+ pADZ —Dpa)+(1-2D+ D2 + paD — paDca)

The second part of the numerator can also bewritten (D — 1)(04 + paca), and thisvalueis
negativesince D < 1. Thus, thefirst part of the numerator must be positivewhen thereisan
equilibrium. The second part of the denominator can bewrittenas (D —1)(D(1— pa) —1).
Both parts of the expression are negative, so the expression on thewholeis positive. Again,
as pp ismultiplied, there is a greater effect on the numerator (where one part depends on
pp and the other part is negative) than on the denominator (where the part which does not
depend on pp is positive). Thus, as pp increases, V4 increases too.

Agent A’s willingness to attempt to answer queries is positively influenced by
increasing p4 or pg. Thisinfluence can beeasily shown from thecondition V4(1—D) > 0.
Since p4 and pp increase v4, they also increase the equilibrium condition, given the other
parameters stay constant. 0O

Proof of Lemma 4.6. First, we prove that as § increases, D; aso increases. According to
Ea. (1),
_ 3qi

1-81—qi)
As § increases, the numerator increases, while the denominator decreases. Thus, as §
increases, D; increases.

We proceed by proving that as g4 or ¢p increases, D; increases too. The value of D;
can be written as
_ dqi
T 1-68+8q;
S0, as g; increases with aratio r, the numerator increasesin the sameratio r, while part of
the denominator increasesin ratio r. However, the rest of the denominator (1 — §) remains
unchanged. Since this part is positive (§ < 1), the denominator at whole will increase with
aratio lessthan r. Thus, the numerator increases with aratio larger than the increased ratio
of the denominator, so the value of D; increases.

i

i
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According to Eq. (2),
D =DusDg.

We showed that as § increases, D4 and Dp increase, D also increases. Similarly, as ga
increases, D4 increases while Dy remains unchanged, and as g g increases, Dy increases
while D4 remains unchanged. Thus, as g4 or ¢p increases, D increases.

We will now show that as D4 or Dy increases, the expected utility V4 also increases.
Following Lemma 4.3, the value of V4 can be written as

_ 1+ (pp —1)D)neg+ paDapos
1+ (pp —DD)A+ (pa — 1D — papsD’

where neg = (—o4 — paca) iS negative, and pos = ppuv4 is positive. As D increases,
the value of (1 + (pp — 1)D) decreases, and becomes closer to 0. Since this value is
multiplied with neg, the numerator increases as D increases. Moreover, as D4 increases,
an additional positive influence exists since p4D4pos also increases, so both parts of the
numerator increase as D increases. If D increaseswhile D4 isunchanged, D increases.
As a result the numerator’s left side will increase and the numerator will increase. Thus,
we have shown that as D4 or Dy or both increase, the numerator increases too.

Inaddition, asD increases, the denominator decreases, since (1+ (pg — 1) D) decreases,
(14 (pa — 1)D) decreases, and p 4 ppD, which appears as a hegative factor, increases. So,
we can concludethat as D, D4 or Dg increases, the value of V4 increases. To summarize,
asd, g Or gp increases, D increases, and D4 or Dp or both increase too. Thus, as 8, ga
or ¢ increases, D increases, and V4 increases.

We proceed by proving the influence on the equilibrium condition. Manipulating
Eqg. (10) of Lemma 4.4, the equilibrium holds whenever

vio_ 2 1 +'Dj(pj—1)'
¢it+ 5 Dipj pj

Va

AsD increases, 1/(D; p;) decreases. Since (p; —1) < 1, D;(p; — 1)/ p; decreasestoo.
S0, as D increases, the minimum value of v; /(¢c; + o; / p;) for which the equilibrium exists
decreases, and therefore an equilibrium exists for more configurations. To summarize, as
38, q4 or gp increases, D increases, and the equilibrium exists for more configurations. 0O

Proof of Lemma 5.1. Consider the equilibrium conditions for agent A, and consider a
case in which attempting to answer is beneficia given history = ((,...,1), (0, ..., 0)).
Supposethat agent A receives aquery after that history, and suppose also that both agents
follow their equilibrium strategies. In this case, if agent A doesn’t answer a punishment of
agent A will occur with aprobability of (1— p4)"~1, sincen — 1 futurefailuresarerequired
in order for a punishment event to occur. If such a punishment will be imposed, this will
occur only after at least n — 1 queries eventsto agent A. (A longer delay of n-period may
occur if during thistime, agent B was punished.)

It is beneficial for agent A to attempt to answer a query, if and only if its expected
loss due to answering the query is not more than its loss due to ignoring the query.
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i.6, 04 + paca + (1 — pa)ignr_loss, (w, n, history) < ignr_loss, (w, n, history). Thus,
equilibrium existsiif,

. . 0OA
ignr_loss, (w, n, history) > ca + —.
PA

Now, consider a history that is different from ((1,...,1), (0,...,0)). There may be
three possible situations of histories:

(1) Thelast event of agent A was a successful answer: history ((..., 1), (0, ..., 0)).

(2) The end of the history of agent A contains at least one failure: history ((..., 0),
©,...,0).

() Thehistory of agent B contains at |east one success. history ((...), (...,1,...).

First consider case (1). Any state with the same history of agent B, and wherethelast event
in the history of agent A is1, isequivalent to ours, in the model where punishing is done
after n consequent failures, since a present ignorance of a query by agent A will cause a
punishment of A only after additional » — 1 unanswered queries.

Now, consider case (2). In any state with one failure or more at the end of agent
A’s history, ignr_loss, (w, n, history) will be higher than after a history of ((1,...,1),
(0,...,0)), since less failures of agent A are required in order to punish it. (If there are
k failures at the end of agent A’s history, then the probability of punishment because of
acurrent unanswered query, is (1 — p)*~1* and this may occur after a delay of at least
n — 1 — k queries events.)

Finally, consider case (3). In any case with one success or morein agent B’s history, the
probability of punishment of agent B islower than after ahistory of ((1,...,1), (0,...,0)),
since more than one consequent failure of agent B is required in order to punish it. Any
punishment of agent B causes a delay in the answers required by agent A. Thus, if the
probability of punishing agent B decreases, the expected delay of time until agent A will
be punished increases, so ignr_loss, (w, n, history) also increases.

To summarize, ignr_loss, (w, n, history) for any given history, is higher than or equal
to

ignr_loss, (w,n, ((1,...,1),(0,...,0)).
Thus, if after ahistory of ((1, ..., 1), (0, ...,0)), till

ignr_loss, (v, n, ((1,...,1),(0,...,00) > ca + o
PA

this will aso hold for the other histories. In other words, if the equilibrium exists after a
history of ((1,...,1), (0,...,0)) for agent A, and after ahistory of ((0,...,0), (1,...,1))
for agent B, it will also exist after any history.

Finaly, if an equilibrium exists, then each agent will answer the query of its opponent.
In particular, each agent will do this given the history of ((1,...,1),(0,...,0)) and the
history of ((0,...,0),(1,...,1)). O

Proof of Lemma 5.2. Consider a history of ((x,1,...,1),(1,0,...,0)), in the n + 1-
period model. This means that at least the last n — 1 events of agent A are successes, and



86 R. Azoulay-Schwartz, S. Kraus/ Artificial Intelligence 154 (2004) 43-93

exactly the last n — 1 events were unanswered queries by agent B. Consider now reducing
n + 1 to n. This will increase the probability of punishing agent A after an event of not
answering (pﬁ‘l instead of p'}). Moreover, the possible punishment, if performed, may
be done earlier (after n — 1 consecutive failures instead of n), and this will increase the
present value of the loss due to punishment.

On the other hand, reducing the number of periods observedin the strategies also causes
apossible punishment of agent B to beimposed earlier and with ahigher probability. There
arethree situations:

o If thenext event of agent B isasuccessful answer: then no punishment is givenin both
models at the next n periods.

o If the next event of agent B is afailure, and the consequent event is a success. then a
punishment is given to agent B in the n-period model, and no punishment is inflicted
inthen + 1-period model.

o if thenext k (2 or more) consecutive events of agent B arefailures: then k£ punishments
of agent B will be performed in the n-period model, and & — 1 punishments of agent
B will be performed in the n + 1-period model.

Thus, moving from the n 4+ 1-period model to the n-period model causes at least one
more punishment of agent B, given a history of n — 1 failures of agent B. This one
punishment will make the future possible punishment of agent A to be one query event
later. Namely, if a punishment event occurs, then agent A is exempt from answering one
guery, so the possible punishment of agent A is delayed.

To summarize, as n + 1 decreases to n, punishment of agent A will occur with a
probability of (1 — p4)" instead of (1 — p4)*t1, and this possible punishment will
be at the same expected future time as in the n-period model, or even earlier. (The
possibility of punishing B causes the time of punishment agent A to increase by one
guery event or to remain unchanged. However, this time of punishment decreases by one
guery since less failures of agent A are required in order to punish.) Thus, as n increases,
ignr_loss, (w, n, ((1,...,1),(0,...,0))) decreases, and, in particular,

ignr_loss, (w,n+1,((x,1,...,1),(1,0,...,0))
< (- paignr_loss,(w,n, ((1,...,1),(0,...,0)). O
Proof of Lemma5.1. First, we show that for each w € 2,11, w € £2,,. If w € 2,41, then,
in particular, after a history of last n — 1 successes of agent A and last n — 1 failures
of agent B, it is still beneficial for agent A to attempt to answer agent B’s query. This
means that the cost of answering is less than or equal to the expected loss from avoiding
answering, i.e.,
04+ paca+(L— paignr_lossy(w,n+1,((x,1,...,1,(1,0,...,0))))
<ignr_loss, (w,n+1,((x,1,...,1),(1,0,...,0)),
and,

94 4 ex <ignr_lossy (@.n+1, ((x, 1,..., 1), (1,0,...,0))).
PA
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According to Lemmab.2,

ignr_loss, (w,n+1,((x,1,...,1),(1,0,...,0))
<ignr_loss, (w,n, ((1,...,1),(0,...,0))).
Thus, if

o4 + ca < 8aignr_loss, (w,n+1,((1,...,1),(0,...,0))
PA

this holds also for the n-period model, so
o4 + ca < 8aignr_loss, (w, n, ((1,...,1),(0,...,0)).
PA

Based on Lemma 5.1, if answering is beneficia for agent A given a configuration w, and
after n — 1 consequent successes of agent A and n — 1 consequent failures of agent B, then
itisin equilibrium for each history. Thus, w € £2,,.
Now, we show that w € £2,, existssuchthat w ¢ £2,,11. In particular, we take w such that
94 4 cp =ignr_loss, (w.n. ((L.....1). (0.....0)).
PA

An equilibrium exists for this w given the n-period model. Then, as the strategy profileis
changed to be an n + 1-strategy profile, ignr_loss, decreases, so

94 1 ep <ignr_lossy (w.n +1, (L., 1), (0.....0)).
pa

In other words, it is no longer beneficial for agent A to attempt to answer the query of
agent B, 0w ¢ 2p41. O

Proof of Lemma5.3. Givenw € £2, and given n, we can consider the situation of a history
of ((1,...,1),(0,...,0)),i.e,n—1consequent successes of agent A and n — 1 consequent
failures of agent B. Given n, we can evaluate the expected loss of avoiding answering
a query (ignr_loss, (w, n, history)) where history = ((1,..., 1), (0,...,0)), and w € 2,
whenever thislossislarger than c4 + 04/ pa, a we explained above.

However, as proved in Lemmab.2,

ignr_loss, (w,n + 1, ((x,1,...,1),(1,0,...,0))
< (- paignr_loss,(w,n, ((1,...,1),(0,...,0)).

Thus, ignr_loss, (w, n, history) when moving from n to n + 1 decreases by a factor
of atleast 1 — pa, sofor n — oo, ignr_loss, (w, n, history) approaches0. Therefore, it is
asoclear that if ignr_loss, (w, m, history) > ¢4 +04/pa for aparticular m, m’ > m exists
such that

. /L OA
ignr_loss, (w, m’, history) < ca + —,
PA
0w ¢ £2,,,. Denoten’ = min(m’) suchthat w ¢ £2,,/. For eachn’ < m’,

. P 0A
ignr_loss, (w, n’, history) > ca + —,
PA
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O wE 2,.
If w ¢ £21, then the strategy profile will not be an equilibrium given configuration w for
any length of history. O

Proof of Lemma 5.4. Consider the situation in which agent B answers agent A’s query.
In this case, agent A has a benefit of v4. Consider now the situation in which agent B did
not answer agent A’squery. In the extreme case, thisleads agent A to punish agent B, after
adelay of Dg. If agent A punishes agent B, agent A saves the cost of o4 + paca after
adelay of one query event of agent B, and it also saves possible losses due to its failure
to answer a query it was supposed to answer, i.e., it savesignr_loss, (w, n, history) with a
probability of 1 — p 4. Thus, we have to prove that

va > Dp (pAcA +oa+ (1 — pa)ignr_loss, (w, n, hiSIOI’y)).

Since an equilibrium exists, w € £2,, thus, according to Lemma 5.1, w € £21, SO an
equilibrium existsfor the one-period model. Thusignr_loss, (w, n, history) < Dava, since
one failure event in the one-period model can cause one future punishment (preventing
utility of v4), and this future payment can occur after an expected delay of at least D4.

For the same reason, since w € §21, itisclearthat o4 + paC < Dapavy a each stage,
since otherwise it is not worthwhile to attempt to answer a query even in the one-period
model. Thus, it is enough to show that

UA>DB(DAPAUA+(1—pA)DAUA) or v4q >7Duy

and thisisclear, sinceD <1. O

Proof of Theorem 5.2. First, we show it is enough to check the history ((1, ..., 1), (1,0,
..., 0)) with thelast n — 1 successes of agent A and the last n — 1 successes of agent B. If
agent A prefersthe profilen 4 1 over profilen, thiswill remain true after any other history.
This is because when moving from a strategy profile of n to a strategy profile of n + 1,
agent A earns from the fact that its punishment becomes rarer, and agent A loses from the
fact that it has to answer more queries of agent B.

As the number of successes of agent A increases, its punishment becomes more rare.
Thus, the motivation of agent A to move to profile n + 1 decreases. (For the most part it
will not be punished in both profiles.) Asthere are morefailures of agent B, its punishment
becomes more abundant. Thus, agent A’s motivation to move to profile n + 1 decreases.
(Agent B will be punished in both profiles, so the additional benefits due to punishing
agent B more, decreases).

History ((1,...,1),(1,0,...,0)) includes the highest possible number of agent A’s
successes and agent B’s failures. (An additional failure of agent B will cause a
punishment.) Thus, if it is beneficial for agent A to move to profile n + 1 given a history
of ((x,1,...,1),(,0,...,0)), thiswill betrue after any other history.

Consider a flow of n aternating queries. (n queries from A to B, n queries from B
to A), starting with the history of ((1,..., 1), (1,0,...,0)). Denote by exp_delay, (n) the
expected discount of the future due to punishment of agent B, given that agent B will
be punished if its next query fails. Denote by exp_loss, (r) the expected discounted loss
of agent A when it is supposed to answer agent B’s query, when an additional failure of
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agent B will cause a punishment of B, and n failures of A will cause a punishment of A.
This loss contains a future punishment of agent A after n failures of agent A, i.e., with a
probability of (1 — pa)", discounted by D" exp_failures; (n + 1), agent A will lose ppva.
Thus, exp_loss, (n) = (1 — pa)* D"exp_delayg(n) ppva.

In the following, we analyze the difference in agent A’s utility, due to changing the
strategy profile from profile n to profilen + 1. We consider the following possible flows of
successes/failures of both agents.

o With aprobability of pg, agent B will succeed to answer the current query of agent A.
Inthiscase, in both profiles, agent B will not be punished during the next n aternating
queries (since there will not be n consequence failures of agent B). In this case, the
only possible change from profile n to profilen + 1 is a possible punishment of agent
A. Sincewestart with history, = (1, ..., 1) thismay take place only after n failuresto
answer B’squery. During thistime, agent B will not be punished, as explained above.
Thus, if agent A will be punished in the future, it will lose avalue of ppva, after a
delay of exactly D", and with a probability of (1 — p4)". The expected value of the
loss due to this punishmentis (1 — p4)*D" ppuvy. (If another failure will take place at
timen + 1, then agent A will be punished in both profiles.)

o With aprobability of 1 — pp, agent B will fail to answer the current query of agent A.
Then, after thisfailure, if profilen 4+ 1isin use, agent A is supposed to answer agent
B’squery, but if profilen isin use, agent A is not supposed to answer this query. Any
additional failure of agent B will causeit punishment in both profiles. Consider profile
n—+ 1. When agent A attemptsto answer agent B’s query agent A’s cost for attempting
toanswerisos + paca. Again, there are 2 situations.

— With a probability of p4, agent A will succeed to answer agent B’s query. In this
case, the last event of A is a success. Thus, in the n + 1 profile, n + 1 failures of
agent A arerequiredin order to punishit, whilein the n profile, the punishment will
also be performed after n failures. Therefore, the difference is after n failures of
agent A. The expected discounted loss of this failure is exp_loss, (n). Thus, when
moving to the n + 1-model, agent A earns exp_loss, (n).

— With a probability of 1 — p4, agent A will fail to answer agent B’s query. In this
case, if there are additional n failures of agent A, then agent A will be punished
when using the (n + 1)th model. The probability and delay of this failure is the
same as the probability and delay in the nth model, where agent A was not suppose
to answer the nth query of agent B. So, in this case, there is no difference between
the two profiles.

To summarize, the total expected benefits of agent A from moving from profile n to
profilen + 1, is ppDp((1 — pa)"D"ppva) + (1 — pp)paDpDaexp_loss, (n) and this
should be larger than the cost of answering the (n + 1)th query of agent B, DpD4(1 —
pB)(0A + paca).

peDp((1— pa)" D" ppva) + (1 — pp)paDpDaexp_l0ss,(n)
> DpDa(1— pp)(0oa + paca).
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Manipulating this, we obtain,
g—i(a — pa)" D" ppva) + (1= pp) paexp_loss, (n) > (1— pp)(oa + paca).

And since exp_delayg(n + 1) < 1, exp_loss,(n) < (1 — pa)* D" ppva), SO the above
formulais true whenever

<l’;_i +(1- PB)PA)eXp_|OSSA(n) > (1= pg)(oa + paca)
or
<£_Ijx - pB)pA>eXp—|O$A(”) > (1— pp)(oa+ paca).

Sincew € £2,,4+1, anequilibrium holdsin then + 1-model. Thismeansthat after a history
of n failuresof B and n successesof A, A prefersto answer than toignore B’squery. A’s
expected loss due to ignoring is, again, exp_loss, (n), since n additional failures of A will
cause punishment, while an expected delay due to punishment of agent B is expected, if
agent B failsinits next query.

In order for the equilibrium to hold,

04+ paca+ (A — pa)exp_loss, (n) < exp_loss, (n),

0A + PACA
PA '
We substitute exp_loss, (n) with this smaller value, and then it remains to prove that

oA+ c
<p—B +@1- pB)pA> <A7PAA> > (- pp)(oa+ paca),
Dy DA

exp_loss, (n) >

PB
75 41
<DA + - pB)pa

Manipulating this formula, we obtain

0A + pACA
>7” > (1— pp)(0a + paca).

PB
= >0
Dy~
and thisistrue, sincein our model pg, D4 > 0. O

Proof of Lemma 5.5. Similar to the proof of Lemma 5.1. Consider a configuration
in which attempting to answer a query is beneficial given history = best_case4 (k, ).
Suppose that agent A receives a query, and also suppose that both agents follow their
equilibrium strategies. In this case, if the current query will not be answered by agent
A, it will receive punishment with a probability of (1 — p4)*~1, since n — 1 future
failuresare required in order for a punishment event to occur. If such a punishment will be
implemented, it will occur only after at least n — 1 queries eventsto agent A. (A longer
delay of n periods may occur if during thistime agent B was punished.)
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AsinLemmab.l, it is beneficial for agent A to attempt to answer a query, if and only
if its expected loss due to answering the query is not more than its losses due to ignoring
the query. i.e.,

04+ paca+ (A — pa)ignr_loss, (w, k, n, history) < ignr_loss, (w, k, n, history).
Thus, an equilibrium existsif,

ignr_loss, (w, k, n, history) > ca + O—A.
PA

Now, consider a history different from best_case, (k, n). There may be three possible
situations of histories:

(1) Thereisat least one unanswered query inthen — 1 last queries of agent A, but not in
then — k last queries. The history of agent B isthe same asin best_cases (k, n).

(2) Thereisat least oneunanswered query inthen — k last queries of agent A. The history
of agent B isthe same asin best_case4 (k, n).

(38) Thehistory of agent B contains at |east one successinthelast k — 1 events.

First, consider case (1). Since there is no unanswered query by A inthe n — k last
queries, if agent B will not answer the current query, then a possible punishment may
happen only after additional £ — 1 unanswered queries. Thus, case (1) is equivalent to
best case, (k, n).

Now, consider case (2). In any state with onefailure or morein n — k last events of agent
A’s history, ignr_loss, (w, k, n, history) will be higher than after the best_case, (k, n)
history, since an unanswered query in the present may be concatenated to the other failures,
and causes a punishment after a shorter delay than in best_case (k, n).

Finally, consider case (3). In any case with one success or morein thelast k — 1 queries
to agent B’s history, the probability of punishment of agent B is lower than after the
best_case4 (k.n) history, since more than one failure of agent B in the near n — k queries
isrequired in order to punish it. Any punishment of agent B causes a delay in the answers
required by agent A. Thus, if the probability of punishing agent B decreases, the expected
delay of the time when agent A will be punished increases, so ignr_loss, (w, k, n, history)
also increases.

To summarize, ignr_loss, (w, k, n, history) for any given history, is higher than or equal
to ignr_loss, (w, k, n, best_casea (k,n)). Thus, if ignr_loss, (o, n, best_cases (k, n)) >
ca+oa/pa. Thiswill aso hold for the other histories.

In other words, if it is beneficial for agent A to use the equilibrium strategies after the
history of best_casex (k, n), it will be beneficial for it to use this strategy given any other
history. Symmetrically, we can aso prove that if it is beneficial for agent B to use the
equilibrium strategies given the history of best_casep (k, n), agent B will be motivated to
use this strategy given any other history. Combining these two results, we can conclude
that if the equilibrium exists both for best_case, (k, n) and best_caseg (k, ), it will also
exist after any history.

Finally, if an equilibrium exists, then each agent will attempt to answer the query
of its opponent. In particular, each agent will do this given the particular history of
best casg (k,n). O
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Proof of Lemma 5.6. Consider the history of best_case; (k, n), and increasing k to k + 1.
This will decrease the probability of punishment of agent i after an event of ignorance,
sinceinthe best_case; (k, n) history it has no considerable failures. Moreover, the possible
punishment, if performed, will be done later (after at least k additional failures instead
of k — 1 additional failures), and this will decrease the present value of the loss due to
punishment.

However, best_case; (k, n) also depends on k. best_case; (k — 1, n) is different from
best_case; (k, n), and it includes k — 2 consequent failures of agent j instead of kK — 1 (in
order to avoid immediate punishment when checking stability). Thus, as k decreases, the
probability of punishment of agent j remains unchanged. (Punishment will be inflicted
given one more query to agent j that is unanswered.) Thus, enlarging & while changing
best_case; respectively, causes the threat of punishment of agent j to decrease, while the
time and probability of punishing agent i remainsunchanged. O

Proof of Theorem 5.3. Consider a strategy profile where punishment is performed after
k2 unanswered queries from n, and consider a configuration « for which an equilibrium
exists. Since an equilibrium exists,

ignr_loss, (w, k2, n, best_cases (k2,n)) > 04 +capa.
Now consider k1 = k2 — x. According to Lemma5.6,
ignr_loss, (w, k, n, best_casey (k, n))
> ignr_loss, (w, k + 1, n, best_cases (k + 1, n)).
By transitivity, also

ignr_loss, (w, k, n, best_case, (k, n))

> ignr_IOSSA(w, k+ x,n,best_case,(k + x, n)).

ignr_loss, (w, k1, n, best_cases (k1,n)) > ignr_loss, (w, k2, n, best_cases (k2, n)).

Thus, ignr_loss, (w, k1, n, best_cases (k1,n)) > 0a/pa +ca.
Symmetrically, for agent B, we can also prove that if

ignr_lossg (a) k2, n,best_caseg(k2, n)) >o0p+cppB

then
. OB
ignr_lossg (w, k1, n, best_casep (k1,n)) > — + cp.
PB

Combining these two properties, the conclusion is that if an equilibrium exists for k2, it
will dsoexistfor k1l < k2. O
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