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Abstract

We construct minuscule posets, an interesting family of posets arising in Lie theory, algebraic
geometry and combinatorics, from sequences of vertices of a graph with particularneighbourly
properties. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a simple labelled graph, assumed to be connected throughout. By anX-sequ-
encewe mean a sequences = (x1, . . . , xn) of vertices ofX. If we transforms to s′ by
interchanging consecutive elementsxi andxi+1 for somei then there are three possibilities:

(1) xi andxi+1 are neighbours inX—(an X-interchange)
(2) xi andxi+1 are distinct and not neighbours—(afree interchange)
(3) xi = xi+1—(a redundant interchange).

Any X-sequences′ obtainable froms by free interchanges is defined to beequivalentto
s; we write s � s′ and let[s] denote the equivalence class ofs, which wecall anX-string.
We refer to thexi in s = (x1, . . . , xn) as theoccurrencesin s; as occurrences they are
considered distinct even if as vertices ofX there may be repetitions. (To be more precise,
we could consider an occurrence to be an ordered pair(x, i ), wherex is the vertex ofX
occurring in positioni of the sequence, that isxi = x.)

Partially order theoccurrencesxi in s by declaringxi ≤ x j if i ≤ j and xi , x j

are neighbours or identical vertices inX. The resulting posetPs of occurrences ins is
unchanged by free interchanges and so depends only on theX-string [s]. We refer to
Ps = P[s] as theX-heapof [s].

This terminology was introduced by Viennot [11] and used by Stembridge in the
context of fully commutative elements of Coxeter groups (see [8]). The present context
is somewhatmore general and graph-theoretic.

The heap of a sequence of vertices is that partially ordered set whose total linear orders
correspond to all possible sequences obtained from the original one by free interchanges.
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Furthermore, sequences which are equivalent under such free interchanges give rise to
identical heaps.

There is a useful interpretation of the above partial order in terms of walks on the graph
X. Sincethe partial order onPs is generated by the relationsxi < x j if i < j andxi , x j are
neighbours or identical inX, two occurrencesxi andx j are related byxi < x j if andonly
if there is a subsequence ofs, xi = xi1, xi2, . . . , xik = x j suchthat i1 < i2 < · · · i k (this is
what we mean by a subsequence) and such that any two successive elements in the subse-
quence are neighbours inX. That is,xi j andxi j +1 are neighbours, for allj = 1, . . . , k − 1.

It can be useful to imagine that the vertices ofX are lights which are turned off and
on in sequence according tos, so that the termxi in s means that vertexx is lit up at
time i . One is allowed to move from a vertex to a neighbouring vertex precisely when that
neighbouring vertex islit. Then to say thatxi < yj is just to say that you can get from
vertexx at timei to vertexy at time j by a sequence of such allowed moves.

A heap will be calledneighbourlyif the associated sequenceshave the property that
between any two successive occurrences of a vertexx there occurs at least two occurrences
of a neighbour ofx. A neighbourlyX-sequence will be calledmaximalif we cannot add
anywhere another element to obtain a longer neighbourlyX-sequence.

Heaps arising from maximal neighbourly sequences which in addition aretwo-
neighbourly, that is they have exactly two neighbours between any two occurrences of
a vertexx, are classified. In our main result, we prove that any graphX having a maximal
neighbourly heap which is in fact two-neighbourly must be one of the Dynkin–Coxeter
diagramsAn, Dn, or E6, E7, and that the corresponding heaps are exactly the minuscule
posets defined and studied by Proctor in [4].

In the last section we briefly connect these interesting minuscule posets (actually they
are all distributive lattices) to Lie theory, algebraic geometry, and combinatorics. This
paper could be viewed as an elementary graph theoretic approach to their study. We were
led to theseposets in our attempt to construct Lie algebra representations directly from
Dynkin diagrams, work which is described in [12].

2. Neighbourly heaps for a graph

Let X be a simple labelled graph. Lets = (x1, . . . , xn) be anX-sequence, with[s] the
associatedX-string andP[s] the associatedX-heap.

Proposition 2.1. The X-string[s] consists exactly of the total orderings of P[s] consistent
with the partial order.

Proof. Any sequences′ obtained froms by free interchanges has the same heap and so
is an ordering of P[s] consistent with the partial ordering. Conversely supposes′ is an
ordering ofP[s] consistent with the partial order. Let us show that we can free interchange
s′ to obtains. Suppose by induction thats ands′ agree up to to thekth term so that

s = (x1, x2, . . . , xk, xk+1, . . . , xn)

s′ = (x1, x2, . . . , xk, yk+1, . . . , yn)

and thatxk+1 = x. Clearly there is a first occurrence ofx in yk+1, . . . , yn, and if this first
occurrence is preceded by a neighboury = yj in X of x, then since any two neighbours



N.J. Wildberger / European Journal of Combinatorics 24 (2003) 741–757 743

are necessarily related, we must haveyj < xk+1 in P[s]. But this contradicts the fact that
P[s] is the heap ofs, in whichxk+1 occurs beforeyj . �
Example 1. SupposeX = An labelled as shown.

If we consider onlyX-sequences which are permutations of{1, . . . , n}, the associated
heaps are ‘stock market graphs’ where each successive node is either up or down from the
previous. We get naturally a map fromSn to the set ofsequences{(η1, . . . , ηn−1) | ηi =
±1} = T . It is natural to ask for the distribution of this map: how many permutations
map to a givent ∈ T? Whent is the zigzag sequence alternating plus and minus one,
this is known as Andr´e’s Problem, and the answer is given by Euler numbers, or Entringer
numbers. The general case has been recently solved by G. Szekeres.

Example 2. SupposeX = E6 labelled as shown

The X-sequences = (1, 2, 3, 0, 4, 5, 3, 2, 4, 3, 1, 0, 2, 3, 4, 5) has heap

For future reference, we refer to this particular heap asF(E6, 1).

Definition. An X-sequences = (x1, . . . , xn) will be calledneighbourlyif between any
two consecutive occurrences of a vertexx there are at least two occurrences of some
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neighbour or neighbours ofx. This property is preserved by free interchanges, so we also
speak of neighbourlyX-strings andX-heaps.

A neighbourlyX-sequences will be calledmaximalif F cannot be extended by the
addition of a vertexx in any position to alarger neighbourlyX-sequences′, and similarly
for X-strings and heaps. The neighbourlyE6-heap ofExample 2is maximal.

A neighbourlyX-string or X-heap will be called two-neighbourlyif there are exactly
two occurrences of some neighbour or neighbours ofx between any two consecutive
occurrences of any vertexx. TheheapF(E6, 1) of Example 2is two-neighbourly.

Recall that alattice is a poset such that fora, b ∈ L the least upper bounda ∨ b
and greatest lower bounda ∧ b exist uniquely. When these operations satisfy the usual
distributive laws, the lattice is calleddistributive. If P is any poset, anideal of P is a
subsetI suchthat x ∈ I , y ≤ x implies y ∈ I . Let J(P) denote the poset of all ideals
of P ordered by inclusion. ThenJ(P) is always a distributive lattice, and any distributive
lattice is of the formJ(P) for some posetP.

Proposition 2.2. If a graph X has a maximal neighbourly X-heap then X is a tree.

Proof. If X is not a tree, consider the first occurrences of the elements of some fixed cycle
in X. The last occurrence in this set is necessarily preceded by two neighbours, which
contradicts maximality. �
Proposition 2.3. If F is a maximal neighbourly X-heap for some simple graph X, then F
is a lattice.

Proof. Let us suppose thatF is a maximal neighbourlyX-heap for some graphX and that
F = P[s] for someX-sequences. The previous proposition shows thatX must be a tree.

Now suppose we have two occurrencesxi = x andx j = y in s with sayi < j . Consider
the model of the partial order involving moving from one vertex to a neighbouring one
precisely when that neighbouring ‘light’ is on, as given by the sequences. To saythat
there is aunique minimalzk so thatxi ≤ zk and yj ≤ zk is to say that there is unique
vertex on which two playersA andB can meet at the earliest possible time if they start at
x andy at timesi and j respectively.

Since X is a tree, if our two players want tomeet as soon as possible they will
have to approach each other along theunique path which separates them, sayx = x0,
x1, . . . , xk = y. This means thatA will move to x1 at the first opportunity,B will move
to xk−1 at the first opportunity and so on. If they can meet in this way it is clear that there
is a unique vertex and time when they will do so. Otherwise, they will reach a point when
they are unable to decrease the distance between them. Without loss of generality let us
assume this from the beginning. It means there is no occurrence ofx1 pasttime i (and no
occurrence ofxk−1 pasttime j ).

But then by maximality there can be no occurrence ofx2 pasttime i either since then
the previous occurrence ofx1 (which must exist) will be followed by two occurrences of
its neighbours but not by another occurrence of itself, which is impossible. So after timei
there is no occurrence ofx1, x2 and so on. But we are told thatxk = y does occur after
time i so our assumption is impossible.

A similar argument shows that there is aunique maximal occurrencewl with wl ≤ xi

andwl ≤ yj . �
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Recall the family of graphsDn, n ≥ 4 andE7 andE8 labelled as shown

Theorem 2.1. Let X be a simple graph for which there exists a maximal neighbourly
X-heap F which is two-neighbourly. Then X is one of the graphs An, n ≥ 1, Dn, n ≥ 4, E6
or E7. Thereare exactly n such X-heaps for An, three for Dn, two for E6 and one for E7.

The resultingX-heaps are precisely the set ofminuscule posetsdefined and studied in
Proctor [4]. Let us illustrate what these minuscule posets look like.

(a) The case An. We label the minusculeAn-heapsF(An, k)k = 1, . . . , n. Hopefully the
following example will make the general case clear.

Forn = 5
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(b)The case Dn. The minusculeDn-heaps arelabelledF(Dn, 0), F(Dn, 1) and alsoF(Dn,

n − 1). The following example forn = 5 should make the general case clear.

The heapsF(Dn, 0) and F(Dn, 1) have the same triangular shape withn(n − 1)/2
elements, whileF(Dn, n − 1) consists of a square symmetrically placed between two
chains, and has 2(n − 1) elements.

(c) The case E6. There are two minusculeE6-heaps labelledF(E6, 1) andF(E6, 5). The
heapF(E6, 1) appeared inExample 2. TheheapF(E6, 5) has the same shape, and is the
inverse ofF(E6, 1).
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(d) The case E7. There isonly one minusculeE7-heap labelled F(E7, 6).

This lovely lattice, which we might call theswallow, is symmetric, spindle-shaped,
Sperner, Gaussian and enjoys other interesting combinatorial properties (see [7, 9, 12]).

Note that in each case the graphX is an ideal of the minusculeX-heap and that the
minimal vertex appears in the label of thatX-heap.

Proof of the Theorem. The proof will be broken down into several steps. We will show
that the assumption ons implies thatX must be a tree with no vertices of degree 4 or more
and at most one vertex of degree 3. Then the possibilities for this latter case will be analysed
by reducing it to the study of triples of integers satisfying certain recursive properties. So
let X andF be given as in the theorem and lets be someX-sequence with heapF .

Lemma 2.1. X is a tree.

Proof. This is justProposition 2.2. �
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Lemma 2.2. X cannot have a vertex of degree4 or more.

Proof. SupposeX has a vertexewith neighboursa, b, c, d. Since each occurs ins, e must
occur at least twice.

Between the first and second occurrences ofe we can have at most two occurrences
of neighbours ofe—that means, say, thatc and d do not occur. But then bothc and
d must occur before the first occurrence ofe (if they didn’t, we could add them,
contradicting maximality) so we can add anothere to the front of the sequence which
is impossible. �

Lemma 2.3. X cannot have two vertices of degree3.

Proof. If X has at least two vertices of degree three then it has a subgraphY of the
following form

Consider the first occurrences ins of the vertices of the subgraphY and the associated
heap PY. If the occurrences of the vertices 1 andn are unrelated inPY then an easy
argument shows that the reverse Hasse diagram ofPY must have the following form for
somek, 1 < k < n.

That means that the next occurrence of either 1 orn must precede the next occurrence
of 2 orn − 1, that then the next occurrence of 2 orn − 1 must precede the next occurrence
of 3 orn−2 etc. Butthat will imply that the next occurrence ofk is preceded by more than
two of its neighbours, a contradiction.

On the other hand if say 1< n in PY then again an easy argument shows that the
associated heapPY must have up to relabelling the following reverse Hasse diagram.
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But then the next occurrence ofn must precede the next occurrence ofn − 1, which
must precede the next occurrence ofn − 2 and so on down to 1, which is then preceded
necessarily by three occurrences of neighbours of itself since its first occurrence, again a
contradiction. �

Now suppose thatX has exactly one vertex, call itd, of degree 3, with chainsof length
α, β, γ > 0 emanating from it, labelleda1, a2, . . . , aα , b1, b2, . . . , bβ andc1, c2, . . . , cγ

as shown.

We imagine weighting the vertices linearly as follows:

d > c1 > c2 > · · · > cγ > b1 > b2 > · · · > bβ > a1 > a2 > · · · > aα

and make the convention that wherever possible lighter elements move forward by free
interchanges in a sequences (and so down in the Hasse diagram forP[s]). In other words
ai aj is replaced byaj ai if i < j and|i − j | �= 1, daj is replaced byaj d if j �= 1 (and
similarly with b′s

i , c′s
i ) andbi aj is replaced byaj bi , etc. The weighting above then induces

a partial order on elements of anX-string [s] so that there is aunique minimalX-sequence
t where no further free interchanges of the above type arepossible.

Let us look int at the successive occurrences ofd and refer to thei th interval of t as
the segment following thei th d and before the(i + 1)st d (if it occurs), fori = 1, . . . , r .
Thus for example the non-minimal sequence

a1b3dc3c2b2dc1b1da1a2

has three intervals,c3c2b2, c1b1, anda1a2, so thatr = 3.
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Lemma 2.4. For any i ,1 ≤ i ≤ r , there are non-negative integersαi , βi , γi such that the
i th interval has the form

a1a2 · · · aαi b1b2 · · · bβi c1c2 · · · cγi .

Proof. Since all theaj can be freely interchanged with all thebj and all thecj and thebj

with thecj , the fact that theaj are lighter than thebj which are lighter than thecj means
that thei th interval will consist of a sequence ofaj followed by a sequence ofbj followed
by a sequence ofcj with some of these sequences possibly empty.

The firstaj must bea1, otherwise it would interchange withd out of thei th interval.
The secondaj must bea2 since it cannot bea1 and any otheraj would freely interchange
to the left out of the interval. Continuing, we must start with a maximal sequence ofaj of
the forma1a2 · · · aαi for someαi ≤ α. But then the neighbourly condition ensures that no
moreα j are possible. Since thebj andcj sequence are subject to the same analysis, the
resultis proved. �

Let us represent the sequence

a1a2 · · · aαi

by the shorthand symbolaαi and similarly forbβi andcγi .

Proposition 2.4. If there are r intervals then t has the form

t = · · · d(1)a
α1bβ1cγ1d(2)a

α2bβ2cγ2d(3) · · · d(r−1)a
αr−1bβr−1cγr−1d(r )a

αr bβr cγr ,

where d(k) is the kth occurrence of d and where theαi , βi , γi satisfy

1. for i = 1, . . . , r − 1 exactly oneof αi , βi , γi is zero

2. for i = r exactly two ofαi , βi , γi is zero

3. if αi > 0 for some i= 1, . . . , r − 1 thenαi+1 = αi − 1 (and similarly forβi andγi )

4. if αi = 0 for some i= 1, . . . , r − 1 thenαi+1 > 0 (and similarly forβi andγi ).

Proof. If there arer intervals then let us show thatt cannot end ind(r+1). If two of αr ,
βr , γr were non-zero, sayαr andβr , and there wasan (r + 1)st occurrence ofd, then
by maximality anotherc1 could be added after this, contradicting the assumption ofr
intervals. This also proves 2. Statement 1 is a consequence of the two-neighbourliness
of t .

Let’s prove 3. Supposeαi > 0 for somei ∈ {1, . . . , r −1}. Thenαi+1 ≥ αi is impossible
since the elementaαi in thei th interval is then separated from theaαi in the(i +1)st interval
by a single neighbour, namelyaαi −1 if αi > 1 or d if αi = 1. Now if αi+1 < αi − 1 then
there must be a followingoccurrence (after the(i + 1)st interval) ofaαi+1+1, sincetwo
neighbours of it have occurred. But when it does occur next it does so withaαi+1 preceding
it—meaning at least 3 neighbours between occurrences.

To prove 4,note that ifαi = 0 andαi+1 = 0 then threed’s will have occurred between
the previousa1 and the followinga1. �

Without loss of generality we may assume thatα1 > 0,β1 > 0 andγ1 = 0. This means
there is necessarily by maximality an occurrence ofc1 before the firstd.
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Lemma 2.5. The portion of t before the first occurrence of d is

t = cγ cγ−1 · · · c1d(1) · · · .
Proof. We first show that noaj or bj may preceded(1). Sincec1 does occur before
d(1), neither a1 or b1 can for otherwise we could add another occurrence ofd to the
beginning of the sequence. But then neithera2 or b2 can occur, because otherwise we
could add ana1 or b1 before it, contradicting the previous statement. Continuing we obtain
the claim.

To see thatc1 is necessarily immediately to the left ofd(1), observe that anycj , j > 2, is
freely interchanged to the left of thec1 occurrence immediately precedingd(1). If c2 occurs
betweenthis c1 andd(1) then sinceγ1 = 0 (assumption) there are three neighbours ofc1
between its occurrence befored(1) and its next occurrence afterd(2), which is impossible.
Similarly thenext previouscj must bec2, thenc3 and so on. If as we proceed left from
d(1) in t we find two occurrences ofcj then there must also be two occurrences ofcj −1, of
cj −2, and soon until two occurrences ofc1 mean anotherd can be added to the beginning,
which is impossible.Thust has the prescribed form.�

If we agree to writecγ cγ−1 · · · c1 asc−γ then we see thatt has the form

t = c−γ d(1)a
α1bβ1d(2)a

α2bβ2cγ2 · · · d(r )a
αr bβr cγr ,

where we now analyse the possibilities for the sequence of triples

(0, 0,−γ ), (α1, β1, 0), (α2, β2, γ2), . . . , (αr , βr , γr ).

We knowα1, β1, γ2 > 0. Since at least one ofα2, β2, γ2 is zero, without loss of generality
we may assume thatβ2 = 0 so thatβ1 = 1 from statements 3or 4 of Proposition 2.4. The
above sequence of triples is then of the form

(0, 0,−γ ), (α1, 1, 0), (α1 − 1, 0, γ2), . . . .

Lemma 2.6. β = 1.

Proof. If β > 1 consider the first occurrence ofb2. It is then preceded by twob1’s, so we
may addb2 to the beginning oft contradicting the previous lemma.�

Suppose now thatr = 2. Then since two ofα2, β2, γ2 are zero andγ2 we know is not,
we must haveα2 = 0 so thatα1 = 1. By maximalityγ0 = γ2 = γ and so the sequence of
triples fort is

(0, 0,−γ ), (1, 1, 0), (0, 0, γ ).

This corresponds toX = Dn
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and the sequence

t = (n − 1, n − 2, . . . , 3, 2, 1, 0, 2, 3, . . . , n − 1).

In the casen = 5 the associated heap has the form

Suppose now thatr > 2. Then exactly one of(α2, β2, γ2) = (α1 − 1, 0, γ2) is zero, so
that (α3, β3, γ3) = (α1 − 2, 1, γ2 − 1). If r = 3 thenbothα1 − 2 andγ2 − 1 must be 0,
giving α1 = 2, γ2 = 1 and theonly possible maximal form for the sequence of triples
being

(0, 0,−1), (2, 1, 0), (1, 0, 1), (0, 1, 0).

This corresponds toX = D5 with sequence

t = (0, 2, 3, 4, 1, 2, 3, 0, 2, 1)

and heap

If r > 3 then exactly one of(α3, β3, γ3) = (α1 − 2, 1, γ2 − 1) is zero. We consider the
two casesα1 = 2 andγ2 = 1 separately.
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Caseα1 = 2: If α1 = 2, γ2 > 1 then the triple sequence fort must have the form

(0, 0,−γ ), (2, 1, 0), (1, 0, γ2), (0, 1, γ2 − 1), (α4, 0, γ2 − 2), . . . .

Now α4 must be 2, sinceα4 > 0 by Proposition 2.4, and if α4 = 1 then the next
occurrence ofa2 (which must occur) will have (at least) three neighbours between it and
the first, while ifα4 > 2 then there ought to be ana3 befored(1) which thereis not. Thus
the triple sequence fort looks like

(0, 0,−γ ), (2, 1, 0), (1, 0, γ2), (0, 1, γ2 − 1), (2, 0, γ2 − 2), . . . .

If r = 4 thenγ2 = 2 and wehave

(0, 0,−2), (2, 1, 0), (1, 0, 2), (0, 1, 1), (2, 0, 0).

This corresponds toX = E6

with

t = (5, 4, 3, 0, 2, 3, 4, 1, 2, 3, 0, 5, 4, 3, 2, 1).

The corresponding heap is one of the two minuscule posets forE6.
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If r > 4 then(α5, β5, γ5) = (1, 1, γ2 − 3) = (1, 1, 0) which givesγ2 = 3 = γ and
(α6, β6, γ6) = (0, 0, 3) for maximality, yielding a final sequence

(0, 0,−3), (2, 1, 0), (1, 0, 3), (0, 1, 2), (2, 0, 1), (1, 1, 0), (0, 0, 3)

corresponding toX = E7

with

t = (5, 4, 3, 0, 2, 3, 4, 1, 2, 3, 0, 5, 4, 3, 2, 1).

The corresponding heap is the unique minuscule poset forE7, which we call the
swallow.

This completes the analysis of the caseα1 = 2.
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Caseγ2 = 1: We now examine the caser > 3 with γ2 = 1 and triple sequence fort

(0, 0,−γ ), (α1, 1, 0), (α1 − 1, 0, 1), (α1 − 2, 1, 0), . . . .

Thenγ = 1 for if γ > 1 the firstoccurrence ofc2 must occur befored(1) by maximality
(since we knowc1 occurs befored(1)), while then the next occurrence follows at least three
c1’s, whichis impossible. Thusβ = γ = 1 and the triple sequence must have the form

(0, 0,−1), (α, 1, 0), (α − 1, 0, 1), (α − 2, 1, 0), . . . , (0, 1, 0) or (0, 0, 1)

depending on the parity ofα. ThusX = Dn and we get

t = (1, 2, 3, 4, . . . , n − 1, 0, 2, 3, 4, . . . , n − 2, 1, 2, 3, . . . , 2, 3, 1, 2, 0)

or

t = (0, 2, 3, 4, . . . , n − 1, 1, 2, 3, 4, . . . , n − 2, 0, 2, 3, . . . , 2, 3, 0, 2, 1).

These result in the same kind of triangular heaps as the example ofF(D5, 0) or F(D5, 1)

pictured earlier. This concludes the analysis whenX has exactly one vertex of degree three.
Finally supposeX has no vertices of degree 3 or more, andt begins with a vertexd

which has two chains emanating from it as shown

This is really a special case of the situation analysed above, where nowγ = 0. The same
arguments show thatt is of the form

t = d(1)aα1bβ1d(2)aα2bβ2 · · · d(r )aαr bβr .

Note that we have used the assumption thatt begins withd. Now by neighbourliness, each
αi , βi > 0 for i = 1, . . . , r − 1, and since forαi > 0, αi+1 = αi − 1 we see that the
sequences(α1, α2, . . . , αr ), (β1, β2, . . . , βr ) are decreasing incrementally and one must
end at zero. It follows thatα1 = α, β1 = β andt is uniquely determined, namely

t = daαbβdaα−1bβ−1d · · · daαr bβr .

This gives rise to the family ofAn heaps. Here for example is the caseα = 3, β = 1,
corresponding toX = A5.

This completes the proof.�
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3. Connections and further directions

The heaps we have constructed are examplesof labelled posets, since each vertex may
be considered to be labelled by the corresponding vertex of the Coxeter graph. If we
ignore the labels, these posets are just the irreducible ‘minuscule’ posets defined by Proctor
in [4] and shown in figure 2 of Proctor [5]. As indicated in [4], these posets encapsulate
the structure of some of the most important Bruhat orders on Weyl groups; in fact if an
irreducible Bruhat poset is a lattice then either the Weyl groupW is of typeG2 or the poset
is isomorphic to the poset induced on theW-orbit of a minusculeweight with respect to
the usual ordering of weights.

These posets play interesting roles in algebraic geometry and Lie theory, including
describing the cohomology ring for minuscule flag manifolds including the Grassmanians.
See for example Hiller [2] and Seshadri [7] for connections with the Schubert calculus of
G/P whereP is the stabilizer in a simple Lie groupG of a maximal weight space in a
minuscule representation.

Minuscule representations have the property that all weights are conjugate under the
Weyl group. In this case, the geometry and order structure of this orbit of weights naturally
determines much about the representation.All of the simply laced simple Lie algebras
have minuscule representations with the sole exception ofE8 (which is why the latter
does not appear in our main result). For connections with minuscule representations, see,
Wildberger [12], Stembridge [9], Parker and Rohrle [3], and Donnelly [1].

It is perhaps somewhat remarkable that the distributive latticeF(E7, 6) we have called
the swallow is isomorphic as a lattice to the order ideals in either of the minuscule posets
for E6. This is part of a more general ‘cascading’ phenomenon which goes back to an
observation of Steinberg noted and explained by Proctor in [4]. The minuscule posets for
E6 are themselves lattices of order ideals in the spin posets forD5.

Some other combinatorial characterizations of minuscule posets appear in [4], including
the fact that they constitute all known ‘Gaussian’ posets and that they are exactly the posets
of join-irreducibles of the lattice of weights of minuscule representations of simple Lie
algebras. It is also noted there that minscule posets are strongly Sperner, as well as being
rank unimodal and rank symmetric.

More recently Proctor has shown that the minuscule posets are exactly the self-dual
‘d-complete’ posets in [6]. Stembridge has found a new characterization of ‘colouredd-
complete’ posets which consists of (H1) and (H2) on p 8 of [10]. In this language, the
posets of this paper are those maximal amongst those satisfying (H1) and (H2*) which in
addition satisfy (H2). Here (H2*) refers to having at least two elements whose labels are
adjacent toi contained in every open subinterval between two elements labelledi .

In [12] we show that these posets can be used to systematically construct all the simply
laced simple Lie algebras,with the sole exception ofE8. Clearly there is scope then for
extending this analysis to graphs which are not necessarily simple to cover constructions
of the non-simply laced Lie algebras. ForG2 we refer to [13].

It seems also reasonable to widen the classification result derived here to neighbourly
graphs which are either two-neighbourly or three-neighbourly, and beyond.
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