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We show for all n /∈ {1,2,4} that there exists a latin square of order
n that contains two entries γ1 and γ2 such that there are some
transversals through γ1 but they all include γ2 as well. We use this
result to show that if n > 6 and n is not of the form 2p for a prime
p � 11 then there exists a latin square of order n that possesses an
orthogonal mate but is not in any triple of MOLS. Such examples
provide pairs of 2-maxMOLS.
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1. Introduction

A latin square of order n is an n × n array in which each one of n symbols appears exactly once in
each row and exactly once in each column. Two latin squares A = [aij] and B = [bij] are orthogonal if
(aij,bij) �= (ai′ j′ ,bi′ j′ ) whenever i �= i′ or j �= j′ . A set of MOLS (mutually orthogonal latin squares) is a
set of latin squares in which each pair is orthogonal. A transversal of a latin square of order n is a set
of n entries containing no pair of entries that share a row, column or symbol. If two latin squares are
orthogonal then the set of cells occupied by a fixed entry in one defines a transversal in the other.
Further background and terminology of latin squares can be found in [2].

A set of k-maxMOLS(n) is a set of k MOLS of order n that is maximal in the sense that it is not
contained in any set of k + 1 MOLS. A bachelor latin square is a latin square which has no orthogonal
mate; or equivalently, is a latin square with no decomposition into disjoint transversals. We define a
monogamous latin square to be a latin square that has an orthogonal mate, but is in no triple of MOLS.
Thus, a monogamous latin square and its orthogonal mate are a pair of 2-maxMOLS.
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The main purpose of this paper is to study the existence of monogamous latin squares and thereby
prove the existence of a pair of 2-maxMOLS for many new orders. In Section 5 we prove the following
result.

Theorem 1.1. For each order n > 6 there exists a pair of 2-maxMOLS(n) except possibly when n = 2p for
some prime p � 11.

It is well known (see e.g. [4]) that there does not exist a pair of 2-maxMOLS of order n ∈
{1,2,4,5,6}. We conjecture that these are the only orders for which a pair of 2-maxMOLS does
not exist. The only orders less than 100 for which existence now remains in doubt are n ∈ {22,26,34,

38,58,62,74,86,94}.
The study of “bachelor squares” dates back to Euler. However, the name [12] and the four distinct

proofs [6,9,10,13] of their existence for all orders � 4, are comparatively recent.
Drake [4] showed that a pair of 2-maxMOLS exists for all orders �= 6 that are 3 or 6 mod 9. Drake,

van Rees and Wallis [5] showed that a pair of 2-maxMOLS exists for all orders that are one less than
a power of two, as well as all orders that are 1 mod 9, 7 mod 9 or 11 mod 18.

2. Notation

Suppose that L is a latin square of order n. We will index the rows, columns and symbols of L with
an abelian group G of order n, called the index group of L. We shall take G = Zp1 × Zp2 × · · · × Zpt

where p1, p2, . . . , pt are positive integers (typically, but not necessarily, primes). To save clutter, an
element (a1,a2, . . . ,at) of G will sometimes be written simply as a1a2 · · ·at . We define an order ≺
on the elements of G by saying that a1a2 · · ·at ≺ b1b2 · · ·bt iff a j < b j where j = max{i: ai �= bi} and
a j,b j are taken to be the least non-negative integers representing their congruence class modulo p j .
Whenever we write a latin square the rows and columns will be listed in increasing order of their in-
dices under ≺. When specifying an orthogonal mate M for a latin square L we will always assume the
rows and columns of M are indexed by the index group of L. However, in the interests of readability
we will use letters for the symbols in M rather than elements of the index group.

We let L[x, y] denote the symbol in row x and column y of a latin square L. It will prove conve-
nient to think of a latin square of order n as a set of n2 triples, or entries, of the form (x, y, L[x, y]). Let
�x = (x1, x2, . . . , xt), �y = (y1, y2, . . . , yt) and �z = (z1, z2, . . . , zt) denote elements of G . For i = 1,2 . . . , t ,
we define a function �i : L �→ Zpi which on an entry (�x, �y, �z) of L evaluates to

�i(�x, �y, �z) = xi + yi − zi mod pi .

We define δi = δi(G) by

δi =
{

1
2 pi if pi is even and n/pi is odd,

0 otherwise.

The following simple lemma is crucial to our work, just as related results have been in [1,6–10,13].

Lemma 2.1. The sum of the �i values over the elements of a transversal T of a latin square indexed by G is∑
e∈T

�i(e) = δi .

Proof. A transversal, by definition, comprises one entry from each row, one entry from each column,
and one entry containing each symbol. Hence in Zpi ,

∑
e∈T

�i(e) = n

pi

∑
g∈Zpi

g + n

pi

∑
g∈Zpi

g − n

pi

∑
g∈Zpi

g = n

pi

pi−1∑
j=0

j = n(pi − 1)

2
= δi . �

For any latin square L, let �∗
i = {e ∈ L : �i(e) �= 0}. Let Si be the set of subsets T of �∗

i satisfying:
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(D1) If (x1, y1, z1) ∈ T and (x2, y2, z2) ∈ T then x1 �= x2, y1 �= y2 and z1 �= z2.
(D2)

∑
e∈T �i(e) = δi .

Sets of entries which satisfy (D1) will be called independent. By Lemma 2.1 each transversal of L
intersects �∗

i in an element of Si .
We say a latin square L is �i -crimped if there exist entries γ1, γ2 ∈ L such that:

(C1) There is at least one transversal of L that includes γ1.
(C2) There is no T ∈ Si for which γ1 ∈ T but γ2 /∈ T .

Condition (C2) ensures that every transversal through γ1 also includes γ2. Condition (C1) ensures that
(C2) is not vacuously true. Without condition (C1) the definition would be uninteresting. It is known
[6,9,13] that for every order n � 4 there exists a latin square containing an entry γ1 for which there
is no T ∈ Si with γ1 ∈ T .

We say a latin square is �-crimped if there is some i for which it is �i -crimped.

Example 2.1. The latin square L10 below, indexed by Z5 × Z2, is �1-crimped, with γ1 = (00,00,20)

and γ2 = (20,40,40) shaded.

L10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 00 40 30 10 01 11 21 31 41
10 20 30 40 00 11 21 31 41 01
00 30 20 10 40 21 31 41 01 11
30 40 10 00 21 31 41 01 11 20
40 10 00 21 31 41 01 11 20 30

01 11 21 31 41 00 10 20 30 40
11 21 31 41 01 10 20 30 40 00
21 31 41 01 11 20 30 40 00 10
31 41 01 11 20 30 40 00 10 21
41 01 11 20 30 40 00 10 21 31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L′
10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f g h i j
g d a h i e b j f c
c h e f a i d g j b
f g b j d a h e c i
i j f c h b a d g e

h a j e c g i f b d
j f g a b d c i e h
e c i g f h j b d a
b e d i j c f a h g
d i h b g j e c a f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The square L′
10 is orthogonal to L10.

In L10 we have marked in bold all entries that are in �∗
i for some i. This practice will be adopted

in all subsequent examples.

Theorem 2.2. Every �-crimped latin square is either monogamous or a bachelor.

Proof. Let L be a latin square that is �i -crimped for some i, and let γ1 = (e1, e2, e3) and γ2 =
( f1, f2, f3) be the two entries satisfying (C1) and (C2) in the definition of �i -crimped. Suppose that
L is orthogonal to latin squares A and B . Since A is orthogonal to L, we can locate a transversal of L
by taking the cells in L that correspond to occurrences of the symbol A[e1, e2] in A. This transversal
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includes γ1 and hence also γ2, by (C2). But now our method for choosing the transversal shows that
A[e1, e2] = A[ f1, f2]. Similarly B[e1, e2] = B[ f1, f2], which by definition then means that A and B are
not orthogonal. Thus L cannot be in any triple of MOLS. �
Corollary 2.3. If there exists a monogamous �-crimped latin square of order n then there exists a pair of
2-maxMOLS(n).

For instance, in Example 2.1 we gave an orthogonal mate L′
10 for a �-crimped latin square L10.

We now see that L10 must be monogamous and that {L10, L′
10} is a pair of 2-maxMOLS(10).

In this context we state one of the major results of this paper, which will be proved in Section 5.

Theorem 2.4. There exists a �-crimped latin square of order n for every positive integer n /∈ {1,2,4}.

3. Monogamous crimped squares of odd order

Having demonstrated, in Corollary 2.3, the potential usefulness of monogamous �-crimped latin
squares, we now pursue the question of their existence. In this section, we answer that question for
all odd orders. We begin by defining a latin square Cn of odd order n > 1, indexed by Zn . We separate
into three cases.

Case 0: n ≡ 0 (mod 3). Let n = 3k and define

Cn[i, j] =
{ i + j + k i = 0 and j ∈ {0,k,2k},

i + j − k i = k and j ∈ {0,k,2k},
i + j otherwise.

Case 1: n ≡ 1 (mod 3). Let n = 3k + 1 and define

Cn[i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + j + k i = 0 and j ∈ {0,k,2k},
i + j − k i = k and j ∈ {0,k,2k},
i + j + 1 = 0 i = n − j − 1 and n − k � j < n,

i + j − 1 = −1 i = n − j and n − k � j < n,

i + j otherwise.

Case 2: n ≡ 2 (mod 3). Let n = 3k − 1 and define

Cn[i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + j + k i = 0 and j ∈ {0,k,2k},
i + j − k i = k and j ∈ {0,k,2k},
i + j + 1 = 1 i = n − j and 1 � j � n − k,

i + j − 1 = 0 i = n − j + 1 and 1 � j � n − k,

i + j otherwise.

Lemma 3.1. Cn is a �-crimped latin square for every odd n > 1.

Proof. Let k = �(n + 1)/3�, γ1 = (0,0,k) and γ2 = (k,2k,2k), so that �1(γ1) = −k and �1(γ2) = k. It
is easy to check that in C3 the only entry in �∗

1 that is independent of γ1 is γ2, and hence the result
holds for n = 3.

We now assume n � 5 and thus 2 � k � n − 2. The entries in �∗
1 all have �1 values in {±1,±k}.

The only entry that is independent of γ1 and has �1 value in {±k} is γ2. All the entries which have
�1 value equal to 1 share the same symbol, and the same is true of those with �1 value −1. Hence
any independent set of entries can contain at most one of each. Thus, since the sum of �i values in
a transversal of Cn is 0 by Lemma 2.1, there is no T ∈ S1 for which γ1 ∈ T but γ2 /∈ T .

Thus we have shown that Cn satisfies condition (C2). It remains to construct a transversal
through γ1. Naturally, we include γ1 and γ2 in our transversal. Then in all rows i /∈ {0,k} we take
the entry in cell (i,2k − 2i). Given that n is odd, it is routine to check that these choices produce a
transversal. �
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Table 1
Five special diagonals when n = 3k + 1.

0 k − 1 k 2k 3k

0,0∗ 0, k − 1 0,k∗ 0,2k 0,3k∗

1,k − 1∗ j − 1,k 1,3k 1,2k j − 1,0

j,k i,0 j,2k j,k − 1 i,3k

i + 1,2k 1
2 k − 1,0 : 3k i + 1,3k i + 1,k − 1 1

2 k − 1,k : 0
1
2 k,0 : 2k 1

2 k,k : 0 1
2 k,2k : k − 1 1

2 k,3k 1
2 k,k − 1 : k

1
2 k + 1,3k : 0 k − i − 1,k − 1 1

2 k + 1,2k : 3k 1
2 k + 1,k 1

2 k + 1,0 : k − 1

k − i,k − 1 k − j,2k k − i,3k k − i,k k − i,0

k − j + 1,3k k − 1,k − 1∗ k − j + 1,0 k − j + 1,k k − j + 1,2k

k,k − 1 k,0∗ k,3k∗ k,k∗ k,2k

k + 1,2k k + 1,3k k + 1,k k + 1,0 k + 1,k − 1

k + j,0 k + j,k k + j,2k k + j,k − 1 k + j,3k

k + i + 1,k k + i + 1,3k k + i + 1,0 k + i + 1,k − 1 k + i + 1,2k
3
2 k,3k : 0 3

2 k,0 : k − 1 3
2 k,2k : 3k 3

2 k,k 3
2 k,k − 1 : 2k

3
2 k + 1,0 : k 3

2 k + 1,2k : 0 3
2 k + 1,k : 3k 3

2 k + 1,k − 1 3
2 k + 1,3k : 2k

2k − i,2k 2k − i,k − 1 2k − i,3k 2k − i,k 2k − i,0

2k − j + 1,k − 1 2k − j + 1,0 2k − j + 1,2k 2k − j + 1,k 2k − j + 1,3k

2k,2k 2k,3k 2k,k 2k,0 2k,k − 1

2k + 1,3k 2k + 1,k 2k + 1,k − 1 2k + 1,0 2k + 1,2k

2k + 2,k 2k + j,2k 2k + j,3k 2k + j,k − 1 2k + j,0

2k + j + 1,3k 2k + i + 1,k 2k + i + 1,0 2k + i + 1,k − 1 2k + i + 1,2k

2k + i + 2,k 5
2 k,2k : 0 5

2 k,0 : k 5
2 k,k − 1 5

2 k,3k : 2k
5
2 k + 1,k − 1 : 0 5

2 k + 1,0 : 3k 5
2 k + 1,k : k − 1 5

2 k + 1,2k 5
2 k + 1,3k : k

5
2 k + 2,0 : 2k 3k − i,3k 5

2 k + 2,k − 1 : 0 3k − i,k 3k − i,2k

3k − i + 1,0 3k − j + 1,k − 1 3k − i + 1,2k 3k − j + 1,k 3k − j + 1,3k

3k − j + 2,k − 1 3k,k 3k − j + 2,0 3k,3k 3k,2k

Lemma 3.2. Cn is a monogamous latin square for odd n � 3 except n ∈ {5,7}.

Proof. By Theorem 2.2 and Lemma 3.1 it suffices to exhibit an orthogonal mate Mn for Cn . All calcu-
lations of indices will be in Zn . We treat three cases. In each case we leave it to the reader to perform
the (routine but laborious) check that Mn is orthogonal to Cn .

Case: n = 3k. We let

Mn[i, j] ≡
{

i + j − k if i ∈ {0,k} and j ∈ {0,k,2k},
2i + j otherwise.

Case: n = 3k + 1. We let Mn[i, j] ≡ 2i + j mod n unless 2i + j ∈ {0,k − 1,k,2k,3k}. For the remaining
entries we refer to Table 1. Each column of that table specifies the entries for the case when 2i + j
is the value at the head of the column. An entry x, y in column z means that M[x, z − 2x] = y. An
entry x, y1 : y2 in column z means that M[x, z − 2x] = y1 if k ≡ 0 mod 4 and M[x, z − 2x] = y2 if
k ≡ 2 mod 4. An asterisk ∗ on an entry means that the corresponding entry in Cn has non-zero �1
value. Finally, we note that the parameter i takes all values in {2,4,6, . . . ,2�k/4� − 2} and parameter
j takes all values in {2,4,6, . . . ,2
k/4� − 2}.

Case: n = 3k − 1. This case works very similarly to the previous case. We let Mn[i, j] ≡ 2i + j mod n
unless 2i + j ∈ {0,1,k,k + 1,2k}. All other entries are provided by Table 2, using the same format as
was used in Table 1. �

From the above results, it is a short step to:



P. Danziger et al. / Journal of Combinatorial Theory, Series A 118 (2011) 796–807 801
Table 2
Five special diagonals when n = 3k − 1.

0 1 k k + 1 2k

0,0∗ 0,1∗ 0,k∗ 0,k + 1 0,2k∗

j − 1,0 1,2k j − 1,1 1,k + 1 1,k

i,2k j,1 i,0 j,k j,k + 1
1
2 k − 1,1 : 0 i + 1,k 1

2 k − 1,0 : 2k i + 1,2k i + 1,k + 1
1
2 k,0 : 2k 1

2 k,k + 1 : k 1
2 k,2k : k + 1 1

2 k,k : 0 1
2 k,1

k − i − 1,1 1
2 k + 1,k + 1 : 0 k − i − 1,k 1

2 k + 1,0 : k k − i − 1,2k

k − j,k + 1 k − i,k k − j,1 k − i,0 k − j,2k

k − 1,2k k − j + 1,0 k − 1,k k − j + 1,k + 1 k − 1,1

k,1 k,2k∗ k,k + 1∗ k,0∗ k,k∗

k + j − 1,2k k + j − 1,0 k + j − 1,k k + 1,1∗ k + j − 1,k + 1

k + i,k k + i,1 k + i,0 k + j,2k k + i,k + 1
3
2 k − 1,0 : k 3

2 k − 1,2k : 0 3
2 k − 1,k : 1 k + i + 1,1 3

2 k − 1,k + 1
3
2 k,k : 0 3

2 k,k + 1 : 2k 3
2 k,2k : k 3

2 k,0 : k + 1 3
2 k,1

2k − i − 1,k + 1 2k − i − 1,1 2k − i − 1,0 2k − i − 1,k 2k − i − 1,2k

2k − j,0 2k − j,k 2k − j,1 2k − j,k + 1 2k − j,2k

2k − 1,1 2k − 1,2k 2k − 1,k + 1 2k − 1,k 2k − 1,0∗

2k,2k 2k,k 2k,k + 1 2k,1 2k,0∗

2k + j − 1,1 2k + j − 1,0 2k + j − 1,k 2k + j − 1,2k 2k + j − 1,k + 1

2k + i,2k 2k + i,k 2k + i,1 2k + i,0 2k + i,k + 1
5
2 k − 1,k + 1 : 0 5

2 k − 1,1 : k 5
2 k − 1,k : k + 1 5

2 k − 1,0 : 1 5
2 k − 1,2k

3k − i − 2,k + 1 5
2 k,k : 2k 5

2 k,0 : k + 1 5
2 k,2k : 0 5

2 k,1

3k − j − 1,k 3k − i − 1,1 3k − i − 1,0 3k − i − 1,k + 1 3k − i − 1,2k

3k,k + 1∗ 3k − j,0 3k − j,k 3k − j,1 3k − j,2k

Theorem 3.3. There exists a monogamous �-crimped latin square of odd order n if and only if n = 3 or n � 7.

Proof. For n = 7 the square L7 below is �-crimped, with index group Z7 and γ1 = (5,5,1) and
γ2 = (4,3,2) shaded. It has an orthogonal mate L′

7.

L7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6
1 2 0 4 5 6 3
2 3 4 5 6 0 1
3 4 1 6 0 2 5
4 5 6 2 1 3 0
5 6 3 0 2 1 4
6 0 5 1 3 4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L′
7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f g
g d e f b c a
e f g c a b d
c a f b d g e
b g d a c e f
d e b g f a c
f c a e g d b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For n = 3 and odd n > 7 we can use Cn by Lemma 3.1 and Lemma 3.2. It only remains to note that
there are no monogamous latin squares of order n ∈ {1,5}. All latin squares of order 5 are either
bachelors or are contained in a set of 4 MOLS. �
4. A product construction

In this section we give a product construction that allows us to build larger crimped squares from
smaller ones.

Let A and B be latin squares both indexed by a group G1 = Zp1 × Zp2 × · · · × Zpt and let C be a
latin square indexed by an arbitrary abelian group G2 in which the identity is ε. We define a latin
square indexed by G1 × G2 and denoted A ↪→ B × C by

A ↪→ B × C
[
(x1, y1), (x2, y2)

] =
{

(A[x1, x2], C[y1, y2]) if y1 = y2 = ε,

(B[x , x ], C[y , y ]) otherwise.
1 2 1 2
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Lemma 4.1. Suppose that

1. A is �i -crimped,
2. �i is uniformly zero on B,
3. B has a transversal,
4. C has a transversal that includes the cell [ε, ε],
5. pi is odd or |G2| is odd or |G1|/pi is even.

Then A ↪→ B × C is �i -crimped.

Proof. Let M = A ↪→ B × C . Condition 5 ensures that δi(G1 × G2) = δi(G1). We now argue that M
is �i -crimped. By assumption A is �i -crimped, so there exist γ1 = (e1, e2, e3) and γ2 = ( f1, f2, f3)

satisfying (C1) and (C2). Let

γ̄1 = (
(e1, ε), (e2, ε), (e3, C[ε, ε])) and γ̄2 = (

( f1, ε), ( f2, ε), ( f3, C[ε, ε])).
Let �∗

i , �̄∗
i be respectively the sets of entries of A and M with non-zero �i values. Condition 2

means that there is a bijection from �∗
i to �̄∗

i given by (x, y, z) �→ ((x, ε), (y, ε), (z, C[ε, ε])). This
map preserves �i , so it is not hard to see that γ̄1 and γ̄2 satisfy (C2).

We next argue that (C1) is satisfied. By Condition 4, there exists a transversal, say {(i, yi, zi): i ∈ G2}
in C , where yε = ε. We can then form a transversal of M by taking the union of transversals of each
of the latin subsquares

Si = {(
(a, i), (b, yi), (c, zi)

) ∈ M: a,b, c ∈ G1
}

for i ∈ G2. Note that Sε is a copy of A and we may choose the transversal in it to include γ̄1 and γ̄2.
If i �= ε then Si is a copy of B , which has a transversal by Condition 3. Further, this transversal has all
�i values equal to 0 by Condition 2. Hence M satisfies (C1), and is �i -crimped. �
Example 4.1. The latin square C5 ↪→ Z5 × (Z2 × Z2) is �-crimped by Lemma 3.1 and Lemma 4.1. To
show that it is monogamous we provide the following orthogonal mate:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p m q l s a b c d e k n r t o f g h i j
o r n t k e a b c d p l s m q j f g h i
q t s r p d e a b c m o k n l i j f g h
s k m n q c d e a b l r t o p h i j f g
l n r k o b c d e a t p q s m g h i j f

f g h i j l p t r m a b c d e o s k n q
j f g h i k l q o t e a b c d m n r p s
i j f g h o m n p q d e a b c t k s l r
h i j f g p r s t n c d e a b q l m k o
g h i j f s o l m k b c d e a n r t q p

a b c d e r s p k o f g h i j l m q t n
e a b c d n k o q s j f g h i r p l m t
d e a b c m t r n p i j f g h k q o s l
c d e a b q n k l r h i j f g s t p o m
b c d e a t q m s l g h i j f p o n r k

t q o m l f g h i j r s n p k a b c d e
k l p s m j f g h i q t o r n e a b c d
n s k p r i j f g h o m l q t d e a b c
r p l o t h i j f g n q m k s c d e a b
m o t q n g h i j f s k p l r b c d e a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Our next construction will rely on ‘turning intercalates’. That is, we replace some 2 × 2 subsquares
by the other possible subsquare on the same symbols, like so:

a b
b a

−→ b a
a b

.

Suppose n = 2h for odd h � 7. We define a latin square Dn of order n indexed by Zh × Z2, by turning
some intercalates in Ch ↪→ Zh × Z2. Specifically,

Dn
[
(a1,b1), (a2,b2)

]

=

⎧⎪⎨
⎪⎩

(a1 + a2,b1 + b2 + 1) if a1 = h − 2 and a2 = 2k + 2 or
a1 = h − 1 and 2k − h−7

2 � a2 � 2k + 2,

(Ch[a1,a2],0) if b1 = b2 = 0 and not defined above,
(a1 + a2,b1 + b2) otherwise,

where k = �(h + 1)/3�.

Lemma 4.2. For any odd h � 3 there exists a �-crimped latin square of order 2h.

Proof. Let n = 2h. For n = 6 the following square indexed by Z6 is �-crimped, with γ1 = (1,5,4) and
γ2 = (0,0,5). A transversal through these two entries is shaded. This square is the member Q 6 of an
infinite family of latin squares studied in [1] and [7].⎛

⎜⎜⎜⎜⎜⎜⎝

5 1 2 3 4 0
1 0 3 2 5 4
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
0 2 1 4 3 5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For n = 10 we have Example 2.1. So it suffices to show Dn is �-crimped for n � 14. Property (C2) is
inherited from Ch (by an argument similar to that in the proof of Lemma 4.1) so it suffices to find a
transversal to demonstrate (C1). Let k = �(h + 1)/3�. The following set of cells defines a transversal
that does the job:{[

(0,0), (0,0)
]
,
[
(k,0), (2k,0)

]
,[

(i,0), (2k − 2i,0)
]

for i = 1, . . . ,k − 1,[
(i,0), (h + 2k + 1 − 2i,1)

]
for i = k + 1, . . . ,k + 1 + 1

2
(h − 1),

[
(i,0), (2h + 2k + 1 − 2i,0)

]
for i = k + 2 + 1

2
(h − 1), . . . ,h − 1,[

(i,1), (2k + 1 − 2i,0)
]

for i = 0, . . . ,k,[
(i,1), (h + 2k − 2i,1)

]
for i = k + 1, . . . ,k + 1

2
(h − 1),

[
(i,1), (2h + 2k − 2i,0)

]
for i = k + 1 + 1

2
(h − 1), . . . ,h − 1

}
. �

Example 4.2. It is easy to show with Lemma 2.1 that C7 and D14 are bachelors. However, a monoga-
mous �-crimped latin square of order 14 can be found by turning some intercalates in L7 ↪→ Z7 ×Z2,
where L7 is given in the proof of Theorem 3.3. Here is such an example, with an orthogonal mate
specified by the subscripted letters.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 f 11c 20a 30i 40 j 50k 60l 00g 10d 21h 31e 41b 51m 61n
11i 21m 00c 40a 50b 60g 30e 10 j 20k 31n 41d 51l 61 f 01h
20d 30k 40h 50l 60e 00n 10a 21b 31m 41i 51 j 61g 01c 11 f
30n 40l 10g 60 j 00d 20m 50c 31 f 41h 51b 61i 01k 11e 21a
40k 50d 60n 20h 10i 30 f 00b 41l 51e 61a 01g 11m 21 j 31c
50a 60i 30b 00m 20c 10h 40 f 51k 61 j 01e 11n 21d 31l 41g
60b 00 j 50e 10 f 30m 40i 20g 61c 01n 11l 21k 31h 41a 51d

00h 10e 21 f 31k 41n 51a 61d 01i 11b 20 j 30l 40c 50g 60m
10l 20n 31d 41c 51 f 61e 01m 11a 21i 30g 40b 50 j 60h 00k
21g 31a 41m 51n 61k 01l 11 j 20e 30c 40d 50h 60 f 00i 10b
31 j 41 f 51i 61b 01a 11d 21n 30h 40g 50m 60c 00e 10k 20l
41e 51g 61l 01d 11h 21c 31i 40m 50 f 60k 00a 10n 20b 30 j
51c 61h 01 j 11g 21l 31b 41k 50n 60a 00 f 10m 20i 30d 40e
61m 01b 11k 21e 31g 41 j 51h 60d 00l 10c 20 f 30a 40n 50i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We say that an abelian group G possesses an orthogonal mate if there is a latin square orthogonal
to the Cayley table of G . A finite abelian group possesses an orthogonal mate unless it is isomorphic
to the direct sum of cyclic groups of which exactly one has even order (see e.g. [2]).

Theorem 4.3. Suppose L is a monogamous �-crimped latin square of order n, indexed by an abelian group G
that possesses an orthogonal mate. Then for any integer m � 3 there exists a monogamous �-crimped latin
square of order nm.

Proof. We first treat the case when m �= 6. In this case there exists a pair (A, A′) of MOLS of order m.
We use Zm to index A and A′ . By assumption, L has an orthogonal mate L′ and there exists a latin
square G ′ orthogonal to G . Define a pair (M, M ′) of latin squares of order mn, indexed by G × Zm ,
by M = L ↪→ G × A and M ′ = L′ ↪→ G ′ × A′ . It is routine to check that (M, M ′) are orthogonal, and
Lemma 4.1 tells us that M is �-crimped.

Finally, we treat the case when m = 6. If n > 3 then nm = 3k for some k > 6 so the existence of
a monogamous �-crimped latin square of order nm is guaranteed by the m �= 6 case treated above,
given that there is a monogamous �-crimped latin square of order 3, by Theorem 3.3. If n = 3 then
nm = 18 and we use D18, which we proved to be �-crimped in Lemma 4.2. To see that D18 is
monogamous, we provide the following orthogonal mate:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r b i q j c p d a k f l e h g m n o
c n j k r a l b g p h m d e f o i q
d i r e k o m h j n p f l b a q g c
q m f p h i r o l a b k n d e c j g
g p d i f m a j c q r o h k l e b n
i o q g c k e n f h l r b j m p d a
f e h r m p b q n j g a o l k i c d
a d l n o q h k e f j b g i c r m p
e j g b l n f c p d m i q r o a h k

n h c l e b k m r o i q f a d g p j
b r k m n h c p d l a g i q j f o e
m q o a i e n r k g d p j c b l f h
j k p d q l i a o e c h m g n b r f
l c a j g f q e h b o n r p i d k m
o g b c p r d f i m e j k n q h a l
p l m h d j o g q i n c a f r k e b
k f e o a g j i b c q d p m h n l r
h a n f b d g l m r k e c o p j q i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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If n < 3 there is no L that satisfies the hypothesis of the theorem. �
Corollary 4.4. For any positive integer n ≡ 0 mod 8 there exists a monogamous �-crimped latin square of
order n.

Proof. The square L8 below, indexed by Z4 × Z2, is �1-crimped on the shaded entries γ1 =
(01,00,11) and γ2 = (31,10,31). It is orthogonal to L′

8. Thus, by Theorem 4.3 there are monoga-
mous �-crimped latin squares for all orders which are divisible by 8, except possibly 16.

L8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 10 20 30 01 11 21 31
10 20 30 00 11 21 31 01
20 30 00 10 21 31 01 11
30 00 10 20 31 01 11 21

11 01 21 31 00 30 20 10
01 21 31 11 10 20 30 00
31 11 01 21 20 10 00 30
21 31 11 01 30 00 10 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L′
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d f g a b e h c
h b f g c d e a
c h b e a g d f
e c a d f h g b

a g c h e b f d
f e d b g a c h
b d e f h c a g
g a h c d f b e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

An example of order 16 is L8 ↪→ (Z4 × Z2) × Z2, which has the following orthogonal mate:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j h a f k l d m g p o e c i b n
o i b l f m a j e c g p n h k d
d n m p c b l o f k a i j g e h
g f l o d e n k a h j m i b c p

k p f c b a g e i l m h o d n j
h j g e m c i n p d f o a k l b
e a d h n i c p o b k j g m f l
p k j i o g b h l f e n d c m a

m g h n l k e a d j b c f p i o
n l i d a f p g c e h k b o j m
i b n k g d h f j m p a e l o c
f e c b j n m i k o d l p a h g

a d k m i o j c b g l f h n p e
b c e j h p o l m a n g k f d i
l o p g e h k b n i c d m j a f
c m o a p j f d h n i b l e g k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, L8 ↪→ (Z4 × Z2) × Z2 is �1-crimped. Condition (C2) can be seen as per the proof of
Lemma 4.1, and condition (C1) is immediate from the existence of an orthogonal mate. �

A turn-square, with underlying group G , is a latin square created from the Cayley table of G by
turning some of the intercalates. For orders n ≡ 2 mod 4, where no group has a transversal (or an
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orthogonal mate), turn-squares are a convenient way to produce squares with many transversals [11]
and many orthogonal mates [3]. Unsurprisingly then, turn-squares are useful for n ≡ 2 mod 4, where
Theorem 4.3 does not apply.

Theorem 4.5. Let G = Zh ×Z2 for some odd h � 5. Let T be a turn-square with underlying group G, such that
T possesses an orthogonal mate. Let L be a monogamous �1-crimped latin square that is indexed by G. Then
for any integer m � 3 there exists a monogamous �-crimped latin square of order 2hm.

Proof. The proof is similar to that for Theorem 4.3. The m = 6 case is handled the same way, by
writing 2hm = 3 × 4h. For m �= 6 we again use a pair (A, A′) of MOLS of order m. Define M = L ↪→
T × A and M ′ = L′ ↪→ T ′ × A′ where L′ and T ′ are orthogonal mates for L and T respectively. Then
M and M ′ are orthogonal. Moreover, M is �1-crimped by Lemma 4.1, given that �1 is uniformly zero
on T . �

It seems likely that for all odd h � 5 there exists a turn-square with underlying group Zh × Z2,
and which has an orthogonal mate. This is certainly true [11] for h ∈ {5,7}. The only case in which
we need Theorem 4.5 in the present paper is the following example.

Example 4.3. A monogamous �-crimped latin square of order 50 can be found by applying Theo-
rem 4.5 with h = m = 5 and L = L10 as given in Example 2.1.

5. The main results

We are now in a position to draw the threads together and prove our main results.

Theorem 5.1. There exists a monogamous �-crimped latin square for any order n > 6 not of the form 2p for a
prime p � 11.

Proof. Corollary 4.4 handles n ≡ 0 mod 8 and Theorem 3.3 takes care of all odd orders. The cases n ∈
{10,14,20,50} are solved by Examples 2.1, 4.1, 4.2 and 4.3. Every other order n under consideration
can be written as n = ab for b > 2 and odd a /∈ {1,5}. By Theorem 3.3 there exists a monogamous �-
crimped latin square of order a. Furthermore, this square is indexed by Za , which has an orthogonal
mate, so the result follows by Theorem 4.3. �

Corollary 2.3 and Theorem 5.1 together imply Theorem 1.1. Our other main result, Theorem 2.4,
is that �-crimped latin squares exist for all orders n /∈ {1,2,4}. This follows for odd orders from
Lemma 3.1 and for orders that are 2 mod 4 from Lemma 4.2. All remaining cases are shown by Theo-
rem 5.1.

To summarise: we have introduced the notion of a crimped latin square, which is one that contains
an entry γ1 that is in some transversal, but all transversals through γ1 also include another specific
entry γ2. Using a product construction, we have shown (Theorem 2.4) that crimped latin squares exist
for all orders n /∈ {1,2,4}. A crimped latin square cannot be in any triple of MOLS. Thus if it has an
orthogonal mate then together with that mate it forms a pair of 2-maxMOLS, a maximal set of 2
MOLS. By this means we have shown (Theorem 1.1) that a pair of 2-maxMOLS exist for all orders
n /∈ {1,2,4,5,6} except possibly if n = 2p for some prime p � 11.
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