Journal of Combinatorial Theory, Series A 118 (2011) 796-807

Journal of Combinatorial Theory, Series A

Contents lists available at ScienceDirect

Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

Monogamous latin squares

Peter Danziger^{a,1}, Ian M. Wanless^{b,2}, Bridget S. Webb^c

^a Department of Mathematics, Ryerson University, Toronto, M5B 2K3, Canada

^b School of Mathematical Sciences, Monash University, Vic 3800, Australia

^c The Open University, Milton Keynes, MK7 6AA, United Kingdom

ARTICLE INFO

Article history: Received 15 February 2010 Available online 3 December 2010

Keywords: Latin square Monogamous square MOLS maxMOLS Transversal

ABSTRACT

We show for all $n \notin \{1, 2, 4\}$ that there exists a latin square of order n that contains two entries γ_1 and γ_2 such that there are some transversals through γ_1 but they all include γ_2 as well. We use this result to show that if n > 6 and n is not of the form 2p for a prime $p \ge 11$ then there exists a latin square of order n that possesses an orthogonal mate but is not in any triple of MOLS. Such examples provide pairs of 2-maxMOLS.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A latin square of order *n* is an $n \times n$ array in which each one of *n* symbols appears exactly once in each row and exactly once in each column. Two latin squares $A = [a_{ij}]$ and $B = [b_{ij}]$ are orthogonal if $(a_{ij}, b_{ij}) \neq (a_{i'j'}, b_{i'j'})$ whenever $i \neq i'$ or $j \neq j'$. A set of MOLS (mutually orthogonal latin squares) is a set of latin squares in which each pair is orthogonal. A *transversal* of a latin square of order *n* is a set of *n* entries containing no pair of entries that share a row, column or symbol. If two latin squares are orthogonal then the set of cells occupied by a fixed entry in one defines a transversal in the other. Further background and terminology of latin squares can be found in [2].

A set of k-maxMOLS(n) is a set of k MOLS of order n that is maximal in the sense that it is not contained in any set of k + 1 MOLS. A bachelor latin square is a latin square which has no orthogonal mate; or equivalently, is a latin square with no decomposition into disjoint transversals. We define a monogamous latin square to be a latin square that has an orthogonal mate, but is in no triple of MOLS. Thus, a monogamous latin square and its orthogonal mate are a pair of 2-maxMOLS.

0097-3165/\$ – see front matter @ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2010.11.011

E-mail addresses: danziger@ryerson.ca (P. Danziger), ian.wanless@sci.monash.edu.au (I.M. Wanless), b.s.webb@open.ac.uk (B.S. Webb).

¹ Research supported by NSERC grant OGP0170220.

² Research supported by ARC grants DP0662946 and DP1093320.

The main purpose of this paper is to study the existence of monogamous latin squares and thereby prove the existence of a pair of 2-maxMOLS for many new orders. In Section 5 we prove the following result.

Theorem 1.1. For each order n > 6 there exists a pair of 2-maxMOLS(n) except possibly when n = 2p for some prime $p \ge 11$.

It is well known (see e.g. [4]) that there does not exist a pair of 2-maxMOLS of order $n \in \{1, 2, 4, 5, 6\}$. We conjecture that these are the only orders for which a pair of 2-maxMOLS does not exist. The only orders less than 100 for which existence now remains in doubt are $n \in \{22, 26, 34, 38, 58, 62, 74, 86, 94\}$.

The study of "bachelor squares" dates back to Euler. However, the name [12] and the four distinct proofs [6,9,10,13] of their existence for all orders ≥ 4 , are comparatively recent.

Drake [4] showed that a pair of 2-maxMOLS exists for all orders $\neq 6$ that are 3 or 6 mod 9. Drake, van Rees and Wallis [5] showed that a pair of 2-maxMOLS exists for all orders that are one less than a power of two, as well as all orders that are 1 mod 9, 7 mod 9 or 11 mod 18.

2. Notation

Suppose that *L* is a latin square of order *n*. We will index the rows, columns and symbols of *L* with an abelian group *G* of order *n*, called the *index group* of *L*. We shall take $G = \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_t}$ where p_1, p_2, \ldots, p_t are positive integers (typically, but not necessarily, primes). To save clutter, an element (a_1, a_2, \ldots, a_t) of *G* will sometimes be written simply as $a_1a_2 \cdots a_t$. We define an order \prec on the elements of *G* by saying that $a_1a_2 \cdots a_t \prec b_1b_2 \cdots b_t$ iff $a_j < b_j$ where $j = \max\{i: a_i \neq b_i\}$ and a_j, b_j are taken to be the least non-negative integers representing their congruence class modulo p_j . Whenever we write a latin square the rows and columns will be listed in increasing order of their indices under \prec . When specifying an orthogonal mate *M* for a latin square *L* we will always assume the rows and columns of *M* are indexed by the index group of *L*. However, in the interests of readability we will use letters for the symbols in *M* rather than elements of the index group.

We let L[x, y] denote the symbol in row x and column y of a latin square L. It will prove convenient to think of a latin square of order n as a set of n^2 triples, or *entries*, of the form (x, y, L[x, y]). Let $\vec{x} = (x_1, x_2, ..., x_t)$, $\vec{y} = (y_1, y_2, ..., y_t)$ and $\vec{z} = (z_1, z_2, ..., z_t)$ denote elements of G. For i = 1, 2..., t, we define a function $\Delta_i : L \mapsto \mathbb{Z}_{p_i}$ which on an entry $(\vec{x}, \vec{y}, \vec{z})$ of L evaluates to

 $\Delta_i(\vec{x}, \vec{y}, \vec{z}) = x_i + y_i - z_i \mod p_i.$

We define $\delta_i = \delta_i(G)$ by

$$\delta_i = \begin{cases} \frac{1}{2}p_i & \text{if } p_i \text{ is even and } n/p_i \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

The following simple lemma is crucial to our work, just as related results have been in [1,6–10,13].

Lemma 2.1. The sum of the Δ_i values over the elements of a transversal T of a latin square indexed by G is

$$\sum_{e\in T}\Delta_i(e)=\delta_i.$$

Proof. A transversal, by definition, comprises one entry from each row, one entry from each column, and one entry containing each symbol. Hence in \mathbb{Z}_{p_i} ,

$$\sum_{e \in T} \Delta_i(e) = \frac{n}{p_i} \sum_{g \in \mathbb{Z}_{p_i}} g + \frac{n}{p_i} \sum_{g \in \mathbb{Z}_{p_i}} g - \frac{n}{p_i} \sum_{g \in \mathbb{Z}_{p_i}} g = \frac{n}{p_i} \sum_{j=0}^{p_i-1} j = \frac{n(p_i-1)}{2} = \delta_i. \quad \Box$$

For any latin square L, let $\Delta_i^* = \{e \in L : \Delta_i(e) \neq 0\}$. Let S_i be the set of subsets T of Δ_i^* satisfying:

(D1) If $(x_1, y_1, z_1) \in T$ and $(x_2, y_2, z_2) \in T$ then $x_1 \neq x_2$, $y_1 \neq y_2$ and $z_1 \neq z_2$.

(D2) $\sum_{e \in T} \Delta_i(e) = \delta_i$.

Sets of entries which satisfy (D1) will be called *independent*. By Lemma 2.1 each transversal of L intersects Δ_i^* in an element of S_i .

We say a latin square *L* is Δ_i -crimped if there exist entries $\gamma_1, \gamma_2 \in L$ such that:

- (C1) There is at least one transversal of *L* that includes γ_1 .
- (C2) There is no $T \in S_i$ for which $\gamma_1 \in T$ but $\gamma_2 \notin T$.

Condition (C2) ensures that every transversal through γ_1 also includes γ_2 . Condition (C1) ensures that (C2) is not vacuously true. Without condition (C1) the definition would be uninteresting. It is known [6,9,13] that for every order $n \ge 4$ there exists a latin square containing an entry γ_1 for which there is no $T \in S_i$ with $\gamma_1 \in T$.

We say a latin square is \triangle -crimped if there is some *i* for which it is \triangle_i -crimped.

Example 2.1. The latin square L_{10} below, indexed by $\mathbb{Z}_5 \times \mathbb{Z}_2$, is Δ_1 -crimped, with $\gamma_1 = (00, 00, 20)$ and $\gamma_2 = (20, 40, 40)$ shaded.

	1	20)	00	4	0	30		10		01	11	21	31	41	\
	1	10)	20	3		40		00		11	21	31	41	01	
		00)	30	2	0	10		40		21	31	41	01	11	
		30)	40	1	0	00		21		31	41	01	11	20	
		40)	10	0	0	21		31		41	01	11	20	30	
$L_{10} =$		~ 4									~~	10			10	,
		01		11	2		31		41		00	10	20	30	40	
		11		21	3	1	41		01		10	20	30	40	00	
		21		31	4	1	01		11		20	30	40	00	10	
		31		41	0	1	11		20		30	40	00	10	21	
<i>L</i> ₁₀ =	l	41		01	1	1	20		30		40	00	10	21	31)
	7	а	b	с	d	е		f	g	h	i	i \				
	1	g	d	a	h	i		e	b	i	i f	j c b i				
		c c	h	ρ	f	a		i	d	g	j	h				
		f	σ	h	i	d		a	h	e e	с С	i				
	L	j i	i s	f	J C	h		h	а	d	σ	°				
$L'_{10} =$		ı	J	J	ι	п					8	Ľ				
-10		h	а	j	е	С		g	i	f	b	d				
	L	j	f	g	а	b		d	С	i	е	h				
		e	c	i	g	f		h	i	b	d	а				
		b	е	d	i	j		с	f							
		d	i	h	b	g		i	e			$\frac{3}{f}$				
$L'_{10} =$		ı h j e b d	ј a f c e i	j g i d h	с е g i b	h c b f j g		g d h	i c i	f						

The square L'_{10} is orthogonal to L_{10} .

In L_{10} we have marked in **bold** all entries that are in Δ_i^* for some *i*. This practice will be adopted in all subsequent examples.

Theorem 2.2. Every \triangle -crimped latin square is either monogamous or a bachelor.

Proof. Let *L* be a latin square that is Δ_i -crimped for some *i*, and let $\gamma_1 = (e_1, e_2, e_3)$ and $\gamma_2 = (f_1, f_2, f_3)$ be the two entries satisfying (C1) and (C2) in the definition of Δ_i -crimped. Suppose that *L* is orthogonal to latin squares *A* and *B*. Since *A* is orthogonal to *L*, we can locate a transversal of *L* by taking the cells in *L* that correspond to occurrences of the symbol $A[e_1, e_2]$ in *A*. This transversal

798

includes γ_1 and hence also γ_2 , by (C2). But now our method for choosing the transversal shows that $A[e_1, e_2] = A[f_1, f_2]$. Similarly $B[e_1, e_2] = B[f_1, f_2]$, which by definition then means that *A* and *B* are not orthogonal. Thus *L* cannot be in any triple of MOLS. \Box

Corollary 2.3. If there exists a monogamous Δ -crimped latin square of order n then there exists a pair of 2-maxMOLS(n).

For instance, in Example 2.1 we gave an orthogonal mate L'_{10} for a Δ -crimped latin square L_{10} . We now see that L_{10} must be monogamous and that $\{L_{10}, L'_{10}\}$ is a pair of 2-maxMOLS(10).

In this context we state one of the major results of this paper, which will be proved in Section 5.

Theorem 2.4. There exists a \triangle -crimped latin square of order n for every positive integer $n \notin \{1, 2, 4\}$.

3. Monogamous crimped squares of odd order

Having demonstrated, in Corollary 2.3, the potential usefulness of monogamous Δ -crimped latin squares, we now pursue the question of their existence. In this section, we answer that question for all odd orders. We begin by defining a latin square C_n of odd order n > 1, indexed by \mathbb{Z}_n . We separate into three cases.

Case 0: $n \equiv 0 \pmod{3}$. Let n = 3k and define

$$C_n[i, j] = \begin{cases} i+j+k & i=0 \text{ and } j \in \{0, k, 2k\}, \\ i+j-k & i=k \text{ and } j \in \{0, k, 2k\}, \\ i+i & \text{otherwise.} \end{cases}$$

Case 1: $n \equiv 1 \pmod{3}$. Let n = 3k + 1 and define

$$C_n[i, j] = \begin{cases} i+j+k & i=0 \text{ and } j \in \{0, k, 2k\}, \\ i+j-k & i=k \text{ and } j \in \{0, k, 2k\}, \\ i+j+1=0 & i=n-j-1 \text{ and } n-k \leq j < n, \\ i+j-1=-1 & i=n-j \text{ and } n-k \leq j < n, \\ i+j & \text{otherwise.} \end{cases}$$

Case 2: $n \equiv 2 \pmod{3}$. Let n = 3k - 1 and define

$$C_n[i, j] = \begin{cases} i+j+k & i=0 \text{ and } j \in \{0, k, 2k\}, \\ i+j-k & i=k \text{ and } j \in \{0, k, 2k\}, \\ i+j+1=1 & i=n-j \text{ and } 1 \leq j \leq n-k, \\ i+j-1=0 & i=n-j+1 \text{ and } 1 \leq j \leq n-k, \\ i+j & \text{otherwise.} \end{cases}$$

Lemma 3.1. C_n is a Δ -crimped latin square for every odd n > 1.

Proof. Let $k = \lfloor (n+1)/3 \rfloor$, $\gamma_1 = (0, 0, k)$ and $\gamma_2 = (k, 2k, 2k)$, so that $\Delta_1(\gamma_1) = -k$ and $\Delta_1(\gamma_2) = k$. It is easy to check that in C_3 the only entry in Δ_1^* that is independent of γ_1 is γ_2 , and hence the result holds for n = 3.

We now assume $n \ge 5$ and thus $2 \le k \le n - 2$. The entries in Δ_1^* all have Δ_1 values in $\{\pm 1, \pm k\}$. The only entry that is independent of γ_1 and has Δ_1 value in $\{\pm k\}$ is γ_2 . All the entries which have Δ_1 value equal to 1 share the same symbol, and the same is true of those with Δ_1 value -1. Hence any independent set of entries can contain at most one of each. Thus, since the sum of Δ_i values in a transversal of C_n is 0 by Lemma 2.1, there is no $T \in S_1$ for which $\gamma_1 \in T$ but $\gamma_2 \notin T$.

Thus we have shown that C_n satisfies condition (C2). It remains to construct a transversal through γ_1 . Naturally, we include γ_1 and γ_2 in our transversal. Then in all rows $i \notin \{0, k\}$ we take the entry in cell (i, 2k - 2i). Given that n is odd, it is routine to check that these choices produce a transversal. \Box

Table 1			
Five special	diagonals	when	n = 3k + 1.

0	k-1	k	2 <i>k</i>	3 <i>k</i>
0, 0*	0, <i>k</i> – 1	0, <i>k</i> *	0, 2 <i>k</i>	0, 3 <i>k</i> *
$1, k - 1^*$	j - 1, k	1, 3k	1, 2k	j - 1, 0
j, k	<i>i</i> , 0	j, 2k	j, k - 1	i, 3k
i + 1, 2k	$\frac{1}{2}k - 1, 0: 3k$	i + 1, 3k	i + 1, k - 1	$\frac{1}{2}k - 1, k : 0$
$\frac{1}{2}k, 0: 2k$	$\frac{1}{2}k, k: 0$	$\frac{1}{2}k$, 2k : $k - 1$	$\frac{1}{2}k$, 3k	$\frac{1}{2}k, k-1:k$
$\frac{1}{2}k + 1, 3k : 0$	k - i - 1, k - 1	$\frac{1}{2}k + 1, 2k : 3k$	$\frac{1}{2}k + 1, k$	$\frac{1}{2}k+1,0:k-1$
k - i, k - 1	k - j, 2k	k-i, 3k	$\overline{k} - i, k$	k-i,0
k - j + 1, 3k	$k - 1, k - 1^*$	k - j + 1, 0	k - j + 1, k	k - j + 1, 2k
k, k - 1	k, 0*	k, 3k*	k, k*	k, 2k
k + 1, 2k	k + 1, 3k	k + 1, k	k + 1, 0	k + 1, k - 1
k+j, 0	k + j, k	k + j, 2k	k + j, k - 1	k+j, 3k
k + i + 1, k	k + i + 1, 3k	k + i + 1, 0	k + i + 1, k - 1	k + i + 1, 2k
$\frac{3}{2}k$, 3k : 0	$\frac{3}{2}k, 0: k-1$	$\frac{3}{2}k$, 2k : 3k	$\frac{3}{2}k, k$	$\frac{3}{2}k, k-1: 2k$
$\frac{3}{2}k + 1, 0:k$	$\frac{3}{2}k + 1, 2k : 0$	$\frac{3}{2}k + 1, k : 3k$	$\frac{3}{2}k + 1, k - 1$	$\frac{3}{2}k + 1, 3k : 2k$
2k - i, 2k	2k - i, k - 1	2k - i, 3k	2k-i,k	2k - i, 0
2k - j + 1, k - 1	2k - j + 1, 0	2k - j + 1, 2k	2k - j + 1, k	2k - j + 1, 3k
2k, 2k	2k, 3k	2k, k	2k, 0	2k, k - 1
2k + 1, 3k	2k + 1, k	2k+1, k-1	2k + 1, 0	2k + 1, 2k
2k + 2, k	2k + j, 2k	2k + j, 3k	2k + j, k - 1	2k + j, 0
2k + j + 1, 3k	2k + i + 1, k	2k + i + 1, 0	2k + i + 1, k - 1	2k + i + 1, 2k
2k + i + 2, k	$\frac{5}{2}k$, 2k : 0	$\frac{5}{2}k, 0:k$	$\frac{5}{2}k, k-1$	$\frac{5}{2}k$, 3k : 2k
$\frac{5}{2}k+1, k-1:0$	$\frac{5}{2}k + 1, 0: 3k$	$\frac{5}{2}k + 1, k : k - 1$	$\frac{5}{2}k + 1, 2k$	$\frac{5}{2}k + 1, 3k:k$
$\frac{5}{2}k + 2, 0: 2k$	3k - i, 3k	$\frac{5}{2}k+2, k-1:0$	3k-i,k	3k - i, 2k
3k - i + 1, 0	3k - j + 1, k - 1	3k - i + 1, 2k	3k - j + 1, k	3k - j + 1, 3k
3k - j + 2, k - 1	3k, k	3k - j + 2, 0	3k, 3k	3k, 2k

Lemma 3.2. C_n is a monogamous latin square for odd $n \ge 3$ except $n \in \{5, 7\}$.

Proof. By Theorem 2.2 and Lemma 3.1 it suffices to exhibit an orthogonal mate M_n for C_n . All calculations of indices will be in \mathbb{Z}_n . We treat three cases. In each case we leave it to the reader to perform the (routine but laborious) check that M_n is orthogonal to C_n .

Case: n = 3k. We let

$$M_n[i, j] = \begin{cases} i + j - k & \text{if } i \in \{0, k\} \text{ and } j \in \{0, k, 2k\}, \\ 2i + j & \text{otherwise.} \end{cases}$$

Case: n = 3k + 1. We let $M_n[i, j] \equiv 2i + j \mod n$ unless $2i + j \in \{0, k - 1, k, 2k, 3k\}$. For the remaining entries we refer to Table 1. Each column of that table specifies the entries for the case when 2i + j is the value at the head of the column. An entry x, y in column z means that M[x, z - 2x] = y. An entry $x, y_1 : y_2$ in column z means that $M[x, z - 2x] = y_1$ if $k \equiv 0 \mod 4$ and $M[x, z - 2x] = y_2$ if $k \equiv 2 \mod 4$. An asterisk * on an entry means that the corresponding entry in C_n has non-zero Δ_1 value. Finally, we note that the parameter i takes all values in $\{2, 4, 6, \ldots, 2\lfloor k/4 \rfloor - 2\}$ and parameter j takes all values in $\{2, 4, 6, \ldots, 2\lfloor k/4 \rfloor - 2\}$.

Case: n = 3k - 1. This case works very similarly to the previous case. We let $M_n[i, j] \equiv 2i + j \mod n$ unless $2i + j \in \{0, 1, k, k + 1, 2k\}$. All other entries are provided by Table 2, using the same format as was used in Table 1. \Box

From the above results, it is a short step to:

0	1	k	k + 1	2k
0, 0*	0, 1*	0, <i>k</i> *	0, k + 1	$0, 2k^*$
j - 1, 0	1, 2k	j - 1, 1	1, k + 1	1, <i>k</i>
i, 2k	<i>j</i> , 1	<i>i</i> , 0	j, k	j, k + 1
$\frac{1}{2}k - 1, 1:0$	i + 1, k	$\frac{1}{2}k - 1, 0: 2k$	i + 1, 2k	i + 1, k + 1
$\frac{1}{2}k, 0: 2k$	$\frac{1}{2}k, k+1:k$	$\frac{1}{2}k$, 2k : k + 1	$\frac{1}{2}k, k: 0$	$\frac{1}{2}k, 1$
k - i - 1, 1	$\frac{1}{2}k+1, k+1:0$	k - i - 1, k	$\frac{1}{2}k + 1, 0:k$	k - i - 1, 2k
k - j, k + 1	k-i, k	k - j, 1	k-i, 0	k - j, 2k
k - 1, 2k	k - j + 1, 0	k - 1, k	k - j + 1, k + 1	k - 1, 1
<i>k</i> , 1	$k, 2k^*$	$k, k + 1^*$	k, 0*	<i>k</i> , <i>k</i> *
k + j - 1, 2k	k + j - 1, 0	k + j - 1, k	$k + 1, 1^*$	k + j - 1, k + 1
k+i, k	k+i, 1	k+i, 0	k + j, 2k	k + i, k + 1
$\frac{3}{2}k - 1, 0:k$	$\frac{3}{2}k - 1, 2k : 0$	$\frac{3}{2}k - 1, k : 1$	k + i + 1, 1	$\frac{3}{2}k - 1, k + 1$
$\frac{3}{2}k, k: 0$	$\frac{3}{2}k, k+1: 2k$	$\frac{3}{2}k$, 2k : k	$\frac{3}{2}k, 0: k+1$	$\frac{3}{2}k, 1$
2k - i - 1, k + 1	$\frac{1}{2k-i-1}$, 1	2k - i - 1, 0	2k - i - 1, k	2k - i - 1, 2k
2k - j, 0	2k - j, k	2k - j, 1	2k - j, k + 1	2k - j, 2k
2k - 1, 1	2k - 1, 2k	2k - 1, k + 1	2k - 1, k	$2k - 1, 0^*$
2k, 2k	2k, k	2k, k + 1	2k, 1	$2k, 0^*$
2k + j - 1, 1	2k + j - 1, 0	2k + j - 1, k	2k + j - 1, 2k	2k + j - 1, k + 1
2k + i, 2k	2k+i,k	2k + i, 1	2k + i, 0	2k + i, k + 1
$\frac{5}{2}k - 1, k + 1 : 0$	$\frac{5}{2}k - 1, 1:k$	$\frac{5}{2}k - 1, k : k + 1$	$\frac{5}{2}k - 1, 0:1$	$\frac{5}{2}k - 1, 2k$
3k - i - 2, k + 1	$\frac{5}{2}k, k: 2k$	$\frac{5}{2}k, 0: k+1$	$\frac{5}{2}k$, 2k : 0	$\frac{5}{2}k$, 1
3k - j - 1, k	3k - i - 1, 1	3k - i - 1, 0	3k - i - 1, k + 1	3k - i - 1, 2k
$3k, k + 1^*$	3k - j, 0	3k - j, k	3k - j, 1	3k - j, 2k

Table 2 Five special diagonals when n = 3k - 1.

Theorem 3.3. There exists a monogamous Δ -crimped latin square of odd order n if and only if n = 3 or $n \ge 7$.

Proof. For n = 7 the square L_7 below is Δ -crimped, with index group \mathbb{Z}_7 and $\gamma_1 = (5, 5, 1)$ and $\gamma_2 = (4, 3, 2)$ shaded. It has an orthogonal mate L'_7 .

	(0	1	2	3	4	5	6		(a	b	С	d	е	f	g \	
	1	2	0	4	5	6	3								a	
	2	3	4	5	6	0	1								d	
$L_7 =$	3	4	1	6	0	2	5	,							е.	
	4	5	6	2	1	3	0								f	
	5	6	3	0	2	1	4								с	
	6														b /	

For n = 3 and odd n > 7 we can use C_n by Lemma 3.1 and Lemma 3.2. It only remains to note that there are no monogamous latin squares of order $n \in \{1, 5\}$. All latin squares of order 5 are either bachelors or are contained in a set of 4 MOLS. \Box

4. A product construction

In this section we give a product construction that allows us to build larger crimped squares from smaller ones.

Let *A* and *B* be latin squares both indexed by a group $G_1 = \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_t}$ and let *C* be a latin square indexed by an arbitrary abelian group G_2 in which the identity is ε . We define a latin square indexed by $G_1 \times G_2$ and denoted $A \hookrightarrow B \times C$ by

$$A \hookrightarrow B \times C[(x_1, y_1), (x_2, y_2)] = \begin{cases} (A[x_1, x_2], C[y_1, y_2]) & \text{if } y_1 = y_2 = \varepsilon, \\ (B[x_1, x_2], C[y_1, y_2]) & \text{otherwise.} \end{cases}$$

Lemma 4.1. Suppose that

- 1. A is Δ_i -crimped,
- 2. Δ_i is uniformly zero on B,
- 3. B has a transversal,
- 4. *C* has a transversal that includes the cell $[\varepsilon, \varepsilon]$,
- 5. p_i is odd or $|G_2|$ is odd or $|G_1|/p_i$ is even.

Then $A \hookrightarrow B \times C$ is Δ_i -crimped.

Proof. Let $M = A \hookrightarrow B \times C$. Condition 5 ensures that $\delta_i(G_1 \times G_2) = \delta_i(G_1)$. We now argue that M is Δ_i -crimped. By assumption A is Δ_i -crimped, so there exist $\gamma_1 = (e_1, e_2, e_3)$ and $\gamma_2 = (f_1, f_2, f_3)$ satisfying (C1) and (C2). Let

 $\bar{\gamma}_1 = ((e_1, \varepsilon), (e_2, \varepsilon), (e_3, C[\varepsilon, \varepsilon])) \text{ and } \bar{\gamma}_2 = ((f_1, \varepsilon), (f_2, \varepsilon), (f_3, C[\varepsilon, \varepsilon])).$

Let Δ_i^* , $\overline{\Delta}_i^*$ be respectively the sets of entries of A and M with non-zero Δ_i values. Condition 2 means that there is a bijection from Δ_i^* to $\overline{\Delta}_i^*$ given by $(x, y, z) \mapsto ((x, \varepsilon), (y, \varepsilon), (z, C[\varepsilon, \varepsilon]))$. This map preserves Δ_i , so it is not hard to see that $\overline{\gamma}_1$ and $\overline{\gamma}_2$ satisfy (C2).

We next argue that (C1) is satisfied. By Condition 4, there exists a transversal, say $\{(i, y_i, z_i): i \in G_2\}$ in *C*, where $y_{\varepsilon} = \varepsilon$. We can then form a transversal of *M* by taking the union of transversals of each of the latin subsquares

$$S_i = \left\{ \left((a, i), (b, y_i), (c, z_i) \right) \in M : a, b, c \in G_1 \right\}$$

for $i \in G_2$. Note that S_{ε} is a copy of A and we may choose the transversal in it to include $\overline{\gamma}_1$ and $\overline{\gamma}_2$. If $i \neq \varepsilon$ then S_i is a copy of B, which has a transversal by Condition 3. Further, this transversal has all Δ_i values equal to 0 by Condition 2. Hence M satisfies (C1), and is Δ_i -crimped. \Box

Example 4.1. The latin square $C_5 \hookrightarrow \mathbb{Z}_5 \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$ is Δ -crimped by Lemma 3.1 and Lemma 4.1. To show that it is monogamous we provide the following orthogonal mate:

р о s l f i h	m r t k n g f j i	q n s m r h g f j	l t n k i h g f	s k p q o j i h		b a d c p l m r	c b a d t q n s	c b a e r	e d b a m t q n	p m l t	n l o r p b a e d	r s t q c b a e	t m o s d c b a	o q l p m e d c b	f j h g o m t q	g f i h s n k l	h g j i k r s m	ihg fj nplk	j i h g f s r o	
g	h	j i	j	g f	p S		3 1	m	k		u C	d	e	а	ч n		t	q	p	
a e d c b	b a e d c	c b a e d	d c b a e	e d c b a	r n m q t	s k t n q	p o r k m	k q n l s	o s p r l	f j i h g	f i	h g j i	h g	j i h g f	l r k s p	m p q t o	q l o p n	t m s o r	n t l m k	
t k n r m	q l s p o	o p k l t	m s p o q	l m r t n	f j h g	g f i h	h g j i	h g f	j i h g f		s t m q k	n o l m p	p r q k l	k n t s r	a e d c b	b a e d c	C b a e d	с b а	e d c b a	

802

Our next construction will rely on 'turning intercalates'. That is, we replace some 2×2 subsquares by the other possible subsquare on the same symbols, like so:

$$\begin{array}{c}
a \\
b \\
a
\end{array} \longrightarrow \begin{array}{c}
b \\
a \\
b
\end{array}$$

Suppose n = 2h for odd $h \ge 7$. We define a latin square \mathcal{D}_n of order n indexed by $\mathbb{Z}_h \times \mathbb{Z}_2$, by turning some intercalates in $\mathcal{C}_h \hookrightarrow \mathbb{Z}_h \times \mathbb{Z}_2$. Specifically,

$$\mathcal{D}_{n}[(a_{1}, b_{1}), (a_{2}, b_{2})] = \begin{cases} (a_{1} + a_{2}, b_{1} + b_{2} + 1) & \text{if } a_{1} = h - 2 \text{ and } a_{2} = 2k + 2 \text{ or} \\ a_{1} = h - 1 \text{ and } 2k - \frac{h - 7}{2} \leqslant a_{2} \leqslant 2k + 2 \text{ or} \\ (C_{h}[a_{1}, a_{2}], 0) & \text{if } b_{1} = b_{2} = 0 \text{ and not defined above,} \\ (a_{1} + a_{2}, b_{1} + b_{2}) & \text{otherwise,} \end{cases}$$

where $k = \lfloor (h+1)/3 \rfloor$.

,

Lemma 4.2. For any odd $h \ge 3$ there exists a \triangle -crimped latin square of order 2h.

Proof. Let n = 2h. For n = 6 the following square indexed by \mathbb{Z}_6 is Δ -crimped, with $\gamma_1 = (1, 5, 4)$ and $\gamma_2 = (0, 0, 5)$. A transversal through these two entries is shaded. This square is the member Q_6 of an infinite family of latin squares studied in [1] and [7].

(5	1	2	3	4	0 4 1 2 3 5	/
	1	0	3	2	5	4	
	2	3	4	5	0	1	
	3	4	5	0	1	2	
	4	5	0	1	2	3	
	0	2	1	4	3	5	J

For n = 10 we have Example 2.1. So it suffices to show \mathcal{D}_n is Δ -crimped for $n \ge 14$. Property (C2) is inherited from \mathcal{C}_h (by an argument similar to that in the proof of Lemma 4.1) so it suffices to find a transversal to demonstrate (C1). Let $k = \lfloor (h + 1)/3 \rfloor$. The following set of cells defines a transversal that does the job:

$$\begin{cases} [(0,0), (0,0)], [(k,0), (2k,0)], \\ [(i,0), (2k-2i,0)] & \text{for } i = 1, \dots, k-1, \\ [(i,0), (h+2k+1-2i,1)] & \text{for } i = k+1, \dots, k+1+\frac{1}{2}(h-1), \\ [(i,0), (2h+2k+1-2i,0)] & \text{for } i = k+2+\frac{1}{2}(h-1), \dots, h-1, \\ [(i,1), (2k+1-2i,0)] & \text{for } i = 0, \dots, k, \\ [(i,1), (h+2k-2i,1)] & \text{for } i = k+1, \dots, k+\frac{1}{2}(h-1), \\ [(i,1), (2h+2k-2i,0)] & \text{for } i = k+1+\frac{1}{2}(h-1), \dots, h-1 \end{cases} . \Box$$

Example 4.2. It is easy to show with Lemma 2.1 that C_7 and \mathcal{D}_{14} are bachelors. However, a monogamous Δ -crimped latin square of order 14 can be found by turning some intercalates in $L_7 \hookrightarrow \mathbb{Z}_7 \times \mathbb{Z}_2$, where L_7 is given in the proof of Theorem 3.3. Here is such an example, with an orthogonal mate specified by the subscripted letters.

20_d 30_n 40_k 50_a	21_m 30_k 40_l 50_d 60_i	20_a 00_c 40_h 10_g 60_n 30_b 50_e	40 _a 50 _l 60 _j 20 _h 00 _m	50_b 60_e 00_d 10_i 20_c	$60_g \\ 00_n \\ 20_m \\ 30_f \\ 10_h$	30 $_{e}$ 10 $_{a}$ 50 $_{c}$ 00 $_{b}$ 40 $_{f}$	10 _j 21 _b 31 _f 41 _l 51 _k	20_k 31_m 41_h 51_e 61_j	31 _n 41 _i 51 _b 61 _a 01 _e	41 _d 51 _j 61 _i 01 _g	51 ₁ 61 _g 01 _k 11 _m 21 _d	61 _f 01 _c 11 _e 21 _j 31 _l	31 _c 41 _g
10 _l 21 _g 31 _j 41 _e	20_n 31_a 41_f 51_g 61_h	21_f 31_d 41_m 51_i 61_l 01_j 11_k	41_c 51_n 61_b 01_d 11_g	51_f 61_k 01_a 11_h 21_l	61 _e 01 _l 11 _d 21 _c 31 _b	$01_m \\ 11_j \\ 21_n \\ 31_i \\ 41_k$	11_a 20_e 30_h 40_m 50_n	21_i 30_c 40_g 50_f 60_a	$30_g \\ 40_d \\ 50_m \\ 60_k \\ 00_f$	40_b 50_h 60_c 00_a 10_m	50_{j} 60_{f} 00_{e} 10_{n} 20_{i}	60_h 00_i 10_k 20_b 30_d	10 _b 20 _l

We say that an abelian group G possesses an orthogonal mate if there is a latin square orthogonal to the Cayley table of G. A finite abelian group possesses an orthogonal mate unless it is isomorphic to the direct sum of cyclic groups of which exactly one has even order (see e.g. [2]).

Theorem 4.3. Suppose *L* is a monogamous Δ -crimped latin square of order *n*, indexed by an abelian group *G* that possesses an orthogonal mate. Then for any integer $m \ge 3$ there exists a monogamous Δ -crimped latin square of order *nm*.

Proof. We first treat the case when $m \neq 6$. In this case there exists a pair (A, A') of MOLS of order m. We use \mathbb{Z}_m to index A and A'. By assumption, L has an orthogonal mate L' and there exists a latin square G' orthogonal to G. Define a pair (M, M') of latin squares of order mn, indexed by $G \times \mathbb{Z}_m$, by $M = L \hookrightarrow G \times A$ and $M' = L' \hookrightarrow G' \times A'$. It is routine to check that (M, M') are orthogonal, and Lemma 4.1 tells us that M is Δ -crimped.

Finally, we treat the case when m = 6. If n > 3 then nm = 3k for some k > 6 so the existence of a monogamous Δ -crimped latin square of order nm is guaranteed by the $m \neq 6$ case treated above, given that there is a monogamous Δ -crimped latin square of order 3, by Theorem 3.3. If n = 3 then nm = 18 and we use \mathcal{D}_{18} , which we proved to be Δ -crimped in Lemma 4.2. To see that \mathcal{D}_{18} is monogamous, we provide the following orthogonal mate:

(r	b	i	q	j		р	d	а		k	f	l	е	h	g	т	п	0	
	С	п	j	k	r	а	l	b	g		р	h	т	d	е	f	0	i	q	
	d	i	r	е	k		т	h	j		п	р	f	l	b	а	q	g	С	
	q	т	f	р	h	i	r	0	l		а	b	k	п	d	е	С	j	g	
	g	р	d	i	f	т	а	j	С		q	r	0	h	k	l	е	b	п	
	i	0	q	g	С	k	е	п	f		h	l	r	b	j	т	р	d	а	
	f	е	h	r	т	р	b	q	п		j	g	а	0	l	k	i	С	d	
	а	d	l	п	0	q	h	k	е		f	j	b	g	i	С	r	т	р	
	е	j	g	b	l	п	f	С	р		d	т	i	q	r	0	а	h	k	
	n	h	c	1	ρ	h	k	т	r		0	i	а	f	а	d	σ	n	i	•
	n b				e n				r d				q ø				g f	р о		•
	b	r	k	т	п	h	С	р	d		l	а	g	i	q	j	f	0	е	•
	b m	r q	k o	т а	n i	h e	с n	p r	d k		l g	a d	g p	i j	q c	j b	f l	o f	e h	•
	b	r q k	k o p	m a d	n i q	h e l	c n i	p r a	d k o		l g e	a d c	g p h	i j m	q c g	j b n	f l b	o f r	е	•
	b m j l	r q k c	k o p a	m a d j	n i q g	h e l f	c n i q	p r a e	d k o h		l g e b	a d c 0	g p h n	i j m r	q c g p	j b n i	f l b d	o f r k	e h f	•
	b m j l o	r q k	k o p a b	m a d j c	n i q g p	h e l f r	C n i q d	p r a e f	d k o h i		l g e	a d c o e	g p h n j	i j m r k	q c g p n	j b n i q	f l b d h	o f r	e h f m	•
	b m l o p	r q k c g l	k o p a b	m d j c h	n i g p d	h e l f r j	C n i q d	p r a e f g	d k o h	i	l g b m i	a d c o e	g p h n j c	i j m r k	q c g n f	j b n i q	f l b d h k	o f r k a	e h f m l	•

804

If n < 3 there is no *L* that satisfies the hypothesis of the theorem. \Box

Corollary 4.4. For any positive integer $n \equiv 0 \mod 8$ there exists a monogamous Δ -crimped latin square of order *n*.

Proof. The square L_8 below, indexed by $\mathbb{Z}_4 \times \mathbb{Z}_2$, is Δ_1 -crimped on the shaded entries $\gamma_1 = (01, 00, 11)$ and $\gamma_2 = (31, 10, 31)$. It is orthogonal to L'_8 . Thus, by Theorem 4.3 there are monogamous Δ -crimped latin squares for all orders which are divisible by 8, except possibly 16.

$$L_8 = \begin{pmatrix} 00 & 10 & 20 & 30 & 01 & 11 & 21 & 31 \\ 10 & 20 & 30 & 00 & 11 & 21 & 31 & 01 \\ 20 & 30 & 00 & 10 & 21 & 31 & 01 & 11 \\ 30 & 00 & 10 & 20 & 31 & 01 & 11 & 21 \\ 11 & 01 & 21 & 31 & 10 & 30 & 20 & 10 \\ 01 & 21 & 31 & 11 & 10 & 20 & 30 & 00 \\ 31 & 11 & 01 & 21 & 20 & 10 & 00 & 30 \\ 21 & 31 & 11 & 01 & 30 & 00 & 10 & 20 \\ \end{pmatrix}$$

$$L'_8 = \begin{pmatrix} d & f & g & a & b & e & h & c \\ h & b & f & g & c & d & e & a \\ c & h & b & e & a & g & d & f \\ e & c & a & d & f & h & g & b \\ a & g & c & h & e & b & f & d \\ f & e & d & b & g & a & c & h \\ b & d & e & f & h & c & a & g \\ g & a & h & c & d & f & b & e \end{pmatrix}.$$

An example of order 16 is $L_8 \hookrightarrow (\mathbb{Z}_4 \times \mathbb{Z}_2) \times \mathbb{Z}_2$, which has the following orthogonal mate:

1	j	h	а	f	k	1	d	т	g	р	0	е	С	i	b	п	
	0	i	b	l	f	т	а	j	е	С	g	р	п	h	k	d	
	d	п	т	р	С	b	l	0	f	k	а	i	j	g		h	
	g	f	l	0	d	е	п	k	а	h	j	т	i	b	С	р	
	k	р	f	с	b	а	g	е		l	т	h	0	d	п	j	
	h	j	g	е	т	С	i	п	р	d	f	0	а		l	b	
	е	а	d	h	п	i	С	р		b			g	т	f	l	
	р	k	j	i	0	g	b	h	l	f	е	п	d	С	т	а	
	т			п	1	k	е	а	d	j	b	С	f	р	i	0	
	п		i	d	а	f	р	g		е	h	k	b	0	j	т	
	i	b	п	k	g			f	j		р		е	l	0	С	
	f	е	С	b	j	п	т	i	k	0	d	l	р	а	h	g	
	а	d	k	т	i		j	С	b	g	l	f	h	п		е	
	b	С	е	j	h	р	0	l	т	а	п	g	k	f	d		
	l	0	р	g	е			b	п	i	С	d		j	а	f	
	С	т	0	а	р	j	f	d	h	п	i	b	l	е	g	k)

Moreover, $L_8 \hookrightarrow (\mathbb{Z}_4 \times \mathbb{Z}_2) \times \mathbb{Z}_2$ is Δ_1 -crimped. Condition (C2) can be seen as per the proof of Lemma 4.1, and condition (C1) is immediate from the existence of an orthogonal mate. \Box

A turn-square, with underlying group *G*, is a latin square created from the Cayley table of *G* by turning some of the intercalates. For orders $n \equiv 2 \mod 4$, where no group has a transversal (or an

orthogonal mate), turn-squares are a convenient way to produce squares with many transversals [11] and many orthogonal mates [3]. Unsurprisingly then, turn-squares are useful for $n \equiv 2 \mod 4$, where Theorem 4.3 does not apply.

Theorem 4.5. Let $G = \mathbb{Z}_h \times \mathbb{Z}_2$ for some odd $h \ge 5$. Let T be a turn-square with underlying group G, such that T possesses an orthogonal mate. Let L be a monogamous Δ_1 -crimped latin square that is indexed by G. Then for any integer $m \ge 3$ there exists a monogamous Δ -crimped latin square of order 2hm.

Proof. The proof is similar to that for Theorem 4.3. The m = 6 case is handled the same way, by writing $2hm = 3 \times 4h$. For $m \neq 6$ we again use a pair (A, A') of MOLS of order m. Define $M = L \hookrightarrow T \times A$ and $M' = L' \hookrightarrow T' \times A'$ where L' and T' are orthogonal mates for L and T respectively. Then M and M' are orthogonal. Moreover, M is Δ_1 -crimped by Lemma 4.1, given that Δ_1 is uniformly zero on T. \Box

It seems likely that for all odd $h \ge 5$ there exists a turn-square with underlying group $\mathbb{Z}_h \times \mathbb{Z}_2$, and which has an orthogonal mate. This is certainly true [11] for $h \in \{5, 7\}$. The only case in which we need Theorem 4.5 in the present paper is the following example.

Example 4.3. A monogamous \triangle -crimped latin square of order 50 can be found by applying Theorem 4.5 with h = m = 5 and $L = L_{10}$ as given in Example 2.1.

5. The main results

We are now in a position to draw the threads together and prove our main results.

Theorem 5.1. There exists a monogamous \triangle -crimped latin square for any order n > 6 not of the form 2p for a prime $p \ge 11$.

Proof. Corollary 4.4 handles $n \equiv 0 \mod 8$ and Theorem 3.3 takes care of all odd orders. The cases $n \in \{10, 14, 20, 50\}$ are solved by Examples 2.1, 4.1, 4.2 and 4.3. Every other order n under consideration can be written as n = ab for b > 2 and odd $a \notin \{1, 5\}$. By Theorem 3.3 there exists a monogamous Δ -crimped latin square of order a. Furthermore, this square is indexed by \mathbb{Z}_a , which has an orthogonal mate, so the result follows by Theorem 4.3. \Box

Corollary 2.3 and Theorem 5.1 together imply Theorem 1.1. Our other main result, Theorem 2.4, is that Δ -crimped latin squares exist for all orders $n \notin \{1, 2, 4\}$. This follows for odd orders from Lemma 3.1 and for orders that are 2 mod 4 from Lemma 4.2. All remaining cases are shown by Theorem 5.1.

To summarise: we have introduced the notion of a crimped latin square, which is one that contains an entry γ_1 that is in some transversal, but all transversals through γ_1 also include another specific entry γ_2 . Using a product construction, we have shown (Theorem 2.4) that crimped latin squares exist for all orders $n \notin \{1, 2, 4\}$. A crimped latin square cannot be in any triple of MOLS. Thus if it has an orthogonal mate then together with that mate it forms a pair of 2-maxMOLS, a maximal set of 2 MOLS. By this means we have shown (Theorem 1.1) that a pair of 2-maxMOLS exist for all orders $n \notin \{1, 2, 4, 5, 6\}$ except possibly if n = 2p for some prime $p \ge 11$.

References

- [1] D. Bryant, J. Egan, B. Maenhaut, I.M. Wanless, Indivisible plexes in latin squares, Des. Codes Cryptogr. 52 (2009) 93-105.
- [2] J. Dénes, A.D. Keedwell, Latin Squares and Their Applications, Akadémiai Kiadó, Budapest, 1974.
- [3] B.M. Maenhaut, I.M. Wanless, Atomic latin squares of order eleven, J. Combin. Des. 12 (2004) 12-34.
- [4] D.A. Drake, Maximal sets of latin squares and partial transversals, J. Statist. Plann. Inference 1 (1977) 143-149.

^[5] D.A. Drake, G.H.J. van Rees, W.D. Wallis, Maximal sets of mutually orthogonal latin squares, Discrete Math. 194 (1999) 87–94.

- [6] J. Egan, Bachelor latin squares with large indivisible plexes, J. Combin. Des., in press.
- [7] J. Egan, I.M. Wanless, Latin squares with no small odd plexes, J. Combin. Des. 16 (2008) 477-492.
- [8] J. Egan, I.M. Wanless, Indivisible partitions of latin squares, J. Statist. Plann. Inference 141 (2011) 402-417.
- [9] J. Egan, I.M. Wanless, Latin squares with restricted transversals, submitted for publication.
- [10] A.B. Evans, Latin squares without orthogonal mates, Des. Codes Cryptogr. 40 (2006) 121-130.
- [11] B.D. McKay, J.C. McLeod, I.M. Wanless, The number of transversals in a latin square, Des. Codes Cryptogr. 40 (2006) 269-284.
- [12] G.H.J. van Rees, Subsquares and transversals in latin squares, Ars Combin. 29B (1990) 193-204.
- [13] I.M. Wanless, B.S. Webb, The existence of latin squares without orthogonal mates, Des. Codes Cryptogr. 40 (2006) 131-135.