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A 2-Hilbert space is a category with structures and properties analogous to those
of a Hilbert space. More precisely, we define a 2-Hilbert space to be an Abelian
category enriched over Hilb with a V-structure, conjugate-linear on the hom-
sets, satisfying ( fg, h) =( g, f *h) =( f, hg*). We also define monoidal, braided
monoidal, and symmetric monoidal versions of 2-Hilbert spaces, which we call
2-H*-algbebras, braided 2-H*-algebras, and symmetric 2-H*-algbebras, and we
describe the relation between these and tangles in two, three, and four dimensions,
respectively. We prove a generalized Doplicher�Roberts theorem starting that every
symmetric 2-H*-algebra is equivalent to the category Rep(G) of continuous unitary
finite-dimensional representations of some compact supergroupoid G. The equiv-
alence is given by a categorified version of the Gelfand transform; we also construct
a categorified version of the Fourier transform when G is a compact Abelian group.
Finally, we characterize Rep(G) by its universal properties when G is a compact
classical group. For example, Rep(U(n)) is the free connected symmetric 2-H*-
algebra on one even object of dimension n. � 1997 Academic Press

1. INTRODUCTION

A common theme in higher-dimensional algebra is ``categorification'': the
formation of (n+1)-categorical analogs of n-categorical algebraic struc-
tures. This amounts to replacing equations between n-morphisms by
specified (n+1)-isomorphisms, in accord with the philosophy that any
interesting equation��as opposed to one of the form x=x��is better under-
stood as an isomorphism, or more generally as an equivalence.

In their work on categorification in topological quantum field theory,
Freed [10] and Crane [5] have, in an informal way, used the concept of
a ``2-Hilbert space'': a category with structures and properties analogous to
those of a Hilbert space. Our goal here is to define 2-Hilbert spaces
precisely and begin to study them. We concentrate on the finite-dimen-
sional case, as the infinite-dimensional case introduces extra issues that we
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are not yet ready to handle. We must start by categorifying the various
ingredients in the definition of Hilbert space. These are: (1) the zero
element, (2) addition, (3) subtraction, (4) scalar multiplication, and (5) the
inner product. The first four have well-known categorical analogs.

(1) The analog of the zero vector is a ``zero object.'' A zero object in
a category is an object that is both initial and terminal. That is, there is
exactly one morphism from it to any object, and exactly one morphism to
it from any object. Consider for example the category Hilb having finite-
dimensional Hilbert spaces as objects, and the linear maps between them
as morphisms. In Hilb, any zero-dimensional Hilbert space is a zero object.

(2) The analog of adding two vectors is forming the direct sum, or
more precisely the ``coproduct,'' of two objects. A coproduct of the objects
x and y is an object x�y, equipped with morphisms from x and y to it,
that is universal with respect to this property. In Hilb, for example, any
Hilbert space equipped with an isomorphism to the direct sum of x and y
is a coproduct of x and y.

(3) The analog of subtracting vectors is forming the ``cokernel'' of a
morphism f : x � y. This makes sense only in a category with a zero object.
A cokernel of f : x � y is an object cok f equipped with an epimorphism
g : y � cok f for which the composite of f and g factors through the zero
object, that is universal with respect to this property. Note that while we
can simply subtract a number x from a number y, to form a cokernel we
need to say how the object x is mapped to the object y. In Hilb, for
example, any space equipped with an isomorphism to the orthogonal com-
plement of im f in y is a cokernel of f : x � y. If f is an inclusion, so that
x is a subspace of y, its cokernel is sometimes written as the ``direct
difference'' y�x to emphasize the analogy with subtraction.

An important diifference between zero, addition, and subtraction and
their categorical analogs is that these operations represent extra structure
on a set, while having a zero object, binary coproducts, or cokernels is
merely a property of a category. Thus these concepts are in some sense
more intrinsic to categories than to sets. On the other hand, one pays a
price for this: while the zero elements, sums, and differences are unique in
a Hilbert space, the zero object, coproducts, and cokernels are typically
unique only up to canonical isomorphism.

(4) The analog of multiplying a vector by a complex number is ten-
soring an object by a Hilbert space. Besides its additive properties (zero
object, binary coproducts, and cokernels), Hilb also has a compatible mul-
tiplicative structure, that is, tensor products and a unit object for the tensor
product. In other words, Hilb is a ``ring category,'' as defined by Laplaza
and Kelly [19, 20]. We expect it to play a role in 2-Hilbert space theory
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analogous to the role played by the ring C of complex numbers in Hilbert
space theory. Thus we expect 2-Hilbert spaces to be ``module categories''
over Hilb, as defined by Kapranov and Voevodsky [17].

An important part of our philosophy here is that C is the primordial
Hilbert space, the simplest one upon which the rest are modelled. By
analogy, we expect Hilb to be the primordial 2-Hilbert space. This is part
of a general pattern pervading higher-dimensional algebra; for example,
there is a sense in which nCat is the primordial (n+1)-category. The real
significance of this pattern remains somewhat mysterious.

(5) Finally, what is the categorification of the inner product in a
Hilbert space? It appears to be the ``hom functor.'' The inner product in a
Hilbert spaced x is a bilinear map

( } , } ) : x� _x � C

taking each pair of elements v, w # x to the inner product (v, w). Here x�
denotes the conjugate of the Hilbert space x. Similarly, the hom functor in
a category C is a bifunctor

hom( } , } ) : C op_C � Set

taking each pair of objects c, d # C to the set hom(c, d ) of morphisms from
c to d. This analogy clarifies the relation between category theory and
quantum theory that is so important in topological quantum field theory.
In quantum theory the inner product (v, w) is a number representing the
amplitude to pass from v to w, while in category theory hom(c, d ) is a set
of morphisms passing from c to d.

To understand this analogy better, note that any morphism f : x � y in
Hilb can be turned around or ``dualized'' to obtain a morphism f * : y � x.
The morphism f * is called the adjoint of f and satisfies

( fv, w)=(v, f *w)

for all v # x, w # y. The ability to dualize morphisms in this way is crucial to
quantum theory. For example, observables are represented by self-adjoint
morphisms, while symmetries are represented by unitary morphisms, whose
adjoint equals their inverse.

The ability to dualize morphisms in Hilb makes this category very dif-
ferent from the category Set, in which the only morphisms f : x � y
admitting any natural sort of ``dual'' are the invertible ones. There are,
however, duals for certain noninvertible morphisms in Cat��namely,
adjoint functors. The functor F* : D � C is said to be a right adjoint of the
functor F : C � D if there is a natural isomorphism

hom(Fc, d )$hom(c, F*d )
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for all c # C, d # D. The analogy to adjoints of operators between Hilbert
spaces is clear. Our main point here is that this analogy relies on the more
fundamental analogy between the inner product and the hom functor.

One twist in the analogy between the inner product and the hom functor
is that the inner product for a Hilbert space takes values in C. Since we are
treating Hilb as the categorification of C, the hom-functor for a 2-Hilbert
space should take values in Hilb rather than Set. In technical terms [18],
this suggests that a 2-Hilbert space should be enriched over Hilb.

To summarize, we expect that a 2-Hilbert space should be some sort of
catgegory with (1) a zero object, (2) binary coproducts, and (3) cokernels,
which is (4) a Hilb-module and (5) enriched over Hilb. However, we also
need a categorical analog for the equation

(v, w) =(w, v)

satisfied by the inner product in a Hilbert space. That is, for any two
objects x, y in a 2-Hilbert space there should be a natural isomorphism

hom(x, y)$hom(y, x)

where hom(y, x) is the complex conjugate of the Hilbert space hom(y, x).
(The fact that objects in Hilb have complex conjugates is a categorification
of the fact that elements of C have complex conjugates.) This natural
isomorphism should also satisfy some coherence laws, which we describe in
Section 2. We put these ingredients together and give a precise definition
of 2-Hilbert spaces in Section 3.

Why bother categorifying the notion of Hilbert space? As already
noted, one motivation comes from the study of topological quantum field
theories, or TQFTs. In the introduction to this series of papers [2], we
proposed that n-dimensional unitary extended TQFTs should be treated as
n-functors from a certain n-category nCob to a certain n-category nHilb.
Roughly speaking, the n-category nCob should have 0-dimensional
manifolds as objects, 1-dimensional cobordisms between these as mor-
phisms, 2-dimensional cobordisms between these as 2-morphisms, and so
on up to dimension n. The n-category nHilb, on the other hand, should
have ``n-Hilbert spaces'' as objects, these being (n&1)-categories with
structures and properties analogous to those of Hilbert spaces. (Note that
an ordinary Hilbert space is a ``1-Hilbert space'' and is a 0-category, or set,
with extra structures and properties.)

An eventual goal of this series is to develop the framework needed to
make these ideas precise. This will require work both on n-categories in
general��especially ``weak'' n-categories, which are poorly understood for
n>3��and on the partcular n-categories nCob and nHilb. One of the
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TABLE I

The Category-Theoretic Hierarchy: Expected Results

n=0 n=1 n=2

k=0 Sets Categories 2-categories

k=1 Monoids Monoidal Monoidal
categories 2-categories

k=2 Commutative Braided Braided
monoids monoidal monoidal

categories 2-categories

k=3 Commutative Symmetric Weakly involutory
monoids monoidal monoidal

categories 2-categories

k=4 Commutative Symmetric Strongly involutory
monoids monoidal monoidal

categories 2-categories

k=5 Commutative Symmetric Strongly involutory
monoids monoidal monoidal

categories 2-categories

guiding lights of weak n-category theory is the chart shown in Table I. This
describes ``k-tuply monoidal n-categories''��that is, (n+k)-categories with
only one j-morphism for j<k. The entries only correspond to theorems for
n+k�3, but there is evidence that the pattern continues for arbitrarily
large values of n, k. Note in particular how, as we descend each column, the
n-categories first acquire a ``monoidal'' or tensor product structure, which
then becomes increasingly ``commutative'' in character with increasing k,
stabilizing at k=n+2.

At least in the low-dimensional cases examined so far, the n-categories of
interest in topological quantum field theory have simple algebraic descrip-
tions. For example, knot theorists are familiar with the category of framed
oriented 1-dimensional cobordisms embedded in [0, 1]3. We would call
these ``1-tangles in three dimensions.'' They form not merely a category, but
a braided monoidal category. In fact, they form the ``free braided monoidal
category with duals on one object,'' the object corresponding to the
positively oriented point. More generally, we expect that n-tangles in n+k
dimensions form the ``free k-tuply monoidal n-category with duals on one
object,'' Cn, k . By its freeness, we should be able to obtain a representation
of Cn,k in any k-tuply monoidal n-category with duals by specifying a par-
ticular object therein.

When the codimension k enters the stable range k�n+2 we hope to
obtain the ``free stable n-category with duals on one object,'' Cn,� .
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TABLE II

The Quantum-Theoretic Hierarchy: Expected Results

n=1 n=2 n=3

k=0 Hilbert 2-Hilbert 3-Hilbert
spaces spaces spaces

k=1 H*-algebras 2-H*-algebras 3-H*-algebras

k=2 Commutative Braided Braided
H*-algebras 2-H*-algebras 3-H*-algebras

k=3 Commutative Symmetric Weakly involutory
H*-algebras 2-H*-algebras 3-H*-algebras

k=4 Commutative Symmetric Strongly involutory
H*algebras 2-H*-algebras 3-H*-algebras

k=5 Commutative Symmetric Strongly involutory
H*algebras 2-H*-algebras 3-H*-algebras

A unitary extended TQFT should be a representation of this in nHilb. If
as expected nHilb is a stable n-category with duals, to specify a unitary
extended TQFT would then simply be to specify a particular n-Hilbert
space. More generally, we expect an entire hierarchy of k-tuply monoidal
n-Hilbert spaces in analogy to the category-theoretic hierarchy, as shown
in Table II. We also hope that an object in a k-tuply monoidal n-Hilbert
space H will determine a representation of Cn, k in H, and thus an invariant
of n-tangles in (n+k) dimensions.

We are far from proving general results along these lines! However, in
Section 4 we sketch the structure of 2Hilb as a strongly involutory 3-H*-
algebras, and in Section 5 we define 2-H*-algebras, braided 2-H*-algebras,
and symmetric 2-H*-algebras, and describe their relationships to 1-tangles
in 2, 3, and 4 dimensions, respectively.

An exciting fact about the quantum-theoretic hierarchy is that it automati-
cally subsumes various branches of representation theory. 2-H*-algebras
arise naturally as categories of unitary representations of certain Hopf
algebras, or more generally ``Hopf algebroids,'' which are to groupoids as
Hopf algebras are to groups [21]. Braided 2-H*-algebras arise in a similar
way from certain quasitriangular Hopf algebroids��for example, quantum
groups��while symmetric 2-H*-algebras arise from certain triangular Hopf
algebroids��for example, groups.

In Section 6 of this paper we concentrate on the symmetric case.
Generalizing the Doplicher�Roberts theorem [8], we prove that all sym-
metric 2-H*-algebras are equivalent to categories of representations of
``compact supergroupoids.'' If a symmetric 2-H*-algebra is ``purely bosonic,''
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it is equivalent to a category of representations of a compact groupoid; if
it is ``connected,'' it is equivalent to a category of representations of a
compact supergroup. In particular, any connected even symmetric 2-H*-
algebra is equivalent to the category Rep(G) of continuous unitary finite-
dimensional representations of a compact group G. This is the original
Doplicher�Roberts theorem.

One can view our generalized Doplicher�Roberts theorem as a catego-
rified version of the Gelfand�Naimark theorem. The Gelfand�Naimark
theorem applies to commutative C*-algebras, but one can easily deduce
a version for commutative H*-algebras. Roughly speaking, this says that
every commutative H*-algebra H is isomorphic to a commutative H*-
algebra of functions from some set Spec(H ) to C. Similarly, our theorem
implies that every even symmetric 2-H*-algebra H is equivalent to a sym-
metric 2-H*-algebra of functors from some groupoid Spec(H ) to Hilb. The
equivalence is given explicitly by a categorified version of the Gelfand
transform. We also construct a categorified version of the Fourier trans-
form, applicable to the representation theory of compact abelian groups.

These links between the quantum-theoretic hierarchy and representation
theory give new insight into the representation theory of classical groups.
The designation of a group as ``classical'' is more a matter of tradition
than of some conceptual definition, but in practice what makes a group
``classical'' is that it has a nice right universal property. In other words,
there is a simple description of homomorphisms into it. Using the fact that
group homomorphisms from G to H determine symmetric 2-H*-algebra
homomorphisms from Rep(H ) to Rep(G), one can show that for a classical
group H the symmetric 2-H*-algebra Rep(H ) has a nice left universal
property: there is a simple description of homomorphisms out of it.

For example, the group U(n) has a distinguished n-dimensional unitary
representation \, its fundamental representation on C n. An n-dimensional
unitary representation of any group G is essentially the same as a homo-
morphism from G to U(n). Using this right universal property of U(n), we
show in Section 6 that the category of unitary representations of U(n) is
the ``free symmetric 2-H*-algebra on one object of dimension n.'' This
statement tersely encodes the usual description of the representations of
U(n) in terms of Young diagrams. We also give similar characterizations of
the categories of representations of other classical groups.

In what follows, we denote the composition of 1-morphisms, the
horizontal composition of a 1-morphism and a 2-morphism (in either
order), and the horizontal composition of 2-morphisms by b or simply
juxtaposition. Vertical composition of 2-morphisms is denoted by } . Nota
bene. In composition we use the ordering in which, for example, the
composite of f : x � y and g : y � z is denoted by f b g. We denote the

1312-HILBERT SPACES
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identity morphism of an object x either as 1x or, if there is no danger of
confusion, simply as x. We refer to our earlier papers on higher-dimen-
sional algebra as HDA0 [2] and HDA1 [3].

2. H*-CATEGORIES

Let Hilb denote the category whose objects are finite-dimensional
Hilbert spaces, and whose morphisms are arbitrary linear maps. (Hence-
forth, all Hilbert spaces will taken as finite-dimensional unless otherwise
specified.) The category Hilb is symmetric monoidal, with C as the unit
object, the usual tensor product of Hilbert spaces as the monoidal struc-
ture, and the maps

Sx, y(v�w)=w�v

as the symmetry, where x, y # Hilb, v # x, and w # y. Using enriched
category theory [18] we may thus define the notion of a category enriched
over Hilb, or Hilb-category. Concretely, this amounts to the following:

Defintion 1. A Hilb-category H is a category such that for any pair of
objects x, y # H the set of morphisms hom(x, y) is equipped with the struc-
ture of a Hilbert space, and for any objects x, y, z # H the composition map

b : hom(x, y)_hom(y, z) � hom(x, z)

is bilinear.

We may think of the ``hom'' in a Hilb-category H as a functor

hom: H op_H � Hilb

as follows: An object in H op_H is just a pair of objects (x, y) in H, and
the hom functor assigns to this the object hom(x, y) # Hilb. A morphism
F : (x, y) � (x$, y$) in H op_H is just a pair of morphisms f : x$ � x,
g : y � y$ in H, and the hom functor assigns to F the morphism hom(x, y)
�hom(x$, y$) given by

hom(F )(h)= fhg.

As described in the Introduction, we may regard Hilb as the categorifi-
cation of C. A structure on C which is crucial for Hilbert space theory is
complex conjugation,

&: C � C.
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The categorification of this map is a functor

&: Hilb � Hilb

called conjugation, defined as follows: First, for any Hilbert space x, there
is a conjugate Hilbert space x� . This has the same underlying abelian group
as x, but to keep things straight let us temporarily write v� for the element
of x� corresponding to v # x. Scalar multiplication in x� is then given by

cv� =(c� v)

for any c # C, while the inner product is given by

(v� , w� )=(v, w) .

Second, for any morphism f : x � y in Hilb, there is a conjugate morphism
f� : x� � y� , given by

f� (v� )= f (v)

for all v # x. One can easily check that with these definitions conjugation is
a covariant functor. Note that the square of this functor is equal to the
identity. Also note that a linear map f : x � y� is the same thing as an
antilinear (i.e., conjugate-linear) map from x to y, while a unitary map
f : x � y� is the same thing as an antiunitary map from x to y.

Now, just as in a Hilbert space we have the equation

(v, w) =(w, v)

for any pair of elements, in a 2-Hilbert space we desire an isomorphism

hom(x, y)$hom( y, x)

for every pair of objects. This isomorphism should be ``natural'' in some
sense, but hom(x, y) is contravariant in x and covariant in y, while
hom(y, x) is covariant in x and contravariant in y. Luckily Hilb is a
V-category, which allows us to define ``antinatural isomorphisms'' between
covarant functors and contravariant functors from any category to Hilb.

This works as follows: In general, a V-structure for a category C is
defined as a contravariant functor V : C � C which acts as the identity on
the objects of C and satisfies V2=1C . A V-category is a category equipped
with a V-structure. For example, Hilb is a V-category where for any
morphism f : x � y we define f * : y � x to be the Hilbert space adjoint of f :

( fv, w)=(v, f *w)

for all v # x, w # y.

1332-HILBERT SPACES
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Now suppose that D is a V-category and F : C � D is a covariant
functor, while G : C � D is a contravariant functor. We define an anti-
natural transformation : : F O G to be a natural transformation from F to
G b V. Similarly, an antinatural transformation from G to F is defined to be
a natural transformation from G to F b V.

As a step toward defining a 2-Hilbert space we now define an H*-category.

Definition 2. An H*-category is a Hilb-category with a V-structure
that defines an antinatural transformation from hom(x, y) to hom(y, x).

This may requre some clarification. Given a V-structure V : H � H, we
obtain for any objects x, y # H a function V : hom(x, y) � hom(y, x). By
abuse of notation we may also regard this as a function

V : hom(x, y) � hom(y, x).

We then demand that this define an antinatural transformation from
the covariant functor hom: H op_H � Hilb to the contravariant functor
sending (x, y) # H op_H to hom(y, x) # Hilb.

The following proposition gives a more concrete description of
H*-categories:

Proposition 3. An H*-category H is the same as a Hilb-category
equipped with antilinear maps V : hom(x, y) � hom(y, x) for all x, y # H,
such that

1. f **= f,
2. ( fg)*=g*f *,

3. ( fg, h) =(g, f *h) ,

4. ( fg, h) =( f, hg*)

whenever both sides of the equation are well-defined.

Proof. First suppose that H is an H*-category. By the antinaturality of
V, for all x, y # H there is a linear map V : hom(x, y) � hom(y, x), which is
the same as an antilinear map V : hom(x, y) � hom(y, x). The fact that V is
a V-structure implies properties 1 and 2. As for 3 and 4, suppose (x, y) and
(x$, y$) are objects in H op_H, and let ( f, g) be a morphism from (x, y) to
(x$, y$). The fact that V is an antinatural transformation means that the
following diagram commutes:

hom(x, y) w*w� hom(y, x)

V( f, g) W( f, g)*

hom(x$, y$) w*w� hom(y$, x$)
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where V is the covariant functor

H op_H ww�hom Hilb

and W is the contravariant functor

H op_H ww�
SH op, H H_H op ww�hom Hilb ww�& Hilb,

where in this latter diagram S denotes the symmetry in Cat, hom is
regarded as a contravariant functor from (H op_H)op$H_H op to Hilb,
and the overline denotes conjugation. This is true if and only if for all
h # hom(x, y) and k # hom(y$, x$),

( (V( f, g)h)*, k)=(W( f, g)* h*, k)

or, in other words,

( ( fhg)*, k) =(h*, gkf )

or

( g*h*f *, k)=(h*, gkf ).

Here the inner products are taken in hom(y$, x$), but the equations also
hold with the inner product taken in hom(y$, x$). Taking either f or g to
be the identity, we obtain 3 and 4 after some relabelling of variables.

Conversely, given antilinear maps V : hom(x, y) � hom(y, x) for all
x, y # H, properties 1 and 2 say that these define a V-structure for H, and
using 3 and 4 we obtain

( g*h*f *, k) =(g*h*, kf )

=(h*, gkf ) ,

showing that V is antinatural. K

Corollary 4. If H is an H*-category, for all objects x, y # H the map
V : hom(x, y) � hom(y, x) is antiunitary.

Proof. The map V : hom(x, y) � hom(y, x) is antilinear, and by Parts 3
and 4 of Proposition 3 we have

( f, g) =( g*, f *)=( f *, g*)

for all f, g # hom(x, y), so V is antiunitary. K

1352-HILBERT SPACES
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Next we give a structure theorem for H*-categories. This relies heavily
on the theory of ``H*-algebras'' due to Ambrose [1], so let us first recall
this theory. For our convenience, we use a somewhat different definition of
H*-algebra than that given by Ambrose. Namely, we restrict our attention
to finite-dimensional H*-algebras with multiplicative unit, and we do not
require the inequality &ab&�&a& &b&.

Definition 5. An H*-algebra A is a Hilbert space that is also an
associative algebra with unit, equipped with an antilinear involution
V : A � A satisfying

(ab, c)=(b, a*c)

(ab, c)=(a, cb*)

for all a, b, c # A. An isomorphism of H*-algebras is a unitary operator that
is also an involution-preserving algebra isomorphism.

The basic example of an H*-algebra is the space of linear operators on
a Hilbert space H. Here the product is the usual product of operators,
the involution is the usual adjoint of operators, and the inner product is
given by

(a, b)=k tr(a*b)

where k>0. We denote this H*-algebra by L2(H, k). It follows from the
work of Ambrose that all H*-algebras can be built out of H*-algebras of
this form. More precisely, every H*-algebra A is the orthogonal direct sum
of finitely many minimal 2-sided ideals Ii , each of which is isomorphic as
an H*-algebra to L2(Hi , ki) for some Hilbert space Hi and some positive
real number ki .

This result immediately classifies H*-categories with one object. Given
an H*-category with one object x, end(x) is an H*-category, and is thus
of the above form. Conversely, any H*-algebra is isomorphic to end(x) for
some H*-category with one object x.

We generalize this to arbitrary H*-categories as follows. Suppose first
that H is an H*-category with finitely many objects. Let A denote the
orthogonal direct sum

A=�
x, y

hom(x, y).

Then A becomes an H*-algebra if we define the product in A of morphisms
in H to be their composite when the composite exists, and zero otherwise,
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and define the involution in A using the V-structure of H. A is thus the
orthogonal direct sum of finitely many minimal 2-sided ideals:

A=�
n

i=1

L2(Hi , ki).

For each object x # H, the identity morphism 1x can be regarded as an
element of A. This element is a self-adjoint projection, meaning that

1x*=1x , 12
x=1x .

It follows that we may write

1x=�
n

i=1

px
i

where px
i # L2(Hi , ki) is the self-adjoint projection onto some subspace

H x
i �Hi . Note that the elements 1x , x # H, form a complete orthogonal set

of projections in A. In other words, 1x 1y=0 if x{y, and

:
x # H

1x=1.

Thus each Hilbert space Hi is the orthogonal direct sum of the subspaces H x
i .

This gives the following structure theorem for H*-categories:

Theorem 6. Let H be an H*-category and S any finite set of objects
of H. Then for some n, there exist positive numbers ki >0 and Hilbert spaces
H x

i for i=1, ..., n and x # S, such that the following hold:

1. For i=1, ..., n, let

Hi = �
x # S

H x
i

denote the orthogonal direct sum, and let px
i be the self-adjoint projection

from Hi to H x
i . Then for any objects x, y # S, there is a unitary isomorphism

between the Hilbert space hom(x, y) and the subspace

�
i

px
i L2(Hi , ki) p y

i ��
i

L2(Hi , ki).

Thus we may write any morphism f : x � y as

f =�
i

fi

where fi : H x
i � H y

i .
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2. Via the above isomorphism, the composition map

b : hom(x, y)_hom(y, z) � hom(x, z)

is given by

f b g=�
i

fi gi .

3. Via the same isomorphism, the V-structure

V : hom(x, y) � hom(y, x)

is given by

f *=�
i

fi*.

Conversely, given by a Hilb-category H with V-structure such that the
above holds for any finite subset of S of its objects, H is an H*-category.

Proof. If H has finitely many objects and we take S to be the set of all
objects of H, properties 1�3 follows from the remarks preceding the
theorem. More generally, by Proposition 3 any full subcategory of an
H*-category is an H*-category, so properties 1�3 hold for any finite subset
S of the objects of H.

Conversely, given a Hilb-category H with a V-structure, if every full sub-
category of H with finitely many objects is an H*-category, then H itself
is an H*-category. One may check using Proposition 3 that if S is any
finite subset of the objects of H, the properties 1�3 imply the full sub-
category of H with S as its set of objects is an H*-category. Thus H is an
H*-category. K

The notions of unitarity and self-adjointness will be important in all that
follows.

Definition 7. Let x and y be objects of a V-category. A morphism
u : x � y is unitary if uu*=1x and u*u=1y . A morphism a : x � x is self-
adjoint if a*=a.

Note that every unitary morphism is an isormorphism. Conversely, the
following proposition implies that in an H*-category, isomorphic objects
are isomorphic by a unitary.

Proposition 8. Suppose f : x � y is an isomorphism in the H*-category H.
Then f =au where a : x � x is self-ajoint and u : x � y is unitary.
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Proof. Suppose that f : x � y is an isormorphism. Then applying
Theorem 6 to the full subcategory of H with x and y as its only objects,
we have f =� fi with fi : H x

i � H y
i an isomorphism for all i. Using the

polar decomposition theorem we may write fi =ai ui , where ai : H x
i � H x

i is
the positive square root of fi fi* and ui : H x

i � H y
i is a unitary operator

given by ui=a&1
i fi . Then defining a=� ai and u=� ui , we have f =au

where a is self-adjoint and u is unitary. K

One can prove a more general polar decomposition theorem, allowing
one to write any morphism f : x � y in an H*-category as the product of
a self-adjoint morphism a : x � x and a partial isometry i : x � y, that is, a
morphism for which ii* and i*i are self-adjoint idempotents. However, we
will not need this result here.

3. 2-HILBERT SPACES

The notion of 2-Hilbert space is intended to be the categorification of
the notion of Hilbert space. As such, it should be a category having a zero
object, direct sums and ``direct differences'' of objects, tensor products of
Hilbert spaces with objects, and ``inner products'' of objects. So far, with
out definition of H*-category, we have formalized the notion of a category
in which the ``inner product'' hom(x, y) of any two objects x and y is a
Hilbert space. Now we deal with the rest of the properties:

Definition 9. A 2-Hilbert space is an abelian H*-category.

Recall that an abelian category is an Ab-category (a category enriched
over the category Ab of abelian groups) such that

1. There exists an initial and terminal object.

2. Any pair of objects has a biproduct.

3. Every morphism has a kernel and cokernel.

4. Every monomorphism is a kernel, and every epimorphism is a
cokernel.

Let us comment a bit on what this amounts to. Since an H*-category is
enriched over Hilb it is automatically enriched over Ab. We call an initial
and terminal object a zero object and denote it by 0. The zero object
is a 2-Hilbert space is the analog of the zero vector in a Hilbert space.
We call the biproduct of x and y the direct sum and denote it by x�y.
Recall that, by definition, this is equipped with morphisms px : x�y � x,
px : x�y � y, ix : x � x�y, iy : y � x�y such that

ix px=1x , iy py=1y , pxix+pyiy=1x�y .
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The direct sums in a 2-Hilbert space are the analog of addition in a Hilbert
space. Similarly, the cokernels in a 2-Hilbert space are the analogs of
differences in a Hilbert space. Finally, the ability to tensor objects in a
2-Hilbert space by Hilbert spaces (the analog of scalar multiplication) will
follow from the other properties, so we do not need to include it in the
definition of 2-Hilbert space.

Some aspects of our definition of 2-Hilbert space may seem unmotivated
by the analogy with Hilbert spaces. Why should a 2-Hilbert space have
kernels, and why should it satisfy clause 4 in the definition of abelian
category? In fact, these properties follow from the rest.

Proposition 10. Let H be an H*-category. Then the following are
equivalent:

1. There exists an initial object.

2. There exists a terminal object.

3. There exists a zero object.

Moreover, the following are equivalent:

1. Every pair of objects has a prouct.

2. Every pair of objects has a coproduct.

3. Every pair of objects has a direct sum.

Moreover, the following are equivalent:

1. Every morphism has a kernel.

2. Every morphism has a cokernel.

Finally, if H has a zero object, every pair of objects in H has a direct sum,
and every morphism in H has a cokernel, then H is a semisimple abelian
category.

Proof. It is well-known [23] that an initial or terminal object in an
Ab-category is automatically a zero object. Alternatively, this is true in
every V-category, using the bijection V : hom(x, y) � hom(y, x). It is also
well-known that in an Ab-category, a binary product or coproduct is
automatically a binary biproduct. Furthermore, it is easy to check that, in
any V-category, the morphism j : k � x is a kernel of f : x � y if and only if
j* : x � k is a cokernel of f * : y � x. Thus a V-category has kernels if and
only if it has cokernels.

Now suppose that H is an H*-category with a zero object, direct sums,
and cokernels. Then H has kernels as well, so to show that H is abelian we
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merely need to prove that every monomorphism is a kernel and every
epimorphism is a cokernel. Let us show a monomorphism f : x � y is a
kernel; it follows using the V-structure that every epimorphism is a cokernel.

It suffices to show this result for any full subcategory of H with finitely
many objects, so by Theorem 6 we may write

f =�
i

fi

where fi : H x
i � H y

i is a linear operator. Let p : y � y be given by � pi

where pi is the projection onto the orthogonal complement of the range
of fi . We claim that f : x � y is a kernel of p. Since fi pi =0 for all i we have
fp=0. We also need to show that if f $ : x$ � y is any morphism with
f $p=0, then there is a unique g : x$ � x with f $=gf. Writing f $=� fi$,
the fact that f $p=0 implies that the range of fi$ is contained in the range
of fi . Thus by linear algebra there exists gi : H x$

i � H x
i such that fi$=gi fi .

Letting g=� gi , we have f $=gf, and g is unique with this property
because f is monic.

Finally, note that H is semisimple, i.e., every short exact sequence splits.
This follows from Theorem 6 and elementary linear algebra. K

Given a 2-Hilbert space H, the fact that H is semisimple implies that
every object is isomorphic to a direct sum of simple objects, that is, objects
x for which end(x) is isomorphic as an algebra to C. This fact let us reason
about 2-Hilbert spaces using bases:

Definition 11. Given a 2-Hilbert space H, a set of nonisomorphic
simple objects of H is called a basis if every object of H is isomorphic to
a finite direct sum of objects in that set.

Corollary 12. Every 2-Hilbert space H has a basis, and any two bases
of H have the same cardinality.

Proof. The 2-Hilbert space H has a basis because it is semisimple: given
two bases [e:] and [ f;], each object e: is isomorphic to a direct sum of
copies of the objects f; , but as the e: and f; are simple we must actually
have an isomorphism e:$ f; for some ;. This ; is unique since no distinct
f;'s are isomorphic. This sets up a function from [e:] to [ f;], and similar
reasoning gives us the inverse function. K

Definition 13. The dimension of a 2-Hilbert space is the cardinality of
any basis of it.
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Note that every basis [e:] of a 2-Hilbert space is ``orthogonal'' in the
sense that

hom(e: , e;)${L2(C, k:)
0

:=;
:{;

where the isomorphism is one of H*-algebras, and k: are certain positive
constants. Moreover, up to reordering, the constants k: are independent
of the choice of basis. For suppose x, y are two isomorphic objects in an
H*-category. By Proposition 8 there is a unitary isomorphism f : x � y.
Then there is an H*-algebra isomorphism : : end(x) � end(y) given by
:(g)= f&1gf.

One would also like to be able to tensor objects in a 2-Hilbert space with
Hilbert spaces, but this is a consequence of the definition we have given,
since one may define the tensor product of an object x in a 2-Hilbert space
with an n-dimensional Hilbert space to be the direct sum of n copies of x.
In fact, Hilb has a structure analogous to that of an algebra, with tensor
product and direct sum playing the roles of multiplication and addition.
In the terminology we introduce in Section 5, one says that Hilb is a
``2-H*-algebra.'' One can develop a theory of modules of 2-H*-algebras
following the ideas of Kapranov and Voevodsky [17] and Yetter [30].
Every 2-Hilbert space H is then a module over Hilb. We will not pursue
this further here.

4. 2HILB AS A 2-CATEGORY

We now investigate a certain 2-category 2Hilb of 2-Hilbert spaces. To
keep things simple we take as its objects only finite-dimensional 2-Hilbert
spaces. Nonetheless we prove theorems more generally whenever possible.

Definition 14. A morphism F : H � H $ between 2-Hilbert spaces H
and H $ is an exact functor such that F : hom(x, y) � hom(F(x), F(y)) is
linear and F( f *)=F( f )* for all f # hom(x, y).

Recall that an exact functor is one preserving short exact sequences.
Exactness is an natural sort of condition for functors between abelian
categories. Similarly, the requirement that F : hom(x, y) � hom(F(x), F(y))
is linear is a natural condition for functors between Hilb-categories; one
calls such a functor a Hilb-functor. Finally, F( f *)=F( f )* is a natural
condition for functors between V-categories, and functors satisfying it are
called V-functors.
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The following fact is occasionally handy:

Proposition 15. Let F : H � H $ be a functor between 2-Hilbert spaces
such that for all x, y # H, F : hom(x, y) � hom(F(x), F(y)) is linear. Then
the following are equivalent:

1. F is exact.
2. F is left exact.
3. F is right exact.
4. F preserves direct sums.

Proof. Following Yetter [30], we use the fact that every short exact
sequence splits. K

Definition 16. A 2-morphism : : F O F $ between morphisms F, F $ : H � H $
between 2-Hilbert spaces H and H $ is a natural transformation.

Definition 17. We define the 2-category 2Hilb to be that for which
objects are finite-dimensional 2-Hilbert spaces, while morphisms and
2-morphisms are defined as above.

Now, just as in some sense C is the primordial Hilbert space and Hilb
is the primordial 2-Hilbert space, 2Hilb should be the primordial 3-Hilbert
space. The study of 2Hilb should thus shed light on the properties of the
still poorly understood 3-Hilbert spaces. However, note that C is not
merely a Hilbert space, but also a commutative monoid, in fact a com-
mutative H*-algebra. Similarly, Hilb is not merely a 2-Hilbert space, but
also a symmetric monoidal category when equipped with its usual tensor
product. Indeed, in Section 5 we show that Hilb is a ``symmetric 2-H*-
algebra.'' Likewise, we expect 2Hilb to be not only a 3-Hilbert space, but also
a strongly involutory monoidal 2-category, in fact a ``strongly involutory
3-H*-algebra.'' As sketched in HDA0, commutative monoids, symmetric
monoidal categories, and strongly involutory monoidal 2-categories are all
examples of ``stable'' n-categories. In general we expect nHilb to be a
``stable (n+1)-H*-algebra.'' The results below offer some support for this
expectation.

We begin with a study of duality in 2Hilb, as this is the most distinctive
aspect of Hilbert space theory. Note that every element x # C has a kind of
``dual'' element, namely, its complex conjugate x� . Similarly, the category
Hilb has duality both for objects and for morphisms. At the level of
morphisms, each linear map f : x � y between Hilbert spaces has a dual
f * : y � x, the usual Hilbert space adjoint of f. This defines a V-structure
on H. Duality at the level of objects can be regarded either as a contra-
variant functor assigning to each Hilbert space x its dual x*, or as a
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covariant functor assigning to each Hilbert space x its conjugate x� . These
two viewpoints become equivalent if we take advantage of duality at the
morphism level, since x* and x� are antinaturally isomorphic.

Similarly, 2Hilb has duality for objects, morphisms, and 2-morphisms.
As in Hilb, we can duality at a given level to reinterpret dualities at lower
levels in various ways. This recursive process can become rather confusing
unless we choose by convention to take certain dualities as ``basic'' and
others as derived. Here we follow the philosophy of HDA0: any 2-morphism
: : F O G has a dual :* : G O F, any morphism F : H � H $ has a dual
F* : H $ � H, and every object H has a dual H*. (Our notation differs from
HDA0 in that we use the same symbol to denote all these different levels
of duality.)

4.1. Duality for 2-Morphisms

Duals of 2-morphisms are the easiest to define. It pays to do so in the
greatest possible generality:

Definition 18. Given a category C and a V-category D, the dual :* of
a natural transformation : : F O G is the natural transformation with
(:*)c=(:c)* for all c # C.

It is easy to check that :* is a natural transformation when : is, and that

(:*)*=:, 1*=1.

The vertical composite of natural transformations satisfies

(: } ;)*=;* } :*

when this is defined. When D is a V-category, the horizontal composite of a
functor F : B � C and a natural transformation : : G O H with G, H : C � D
satisfies

(F:)*=F:*.

Similarly, when F : C � D is a V-functor and : : G O H is a natural transfor-
mation between G, H : B � C, we have

(:F )*=:*F.

In particular, taking C, D to be 2-Hilbert space, we obtain the definition
of the dual of a 2-morphism in 2Hilb. We also obtain the notion of
``unitary'' and ``self-adjoint'' natural transformations:
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Definition 19. Given a category C, a V-category D, and functors
F, G : C � D, a natural transformation : : F O G is unitary if

::*=1F , :*:=1G .

A natural transformation : : F O F is self-adjoint if

:*=:.

Equivalently, : is unitary if :c is a unitary morphism in D for all objects
c # C, and self-adjoint if :c is self-adjoint for all c # C.

Note that every unitary natural transformation is a natural isomorphism.
Conversely:

Proposition 20. Supose F, G : H � H $ are morphisms between 2-Hilbert
spaces and : : F O G is a natural isomorphism. Then :=; } # where ; : F O F
is self-adjoint and # : F O G is unitary.

Proof. By Proposition 8, for any x # H we can write the isomorphism
:x : F(x) � G(x) as the composite ;x #x , where ;x : F(x) � F(x) is self-
adjoint and #x : F(x) � G(x) is unitary. More importantly, the polar
decomposition gives a natural way to construct ;x and #x from :x : we take
;x to be the positive square root of :x:x*, and take #x=;&1

x :x .
Since ::* is a natural transformation from F to itself, if we define

P(::*)x=P(:x:x*) for any polynomial P, we have

P(:x :x*) F( f )=F( f ) P(:y:y*)

for any morphism f :x � y. By the finite-dimensional spectral theorem, we
can find a sequence of polynomials Pi such that Pi (:x:x*) � ;x and
Pi (:y*) � ;y . Thus

;x F( f )=F( f );y ,

so ; is a natural transformation from F to itself. It follows that #=;&1 } :
is a natural transformation from F to G. Clearly ; is self-adjoint and # is
unitary. K

4.2. Duality for Morphisms

Duals of morphisms in 2Hilb are just adjoint functors. Normally one
needs to distinguish between left and right adjoint functors, but duality at
the 2-morphism level allows us to turn left adjoints into right adjoints, and
vice versa:
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Proposition 21. Suppose F :H � H $, G :H $ � H are morphisms in
2Hilb. Then F is left adjoint to G with unit @ :1H O FG and counit = : GF O 1H $

if and only if F is right adjoint to G with unit =* :1H $ O GF and counit
@* :FG O 1H .

Proof. The triangle equations for @ and =:

(@F) } (F=)=1F , (G@) } (=G)=1G ,

become equivalent to those for =* and @*:

(=*G) } (G@*)=1G , (F=*) } (@*F)=1F ,

by taking duals. K

As noted by Dolan [7], it is probably quite generally true in n-categories
that duality for j-morphisms allows us to turn ``left duals'' of ( j&1)-
morphisms into ``right duals'' and vice versa. This should give the theory of
n-Hilbert spaces quite a different flavor from general n-category theory

Every morphism in 2Hilb has an adjoint. We prove this using bases and
the concept of a skeletal 2-Hilbert space.

Definition 22. A category is skeletal if all isomorphic objects are equal.

Definition 23. A unitary equivalence between 2-Hilbert spaces H and H $
consists of morphisms U :H � H $, V :H $ � H and unitary natural transfor-
mations @ :1H O UV, = :VU O 1H $ forming an adjunction. If there exists a
unitary equivalence between H and H $, we say they are unitarily equivalent.

Proposition 24. Any 2-Hilbert space is unitarily equivalent to a skeletal
2-Hilbert space.

Proof. Let [e*] be a basis for the 2-Hilbert space H. For any non-
negative integers [n*] with only finitely many nonzero, make a choice of
direct sum

�
*

n*e* ,

where n*e* denotes the direct sum of n* copies of e* . (Recall that the direct
sum is an object equipped with particular morphisms; it is only unique up
to isomorphism, but here we fix a particular choice.) Let H0 denote the full
subcategory of H with only these direct sums as objects. Note that H0

inherits a 2-Hilbert space structure from H, and it is skeletal. Let V :H0 � H
denote the inclusion functor.
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For any x # H there is a unique object U(x) # H0 for which V(U(x)) is
isomorphic to x. By Proposition 8, we may choose a unitary isomorphism

@x :x � V(U(x)).

For x=V(y) we have U(x)=y, so we choose @x to be the identity in this
case. For each morphism f :x � y define U( f ) : U(x) � U(x$) so that the
following diagram commutes:

x f y
@x @y

V(U(x)) www�
V(U( f ))

V(U(y))

It follows that U : H � H0 is a functor.
On may check that U and V are actually morphisms of 2-Hilbert spaces.

Moreover, one may check that there is a natural isomorphism

hom(Ux, y)$hom(x, Vy)

given by

f [ @xV( f ).

It follows that U is left adjoint to V. The unit of this adjunction is @, while the
counit is the identity. These are both unitary natural transformations. K

Just as with Hilbert spaces, phrasing definitions and theorems about
2-Hilbert spaces in terms of a basis is usually a mistake, since they should
be manifestly invariant under unitary equivalence. In comparison, the use
of bases to prove theorems is at worst a minor lapse of taste, and some-
times convenient. This is facilitated by the use of skeletal 2-Hilbert spaces.

Proposition 25. Let F : H � H $ be a morphism in 2Hilb. Then there is
a morphism F* : H $ � H that is left and right adjoint to F.

Proof. Here we opt for a lowbrow proof using bases to illustrate the
analogy between an adjoint functor and the adjoint of a matrix. By
Proposition 24 it suffices to consider the case where H and H $ are skeletal.
Let [e*] be a basis for H and [e$+] a basis for H $. Write

F(e*)=�
+

F*+ e$+
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where F*+ are nonnegative integers and F*+ e$+ denotes the direct sum of F*+

copies of e$+ . Let

F*+*=F*+ .

Defining

F*(e$+)=�
+

F*+* e* ,

one may check that F* extends uniquely to a morphism from H $ to H.
Note that both hom(Fe* , e$+) and hom(e* , F*e$+) may be naturally iden-
tified with a direct sum of F*+ copies of C, which sets up an isomorphism
hom(Fe* , e$+)$hom(e* , F*e$+). One can check that this extends uniquely to
a natural isomorphism

hom(Fx, y)$hom(x, F*y),

so F* is a right adjoint, and by Proposition 2.1 it is also a left ajoint,
of F. K

A basic fact in Hilbert space theory is that two objects in Hilb are
isomorphic if and only if there is a unitary morphism between them. The
same is true of objects in any other 2-Hilbert space, by Proposition 8.
Similarly, two morphisms in 2Hilb are isomorphic if and only if there is a
unitary natural transformation between them, by Proposition 20. Below we
show a similar result for objects in 2Hilb. In general, we expect a recur-
sively defined notion of ``equivalence'' of j-morphisms in an n-category: two
n-morphisms are equivalent if they are equal, while two ( j&1)-morphisms
x, y are equivalent if there exist f : x � y and g : y � x with gf and fg equiv-
alent to the identity on x and y, respectively. In an n-Hilbert space we also
expect a similar notion of ``unitary equivalence'': two (n&1)-morphisms
are unitarily equivalent if they are equal, while two ( j&1)-morphisms x, y
are unitarily equivalent if there exists u : x � y with uu* and u*u unitarily
equivalent to 1x and 1y , respectively. Our results so far lead us to suspect
that, quite generally, equivalent j-morphisms in an n-Hilbert space will be
unitarily equivalent.

Definition 26. An equivalence between 2-Hilbert spaces H and H $ is a
pair of morphisms F : H � H $, G : H $ � H together with natural isomor-
phisms : : 1H O FG, ; : GF O 1H $. If there is an equivalence between H
and H $, we say they are equivalent.

Note that a unitary equivalence is automatically an equivalence.
Conversely:
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Proposition 27. Suppose H and H $ are 2-Hilbert spaces and the
morphisms F : H � H $, G : H $ � H can be extended to an equivalence
between H and H $. Then F and G can be extended to a unitary equivalence
beween H and H $.

Proof Suppose : : 1H O FG, ; : GF O 1H $ are natural isomorphisms. By
Proposition 20 we can find unitary natural transformations # : 1H O FG,
$ : GF O 1H $. We may then obtain an adjunction by replacing # with the
composite #$ given by

1H w�
# FG=F 1H $G ww�

F$&1G FGFG ww�
#&1FG FG

Checking that this is an adjunction is a lengthy but straightforward
calculation. Noting that #$ is unitary, we conclude that (F, G, @, =) is a
unitary equivalence. K

When we are being less pedantic, we call a 2-Hilbert space morphism
F : H � H $ an equivalence if it can be extended to an equivalence in the
sense of Definition 26.

Just as Hilbert spaces are classified by their dimension, we have:

Corollary 28. Two 2-Hilbert spaces are equivalent if and only if they
have the same dimension.

Proof. Since an equivalence between H and H $ carries a basis of H to
a bais of H $, Proposition 12 implies that dimension is preserved by equiv-
alence. By Proposition 24 it thus suffices to show skeletal 2-Hilbert spaces
are equivalent if they have the same dimension. Let [e*] be a basis of H
and [e$*] a corresponding basis of H $. Then there is a unique 2-Hilbert
space morphism with F(e*)=e$* , and the adjunction constructed as in the
proof of Proposition 25 is a unitary equivalence. K

4.3. Duality for Objects

Finally, duals of objects in 2Hilb are defined using an ``internal hom.''
Given 2-Hilbert spaces H and H $, let hom(H, H $) be the category having
2-Hilbert space morphisms F : H � H $ as objects and 2-morphisms between
these as morphisms.

Proposition 29. Suppose H is a finite-dimensional 2-Hilbert space and
H $ is a 2-Hilbert space. Then the category hom(H, H $) becomes a Hilb-
category if for any F, G # hom(H, H $) we make hom(F, G) into a Hilbert
space with the obvious linear structure and the inner product given by

(:, ;)=:
*

(:e*
, ;e*

)
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for any basis [e*] of H. Moreover, hom(H, H $) becomes a 2-Hilbert space
if we define the dual of : : F O G by (:*)x=(:x)*.

Proof. Notre first that hom(F, G) becomes a vector space if we define

(:+;)x=:x+;x (c:)x=c(:x)

for any :, ; : F O G and c # C. Note also that the inner product described
above is nondegenerate, since if :e*

=0 for all objects e* in a basis, then
:=0. Finally, note that the inner product is independent of the choice of
basis: if [e$*] is another basis we may assume after reordering that e*$e$* ,
and by Proposition 8 we may choose unitary isomorphisms u* : e$* , so that

:e$*
=F(u*)* :e*

G(u*)

and similarly for ;. It follows that

(:e$*
, ;e$*

)=(F(u*)* :e*
G(u*), F(u*)* ;e*

G(u*))

=(:e*
, ;e*

).

Since composition of morphisms in hom(H, H $) is bilinear, it becomes a
Hilb-category.

It is easy to check that defining (:*)x=(:x)* makes hom(H, H $) into a
V-category, and using Proposition 3 one can also check that it is an H*-
category. To check that it is a 2-Hilbert space it suffices by Proposition 10
to check that it has a zero object, direct sums, and kernels. Any functor
0: H � H $ mapping all objects in H to zero objects in H $ is initial in
hom(H, H $). Given F, F $ # hom(H, H $), we may take as the direct sum
F�F $ any functor with (F�F $)(x)=F(x)�F(x$) for any object x # H
and (F�F $)( f )=F( f )�F( f $) for any morphism f. Similarly, given
: : F � F $, we may construct ker : # hom(H, H $) by letting (ker :)(x)=
ker :x for any object x and defining (ker :)( f ) for any morphism using the
universal property of the kernel. K

Definition 30. Given a finite-dimensional 2-Hilbert space H, the dual
H* is the 2-Hilbert space hom(H, Hilb).

The following is an analog of the Riesz representation theorem for finite-
dimensional 2-Hilbert spaces. In its finite-dimensional form, the Riesz
representation theorem says that if x is a Hilbert space, any morphism
f : x � C is equal to one of the form

(v, } )
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for some v # H. This determines an isomorphism x� $x*. Similarly, given a
2-Hilbert space H, we say a morphism F : H � Hilb is representable if it is
naturally isomorphic to one of the form

hom(x, } )

for some x # H. The essence of the Riesz representation theorem for
2-Hilbert spaces is that every morphism F : H � Hilb is representable. This
yields an equivalence between H op and H*.

Proposition 31. For any finite-dimensional 2-Hilbert space H, the
morphism U : H op � H* given by

U(x)=hom(x, } ), U( f )=hom( f, } )

is an equivalence between H op and H*.

Proof. It suffices to show that U is fully faithful and essentially surjec-
tive. We can check both of these using a basis [e*] of H. We leave the full
faithfulness to the reader. Checking that U is essentially surjective amounts
to checking that any F # H* is representable. Note there is a ``dual basis''
of 2-Hilbert space morphisms f * # hom(H, Hilb) with

f +(e*)${C

0
*=+
*{+

Since any morphism F : H � Hilb is determined up to natural isomorphism
by its value on the basis [e*], any F # H* is isomorphic to a direct sum
of the [ f *]. But f * is isomorphic to U(e*), so U is essentially surjective. K

4.4. The Tensor Product

Next we develop the tensor product of 2-Hilbert spaces. For this we need
the analog of a bilinear map:

Definition 32. Given 2-Hilbert spaces H, H$, K, a functor F :H_H$ � K
is a bimorphism of 2-Hilbert spaces if for any objects x # H, x$ # H $ the
functors F(x� } ) : H $ � K and F( }�x$) : H � K are 2-Hilbert space mor-
phisms. We write bihom(H_H $, K) for the category having bimorphisms
F : H_H $ � K as objects and natural transformations between these as
morphisms.

Proposition 33. Suppose H and H $ are finite-dimensional 2-Hilbert
spaces and K is a 2-Hilbert space. Then bihom(H_H $, K ) becomes a
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Hilb-category if for any F, G # bihom(H_H $, K) we make hom(F, G) into a
Hilbert space with the obvious linear structure and the inner product given by

(:, ;)= :
*, +

(:(e* , f+) , ;(e* , f+))

for any bases [e*] of H and [ f+] of H $. Moreover, bihom(H_H $, K )
becomes a 2-Hilbert space if we define the dual of : : F O G by (:*)x=(:x)*.

Proof. The proof is analogous to that of Proposition 29. K

Given 2-Hilbert spaces H, H$, and L, note that a bimorphism T :H_H$ � L
induces a morphism

T* : hom(L, K) � bihom(H_H $, K ).

Definition 34. Given 2-Hilbert space H, H$ a tensor product of H
and H$ is a bimorphism T : H_H$ � L together with a choice for each
2-Hilbert space K of an equivalence of 2-Hilbert spaces extending
T* : hom(L, K ) � bihom(H_H$, K).

In the above situation, by abuse of language we may say simply that
T : H_H$ � L is a tensor product of H and H$.

Proposition 35. Given finite-dimensional 2-Hilbert spaces H and H$,
there exists a tensor product T : H_H$ � L. Given another tensor product
T $ : H_H$ � L$, there is an equivalence F : L � L$ for which the following
diagram commutes up to a specified natural isomorphism:

H_H$

T T $

L wwwwww�
F

L$

Proof. Let [e*] be a basis for H, and [ f+] be a basis for H$. Let L be
the skeletal 2-Hilbert space with a basis of objects denoted by [e*� f+]
and with

hom(e*� f+ , e* � f+)=hom(e* , e*)�hom( f+ , f+)

as H*-algebras (using the obvious tensor product of H*-algebras) . There
is a unique bimorphism T : H_H$ � L with T(e* , f+)=e* � f+ . Given a
2-Hilbert space K one may check that T* : hom(L, K) � bihom(H_H$, K )
extends to an equivalence. Choosing such an equivalence for every K we
obtain a tensor product of H and H$.
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Given two tensor products as in the statement of the proposition,
let F : L � L$ be the image of T $ under the chosen equivalence
bihom(H_H$, L$)&hom(L, L$). One can check that L is an equivalence
and that the above diagram commutes up to a specified natural
isomorphism, much as in the usual proof that the tensor product of vector
spaces is unique up to a specified isomorphism. K

Given a tensor product of the 2-Hilbert spaces H and H$, we often write
its underlying 2-Hilbert space as H�H$. This notation may tempt one to
speak of ``the'' tensor product of H and H$, which is legitimate if one uses
the generalized ``the'' as advocated by Dolan [7]. In a set, when we speak
of ``the'' element with a given property, we implicitly mean that this
element is unique. In a category, when we speak of ``the'' object with a given
property, we merely mean that this object is unique up to isomorphism
��typically a specified isomorphism. Similarly, in a 2-category, when we
speak of ``the'' object with a given property, we mean that this object is
unique up to equivalence��typically an equivalence that is specified up to
a specified isomorphism. This is the sense in which we may refer to ``the''
tensor product of H and H$. The generalized ``the'' may be extended in an
obvious recursive fashion to n-categories.

Suppose that H and H$ are finite-dimensional 2-Hilbert spaces. Then for
any pair of objects x # H, x$ # H$, we can use the bimorphism T : H_H$ �
H�H$ to define an object x�x$=T(x, x$) in H�H$. Similarly, given a
morphism f : x � y in H and a morphism f $ : x$ � y$, we obtain a morphism

f � f $ : x�x$ � y�y$

in H�H$. We usually write

f �x$ : x�x$ � y�x$

for the morphism f �1x$ , and

x� f $ : x�x$ � x�y$

for the morphism 1x � f $.
We expect that 2Hilb has the structure of a monoidal 2-category with

the above tensor product as part of the monoidal structure. Kapranov and
Voevodsky [17] have defined the notion of a weak monoidal structure on
a strict 2-category, which should be sufficient for the purpose at hand. On
the other hand, the work of Gordon et al. [14] gives a fully general notion
of weak monoidal 2-category, namely a 1-object tricategory. This should
also be suitable for studying the tensor product on 2Hilb, though it might
be considered overkill. Both these sorts of monoidal 2-category involve
various extra structures besides the tensor product of objects in 2Hilb.
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Most of these should arise from the universal property of the tensor
product.

For example, suppose we are given a morphism F : H � H$ and an
object K in 2Hilb. Thus we have bimorphism T : H_K � H�K and
T $ : H_K $ � H�K $, and T* has some morphism

S : bihom(H_K, H$�K ) � hom(H�K, H$�K )

as inverse up to natural isomorphism. Applying S to the bimorphism given
by the composite

H_K ww�
F_1K H$_K w�

T $ H$�K,

we obtain a morphism we denote by

F�K : H�K � H$�K.

Similarly, given an object H # 2Hilb and a morphism G : K � K $, we obtain
a morphism

H�G : H�K � H�K $.

Moreover, we have:

Proposition 36. Let F : H � H$ and G : K � K $ be morphisms in 2Hilb.
Then the diagram

H�K ww�
F�K H$�K

H�G H$�G

H�K $ ww�
F�K $

H$�K $

commutes up to a specified natural isomorphism

}F, G : (F�K)(H$�G) O (H�G)(F�K $).

Proof. Here we have fixed tensor products of all the 2-Hilbert spaces
involved, so we have bimorphisms

TK, K : H_K � H�K

and so on. Applying the equivalence

bihom(H_K, H$�K $)&hom(H�K, H$�K $)
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coming from the definition of tensor product to the bimorphism given by
the composite

H_K ww�
F_G H$_K $ ww�

TH$, K $ H$�K $, (1)

we obtain a morphism we denote by

F�G : H�K � H$�K $.

We shall construct a natural isomorphism from (F�K)(H$�G) to F�G.
Composing this with an analogous natural isomorphism from F�G to
(H�G)(F�K $), one obtains }F,G .

If we precompose F�G with TH, K we obtain a bimorphism naturally
isomorphic to (1). If we precompose (F�K $)(H$�G) with TH, K , we
obtain a bimorphism naturally isomorphic to

H_K ww�
F_K H$_K ww�

TH$, K H$�K ww�
H$�G H$�K $. (2)

Note also that, in both cases, a specific natural isomorphism is given by the
definition of tensor product. Since precomposition with TH, K is an equiv-
alence between bihom(H_K, H$�K $) and hom(H�K, H$�K $), it thus
suffices to exhibit a natural isomorphism between (1) and (2).

Factoring these by F_K, it suffices to exhibit a natural isomorphism
between

H$_K ww�
H$_G H$_K $ ww�

TH$, K $ H$�K $

and

H$_K ww�
TH$, K H$�K ww�

H$�G H$�K $.

This arises from the definition of H$�G. K

The 2-morphism }F, G is part of the structure one expects in a monoidal
2-category, and the fact that the diagram in Proposition 36 does not com-
mute ``on the noise'' is one of the key ways in which monoidal 2-categories
differ from monoidal categories.

We expect a 2-categorical version of hom-tensor adjointness to hold
for the tensor product defined in this section and the hom defined in Sec-
tion 4.3. In other words, given finite-dimensional 2-Hilbert space H, H$,
and K, the obvious functor from hom(H, hom(H$, K)) to hom(H�H$, K)
should be an equivalence. However, we shall not prove this here.
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4.5. The Braiding

The symmetry in Cat gives braiding morphisms in 2Hilb as follows. Let
H and H$ be 2-Hilbert spaces. We may take their tensor product in either
order, obtaining tensor products T : H_H$ � H�H$ and T $ : H$_H �
H$�H. By the universal property of the tensor product, the bimorphism
given by the composite

H_H$ ww�
SH, H$ H$_H ww�

T $ H$�H

defines a morphism, the braiding

RH, H$ : H�H$ � H$�H.

One can check that RH, H$ is an equivalence.
We expect that 2Hilb has the structure of a braided monoidal 2-category

with the above braiding morphisms. However, the existing notion of
semistrict braided monoidal 2-category introduced by Kapranov and
Voevodsky [17] and subsequently refined in HDA1 is insufficiently general
to cover this example, since 2Hilb is not a semistrict monoidal 2-category.
One should however be able to strictly 2Hilb, obtaining a semistrict
braided monoidal 2-category. Alternatively, the work of Trimble [27]
should give a fully general notion of weak braided monoidal 2-category,
namely a tetracategory with one object and one morphism. This should
apply to 2Hilb without any further strictification.

In any event, both semistrict and weak braided monoidal 2-categories
involve various structures in addition to the braiding morphisms. Most
of these should arise from the universal property of the tensor product
together with the properties of the symmetry in Cat. For example, we
have:

Proposition 37. Let F : H � H$ be a morphism and let K be an object
in 2Hilb. Then the diagram

H�K ww�
F�K H$�K

RH, K RH$, K

K�H ww�
K�F

K�H$

commutes up to a specified natural isomorphism

RF, K : (F�K ) RH$, K O RH,K (K_F ).
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Similarly, given an object H and a morphism G : K � K $ in 2Hilb, the
diagram

H�K ww�
H�G H�K $

RH, K RH, K $

K�H ww�
G�H

K $�H

commutes up to a specified natural isomorphism

RH, G : (H�G) RH, K $ O RH, K (G�H).

Proof. We only treat the first case as the second is analogous. Applying
the equivalence

bihom(H_K, K $�H$)&hom(H�K, K $�H$)

coming from the definition of tensor product to the bimorphism given by
the composite

H_K ww�
F_K H$_K ww�

SH$, K K_H$ ww�
TK, H$ K�H$, (3)

we obtain a morphism we denote by A : H�K � K $�H. We shall con-
struct a natural isomorphism from (F�K) RH$, K to A. Using the fact that
(3) equals

H_K ww�
SH, K K_H ww�

K_F K_H$ ww�
TK, H$ K�H$,

one can similarly obtain a natural isomorphism from A to RH, K (K�F ).
The composite of these is RF, K .

If we precompose A with TH, K we obtain a bimorphism naturally
isomorphic to (3). If we precompose (F�K ) RH$, K , we obtain a
bimorphism naturally isomorphic to

H_K ww�
F_K H$_K ww�

TH$, K H$�K ww�
RH$, K K $�H. (4)

In both cases, a natural isomorphism is given by the definition of tensor
product. It thus suffices to exhibit a natural isomorphism between (3) and
(4). This may be constructed as in the proof of Proposition 36. K

4.6. The Involutor

As indicated in Table I, for 2Hilb to be a stable 2-category it should pos-
sess an extra layer of structure after the tensor product and the braiding,
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namely the ``involutor.'' Also, this structure should have an extra property
making 2Hilb ``strongly involutory.'' The involutor is a weakened form of
the equation appearing in the definition of a symmetric monoidal category.
Namely, while the braiding need not satisfy

RH, H$ RH$, H=1H�H$

for all objects H, H$ # 2Hilb, there should be a 2-isomorphism

IH, H$ : RH, H$ RH$, H O 1H�H$,

the involutor.
We construct the involutor as follows. Choose tensor products T : H_H$ �

H�H$ and T $ : H$_H � H$�H. Then by universality of the tensor
product, the commutativity of

H$_H
SH, H $ SH $, H

H_H$ wwwww�
1H_H $

H_H$

implies that

H$�H
SH, H $ RH $, H

H�H$ wwwww�
1H�H $

H�H$

commutes up to a specified natural transformation. This is the involutor

IH, H$ : RH, H$ RH$, H O 1H�H$ .

In addition, for 2Hilb to be stable, or ``strongly involutory,'' the
involutor should satisfy a special coherence law of its own, in analogy to
how the braiding satisfies a special equation in a symmetric monoidal
category. In HDA0 this equation was described in terms of RH,H$ and a
weak inverse thereof, but it turns out to be easier to give the equation by
stating that the following horizontal composites agree:

IH, H$ b 1RH, H $
: RH,H$RH$, HRH,H$ O RH, H$

and

1RH, H $
b IH$, H : RH, H$ RH$,HRH, H$ O RH, H$ .

This is indeed the case, as one can show using the properties of the tensor
product.
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5. 2-H*-ALGEBRAS

Now we consider 2-Hilbert spaces with extra structure and properties, as
listed in the second column of Table II.

Definition 38. A 2-H*-algebra H is a 2-Hilbert space equipped with a
product bimorphism �: H_H � H, a unit object 1 # H, a unitary natural
transformation ax, y, z : (x�y)�z � x� ( y�z) called the associator, and
unitary natural transformations lx : 1�x � x, rx : x�1 � x called the left
and right unit laws, making H into a monoidal category. We require also
that every object x # H has a left dual.

Recall that for H to be a monoidal category, one demands that the
pentagon

((x�y)�z)�w www�
ax�y, z, w (x�y)� (z�w) www�

ax, y, z�w x� ( y� (z�w))

ax, y, z�w
x�ay, z, w

(x� (y�z))�w wwwwwwwwwwwwwww�
ax, y�z, x x� ((y�z)�w)

commute, as well as the following diagram involving the unit laws:

(1�x)�1 wwwww�
a1, x, 1 1� (x�1)

lx �1 1�rx

x�1 www�
rx x www�

lx 1�x.

Mac Lane's coherence theorem [22] says that every monoidal category
is equivalent, as a monoidal category, to a strict monoidal category, that
is, one for which the associators and unit laws are all identity morphisms.
Sometimes we will use this to streamline formulas by not parenthesizing
tensor products and not writing the associators and unit laws. Such for-
mulas apply literally only to the strict case, but one can always use Mac
Lane's theorem to apply them to general monoidal categories. In practice,
this amounts to parenthesizing tensor products however one likes and
inserting associators and unit laws when needed to make the formulas
make sense.

A left dual of an object x in a monoidal category is an object y together
with morphisms

e : y�x � 1

and

i : 1 � x�y,
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called the unit and counit, such that the following diagrams commute:

x wwwwww�
1x x

i�x x�e

x�y�x

y wwwwwww�
1y y.

y� i e�y

y�x�y

(These diagrams apply literally only when the monoidal category is strict.)
In this situation we also say that x is a right dual of y, and that (x, y, i, e)
is an adjunction. All adjunctions having x as right dual are uniquely
isomorphic in the following sense:

Proposition 39. Given an adjunction (x, y, i, e) in a monoidal category
and an isomorphism f : y � y$, there is an adjunction (x, y$, i $, e$) given by:

i $=i(x� f ), e$=( f&1�x)e.

Conversely, given two adjunctions (x, y, i, e) and (x, y$, i $, e$), there is a
unique isomorphism f : y � y$ for which i $=i(x� f ) and e$=( f&1�x)e.
This is given in the strict case by the composite

y=y�1 ww�
y� i $ y�x�y$ ww�

e�y$
1�y$=y$.

Proof. This result is well known and the proof is a simple calculation.
K

Similarly, any two adjunctions having a given object as right dual are
canonically isomorphic. We may thus speak of ``the'' left or right dual of a
given object, using the generalized ``the,'' as described in Section 4.4. Note
that duality at the morphism level of a 2-H*-algebra allows us to turn left
duals into right duals, and vice versa, at the object level:

Proposition 40. Suppose that H is a 2-H*-algebra. Then (x, x*, i, e) is
an adjunction if and only if (x*, x, e*, i*) is an adjunction.

Proof. The proof is analogous to that of Proposition 21. K

Next we turn to braided and symmetric 2-H*-algebras. A good example
of a braided 2-H*-algebra is the category of tilting modules of a quantum
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group when the parameter q is a suitable root of unity [4]. Categories very
similar to our braided 2-H*-algebras have been studied by Fro� hlich and
Kerler [12] under the name ``C*-quantum categories;'' our definitions dif-
fer only in some fine points. A good example of a symmetric 2-H*-algebra
is the category of finite-dimensional continuous unitary representations of
a compact topological group. Doplicher and Roberts [8] have studied
categories very similar to our symmetric 2-H*-algebras.

Definition 41. A braided 2-H*-algebra is a 2-H*-algebra H equipped
with a unitary natural isomorphism Bx, y : x�y � y�x making H into a
braided monoidal category.

Definition 42. A symmetric 2-H*-algebra is a 2-H*-algebra for which
the braiding is a symmetry.

Recall that for H to be a braided monoidal category, the following two
hexagons must commute:

x� (y�z) www�
a&1

x, y, z (x�y)�z www�
Bx, y �z

(y�x)�z
Bx, y�z ay, x, z

(y�z)�x www�
ay, z, x

y� (z�x) �www
y�Bx, z y� (x�z)

(x�y)�z www�
ax, y, z x� (y�z) www�

x�By, z x� (z�y)

Bx�y, z a&1
x, z, y

z� (x�y) www�
a&1

z, x, y
(z�x)�y �www

Bx, z�y
(x�z)�y.

The braiding is a symmetry if Bx, y=B&1
y, x for all objects x and y.

5.1. The Balancing

In the study of braided monoidal categories where objects have duals, it
is common to introduce something called the ``balancing.'' The balancing
can treated in various ways [12, 16, 26]. For example, one may think of
it as a choice of automorphism bx : x � x for each object x, which is
required to satisfy certain laws. While very important in topology, this
extra structure seems somewhat ad hoc and mysterious from the algebraic
point of view. We now show that braided 2-H*-algebras are automatically
equipped with a balancing. The reason is that not only the objects, but also
the morphisms, have duals. In fact, some of what follows would apply to
any braided monoidal category in which both objects and morphsms have
duals.
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In any 2-H*-algebra, Proposition 40 gives a way to make any object x
into the left dual of its left dual x*. In a braided 2-H*-algebra, x also
becomes the left dual of x* in another way:

Proposition 43. Let H be a braided 2-H*-algebra. Then (x, x*, i, e) is
an adjunction if and only if (x*, x, iBx,x* , B&1

x*, xe) is an adjunction.

Proof. The proof is a simple computation. K

It follows from Proposition 39 that these two ways to make x into the
left dual of x* determine an automorphism of x. Simplifying the formula
for this automorphism somewhat, we make the following definition:

Definition 44. If H is a braided 2-H*-algebra and (x, x*, i, e) is an
adjunction in H, the balancing of the adjunction is the morphism b : x � x
given in the strict case by the composite:

x ww�
e*�x x*�x�x www�

x*�Bx, x x*�x�x ww�
e�x x.

It is perhaps easiest to understand the significance of the balancing in
terms of its relation to topology. We shall be quite sketchy about describ-
ing this, but the reader can fill in the details using the ideas described in
HDA0 and the many references therein. Expecially relevant is the work of
Freyd and Yetter [11], Joyal and Street [15], and Reshetikhin and Turaev
[26, 28]. We discuss this relationship more carefully in the Conclusions.

The basic idea is to use tangles to represent certain morphisms in 2-H*-
algebras. A typical oriented tangle in two dimensions is shown in Fig. 1. If
we fix an adjunction (x, x*, i, e) in a strict 2-H*-algebra H, any such
tangle corresponds uniquely to a morphism in H as follows. As shown in
Fig. 2, vertical juxtaposition of tangles corresponds to the composition
of morphisms, while horizontal juxtaposition corresponds to the tensor
product of morphisms. Thus it suffices to specify the morphisms in H
corresponding to certain basic tangles from which all others can be built up
by composition and tensor product. These basic tangles are shown in
Figs. 3 and 4. A downward-pointing segment corresponds to the identity
on x, while an upward-pointing segment corresponds to the identity on x*.
The two oriented forms of a ``cup'' tangle correspond to the morphisms e
and i*, while the two oriented forms of a ``cap'' correspond to i and e*.

It then turns out that isotopic tangles correspond to the same morphism
in H. The main thing to check is that the isotopic tangles shown in Fig. 5
correspond to the same morphisms. This follows from the triangle diagrams
in the definition of an adjunction. Similar equations with the orientation of
the arrows reversed follow from Proposition 40.
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Fig. 1. Typical tangle in two dimensions.

Fig. 2. Composition and tensor product of tangles.

Fig. 3. Tangles corresponding to 1x and 1x* .

Fig. 4. Tangles corresponding to e, i*, i, and e*.
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Fig. 5. Tangle equations corresponding to the definition of adjunction.

If H is braided, we can also map framed oriented tangles in three dimen-
sions to morphisms in H. A typical such tangle is shown in Fig. 6. We use
the blackboard framing, in which each strand is implicitly equipped with a
vector field normal to the plane in which the tangle is drawn.

We interpret the basic tangles in Figs. 3 and 4 as we did before.
Moreover, we let the tangles in Fig. 7 correspond to the morphisms Bx, x ,
Bx*, x , Bx, x* , and Bx*, x* , and let the tangles in Fig. 8 correspond to the
morphisms B&1

x, x , B&1
x*, x , B&1

x,x* , and B&1
x*, x* .

Now suppose we wish isotopic framed oriented tangles to correspond to
the same morphism in H. Invariance under the second and third
Reidemeister moves follows from the properties of the braiding, so it suffices
to check invariance under the framed version of the first Reidemeister
move. For this, note that the tangle shown in Fig. 9 corresponds to the
balancing of the adjunction (x, x*, i, e). This tangle has a 2? twist in its
framing.

The framed version of the first Reidemeister move, shown in Fig. 10,
represents the cancellation of two opposite 2? twists in the framing. Both
tangles in this picture correspond to the same morphism in H precisely
when the balancing b : x � x is unitary.

Fig. 6. Typical tangle in three dimensions.

164 JOHN C. BAEZ



File: 607J 161741 . By:XX . Date:29:04:97 . Time:15:12 LOP8M. V8.0. Page 01:01
Codes: 1044 Signs: 271 . Length: 45 pic 0 pts, 190 mm

Fig. 7. Tangles corresponding to Bx, x , Bx*, x , Bx,x* , and Bx*, x*.

Fig. 8. Tangles corresponding to B&1
x, x , B&1

x*, x , B&1
x,x* , and B&1

x*, x* .

Fig. 9. Tangle corresponding to the balancing b : x � x.

Fig. 10. Tangle equation corresponding to the unitarity of the balancing.
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In short, we obtain a map from isotopy classes of framed oriented
tangles in three dimensions to morphisms in a braided 2-H*-algebra H
whenever we choose an adjunction in H whose balancing is unitary. This
motivates the following definition:

Definition 45. An adjunction (x, x*, i, e) in a braided 2-H*-algebra is
well-balanced if its balancing is unitary.

Similarly, given any well-balanced adjunction in a symmetric 2-H*-
algebra H, we obtain a map from isotopy classes of framed oriented tangles
in four dimensions to morphisms in H. We may draw tangles in four
dimensions just as we draw tangles in three dimensions, but there is an
extra rule saying that any right-handed crossing is isotopic to the corre-
sponding left-handed crossing. One case of this rule is shown in Fig. 11.
Invariance under these isotopies follows directly from the fact that the
braiding is a symmetry.

The important fact is that well-balanced adjunctions exist and are unique
up to a unique unitary isomorphism. Moreover, all of them have the same
balancing:

Theorem 46. Suppose H is a bradied 2-H*-algebra. For every object
x # H there exists a well-balanced adjunction (x, y, i, e). Given well-balanced
adjunctions (x, y, i, e) and (x, y$, i $, e$) there is a unique morphism u : y � y$
such that

i $=i(x�u), e$=(u&1�x)e,

and this morphism is unitary.

Proof. To simplify notation we assume without loss of generality that
H is strict. Suppose first that x # H is simple. Then for any adjunction
(x, y, i, e), the balancing equals ;1x for some nonzero ; # C. By Proposi-
tion 39 we may define a new adjunction (x, y, |;| 1�2 i, |; |&1�2 e). Since the
balancing of this adjunction equals ; |;|&1 1x , this adjunction is well-
balanced.

Fig. 11. Tangle equation corresponding to symmetry.
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Next suppose that x # H is arbitrary. Using Theorem 6 we can write x
as an orthogonal direct sum of simple objects xj , in the sense that there are
morphisms

pj : x � xj

with

pj*pj=1xj , :
j

pj pj*=1x .

Let yj be a left dual of xj , and define y to be an orthogonal direct sum of
the objects yj , with morphisms

qj : y � yj

such that

qj*qj=1yj , :
j

qj qj*=1y .

Since the xj are simple, there exist adjunctions (xj , yj , ij , ej) for which the
balancings bj : xj � xj are unitary. Define the adjunction (x, y, i, e) by

i=:
j

ij ( pj*�qj*), e=:
j

(qj�pj)ej .

One can check that this is indeed an adjunction and that the balancing
b : x � x of this adjunction is given by

b=:
j

pjbj pj*

and is therefore unitary.
Now suppose that (x, y$, i $, e$) is any other well-balanced adjunction

with x as right dual. Let b$ denote the balancing of this adjunction. We
shall prove that b$=b. By Propositions 8 and 39 there exists a unitary
morphism g : y � y$, and we have

b$=(e$*�x)(y$�Bx, x)(e$�x)

=(e$*(g*�x)�x)(y�Bx,x)((g�x) e$�x).

By Proposition 39, (x, y, (g�x) e$, i(x�g&1)) is an adjunction, so by the
uniqueness up to isomorphism of right adjoints we have (g�x) e$=
(y� f )e for some isomorphism f : x � x. We thus have

b$=(e*(y� f *)�x)(y�Bx,x)((y� f )e�x)

= fbf *.
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We may write x as an orthogonal direct sum

x=�
*

x*

where [e*] is a basis of H and x* is a direct sum of some number of copies
of e* . Then by our previous formula for b we have

b=�
*

;*1x*

with |;* |=1 for all *. We also have

f =�
*

f*

for some morphisms f* : x* � x* . It follows that

b$=�
*

;* f* f**.

Since b and b$ are unitary it follows that each morphism f* f** is unitary.
Since the only positive unitary operator is the identity, using Theorem 6 it
follows that each f* f** is the identity, so b$=b as desired.

By Proposition 39, we know there is a unique isomorphism u : y � y$
with

i $=i(x�u), e$=(u&1�x)e,

and we need to show that u is unitary. Since b$=b, we have

(ib$�y)(x�B&1
y, y )(i*�y)=(ib�y)(x�B&1

y, y )(i*�y),

and if one simplifies this equation using the fact that

b=(e*�x)(y$�Bx, x)(e�x)

and

b$=(e*(u&1�x)*�x)(y$�Bx, x)((u&1 �x) e�x),

one finds that u is unitary. K

Corollary 47. In a braided 2-H*-algebra every well-balanced adjunc-
tion with x as right dual has the same balancing, which we call the balancing
of x and denote as bx : x � x.

Proof. This was shown in the proof above. K
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Note that for any simple object x in a braided 2-H*-algebra, the balanc-
ing bx must equal 1x times some unit complex number, the balancing phase
of x. In physics, the balancing phase describes the change in the wavefunc-
tion of a particle that undergoes a 2? rotation. Note that in a symmetric
2-H*-algebra

bx=(ex*�1x)(1x* �Bx, x)(ex�1x)

=(ex*�1x)(1x*�B*x, x)(ex�1x)

=bx*,

so b2
x=1x . Thus in this case the balancing phase of any simple object must

be \1. In physics, this corresponds to the fact that particles in 4-dimen-
sional spacetime are either bosons and fermions depending on the phase
they acquire when rotated by 2?, while in 3-dimensional spacetime other
possibilities, sometimes called ``anyons,'' can occur [8, 12].

More generally, we make the following definition:

Definition 48. If H is a symmetric 2-H*-algebra, an object x # H is
even or bosonic if bx=1, and odd or fermionic if bx=&1. We say H is even
or purely bosonic if every object x # H is even.

Note that if x�y is an orthogonal direct sum,

bx�y=bx�by ,

so an object in any symmetric 2-H*-algebra is even (resp. odd) if and only
if it is a direct sum of even (resp. odd) simple objects. Also, since

bx�y=(bx�by) Bx, yBy, x ,

it follows that the tensor product of two even or two odd objects is even,
while the tensor product of an even and an odd object is odd.

There is a way to turn any symmetric 2-H*-algebra into an even one,
which will be useful in Section 6.

Proposition 49 (Doplicher�Roberts). Suppose H is a symmetric 2-H*-
algebra. Then there is a braiding B� on H given on simple objects x, y # H
by

B �
x, y=(&1) |x| |y| Bx, y ,

where |x| equals 0 or 1 depending on whether x is even or odd, and similarly
for |y|. Let H � denote H equipped with the new braiding B� . Then H � is an
even symmetric 2-H*-algebra, the bosonization of H.
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Proof. This is a series of straightforward computations. One approach
involves noting that for any objects x, y # H,

B�
x, y= 1

2Bx, y(1x�1y+1x�by+bx�1y&bx�by). K

The above proposition is essentially due to Doplicher and Roberts, who
proved it in a slightly different context [8]. However, our use of the term
``bosonization'' is borrowed from Majid [24], who uses it to denote a
related process that turns a super-Hopf algebra into a Hopf algebra.

5.2. Trace and Dimension

The notion of the ``dimension'' of an object in a braided 2-H*-algebra
will be very important in Section 6. First we introduce the related notion
of ``trace.''

Definition 50. If H is a braided 2-H*-algebra and f : x � x is a
morphism in H, for any well-balanced adjunction (x, x*, i, e) we define the
trace of f, tr( f ) # end(1), by

tr( f )=e*(x*� f )e.

The trace is independent of the choice of a well-balanced adjunction by
Theorem 46. Also, one can show that an obvious alternative definition of
the trace is actually equivalent:

tr( f )=i ( f �x*) i*.

Definition 51. If H is a braided 2-H*-algebra, we define the dimension
of x, dim(x), to be tr(1x).

Note that if x, y are objects in a braided 2-H*-algebra, we have

dim(x�y)=dim(x)+dim(y),

dim(x�y)=dim(x) dim(y),

dim(x*)=dim(x).

Moreover, we have:

Proposition 52. If H is a symmetric 2-H*-algebra and x # H is any
object, then the spectrum of dim(x) is a subset of N=[0, 1, 2, ...].

Proof. We follow the argument of Doplicher and Roberts [8]. For any
n�0, the group algebra of the symmetric group Sn acts as endomorphisms
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of x}n, and the morphisms pS , pA corresponding to complete symmetriza-
tion and complete antisymmetrization, respectively, are self-adjoint projec-
tions in the H*-algebra end(x}n). It follows that tr( pS), tr( pA)�0. If x is
even, a calculation shows that

tr( pA)=
1
n!

dim(x)(dim(x)&1) } } } (dim(x)&n+1).

For this to be nonnegative for all n, the spectrum of dim(x) must lie in N.
Similarly, if x is odd, a calculation shows that

tr( pS)=
1
n!

dim(x)(dim(x)&1) } } } (dim(x)&n+1)

so again the spectrum of dim(x) lies in N. In general, any object dim(x) is
a sum of simple objects, which are either even or odd, so by the additivity
of dimension the spectrum of dim(x) again lies in N. K

For any 2-H*-algebra, the Eckmann�Hilton argument shows that end(1)
is a commutative H*-algebra, and thus is isomorphic to a direct sum of
copies of C. (See HDA0 or HDA1 for an explanation of the Eckmann�
Hilton argument.)

Definition 53. A 2-H*-algebra H is connected if the unit object 1 # H
is simple.

In a connected 2-H*-algebra, end(1)$C. The dimension of any object is
a connected symmetric 2-H*-algebra is thus a nonnegative integer.

In addition to the above notion of dimension it is also interesting to con-
sider the ``quantum dimension.'' Here our treatment most closely parallels
that of Majid [24].

Definition 54. If H is a braided 2-H*-algebra and f : x � x is a
morphism in H, for any well-balanced adjunction (x, x*, i, e) we define the
quantum trace of f, qtr( f ) # end(1), by

qtr( f )=tr(bx f ).

We define the quantum dimension of x, qdim(x), to be qtr(1x).

In the case of a symmetric 2-H*-algebra, the quantum trace is also called
the ``supertrace.'' Suppose H is a connected symmetric 2-H*-algebra and x
is a simple object. Then qdim(x)�0 if x is even and qdim(x)�0 if x is
odd. The idea of odd objects as negative-dimensional is implicit in
Penrose's work on negative-dimensional vector spaces [25].
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5.3. Homomorphisms and 2-Homomorphisms

There is a 2-category with 2-H*-algebras as objects and ``homomor-
phisms'' and ``2-homomorphisms'' as morphisms and 2-morphisms,
respectively. This is also true for braided 2-H*-algebras and symmetric
2-H*-algebras.

Definition 55. Given 2-H*-algebras H and H$, a homomorphism
F : H � H$ is a morphism of 2-Hilbert spaces that is also a monoidal
functor. If H and H$ are braided, we say that F is a homomorphism of
braided 2-H*-algebras if F is additionally a braided monoidal functor. If
H and H$ are symmetric, we say that F is a homomorphism of symmetric
2-H*-algebras if F is a morphism of 2-Hilbert spaces that is also a sym-
metric monoidal functor.

Recall that a functor F : C � C$ between monoidal categories is
monoidal if it is equipped with a natural isomorphism 8x, y : F(x)�F(y) �
F(x�y) making the following diagram commute for any objects x, y, z # C:

(F(x)�F(y))�F(z) wwww�
8x, y�1F(z) F(x�y)�F(z) www�

8x�y, z F((x�y)�z)

aF(x), F(y), F(z) F(ax, y, z)

F(x)� (F(y)�F(z)) wwww�
1F(x) �8y, z F(x)�F(y�z) www�

8x, y�z F(x� (y�z)).

Together with an isomorphism , : 1C$ � F(1C), makes the following
diagrams commute for any object x # C:

1�F(x) ww�
lF(x) F(x)

,�1F(x)
F(lx)

F(1)�F(x) ww�
81, x F(1�x)

F(x)�1 ww�
rF(x) F(x)

1F(x) �,
F(rx)

F(x)�F(1) ww�
8x, 1 F(x�1).

If C and C$ are braided, we say that F is braided if additionally it makes
the following diagram commute for all x, y # C:

F(x)�F(y) wwww�
BF(x), F(y) F(y)�F(x)

8x, y 8y, x

F(x�y) wwww�
F(Bx, y)

F(y�x).
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A symmetric monoidal functor is simply a braided monoidal functor that
happens to go between symmetric monoidal categories! No extra condition
is involved here.

Note that if F : H � H$ is a homomorphism of braided 2-H*-algebras,
F maps any well-balanced adjunction in H to one in H$. Thus it preserves
dimension in the following sense:

dim(F(x))=F(dim(x))

for any object x # H. In particular, if H and H$ are connected, so that we
can identify the dimension of objects in either with numbers, we have
simply dim(F(x))=dim(x).

Definition 56. If H and H$ are 2-H*-algebras, possibly braided or
symmetric, and F, G : H � H$ are homomorphisms of the appropriate sort,
a 2-homomorphism : : F O G is a monoidal natural transformation.

Suppose that (F, 8, ,) and (G, 1, #) are monoidal functors from the
monoidal category C to the monoidal category D. Then a natural transfor-
mation : : F O G is monoidal if the diagrams

F(x)�F(y ) www�
:x �:y G(x)�G(y)

8x, y 1x, y

F(x�y) www�
:x�y G(x�y)

and

1

, #

F(1) w�
:1 G(1)

commute. There are no extra conditions required of ``braided monoidal'' or
``symmetric monoidal'' natural transformations.

Finally, when we speak of two 2-H*-algebras H and H$, possibly
braided or symmetric, being equivalent, we always mean the existence of
homomorphisms F : H � H$ and G : H$ � H of the appropriate sort that
are inverses up to a 2-isomorphism.

6. RECONSTRUCTION THEOREMS

In this section we give a classification of symmetric 2-H*-algebras.
Doplicher and Roberts proved a theorem which implies that connected
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even symmetric 2-H*-algebras are all equivalent to categories of compact
group representations [8, 9]. Here and in all that follows, by a ``represen-
tation'' of a compact group we mean a finite-dimensional continuous
unitary representation. Given a compact group G, let Rep(G) denote the
category of such representations of G. This becomes a connected even sym-
metric 2-H*-algebra in an obvious way. While Doplicher and Roberts
worked using the language of ``C*-categories,'' their result can be stated as
follows:

Theorem 57 (Doplicher�Roberts). Let H be a connected even sym-
metric 2-H*-algebra. Then there exists a homomorphism of symmetric 2-H*-
algebras T : H � Hilb, unique up to a unitary 2-homomorphism. Let U(T ) be
the group of unitary 2-homomorphisms : : T O T, given the topology in which
a net :* # U(T ) converges to : if and only if (:*)x � :x in norm for all x # H.
Then U(T ) is compact, each Hilbert space T(x) becomes a representation of
U(T ), and the resulting homomorphism T� : H � Rep(U(T)) extends to an
equivalence of symmetric 2-H*-algebras.

Note that any continuous homomorphism \ : G � G$ between compact
groups determines a homomorphism of symmetric 2-H*-algebras,

\* : Rep(G$) � Rep(G),

sending each representation _ of G$ to the representation \ b _ of G. The
above theorem yields a useful converse to this construction:

Corollary 58 (Doplicher�Roberts). Let F : H$ � H be a homomorphism
of connected even symmetric 2-H*-algebras. Let T : H � Hilb be a homo-
morphism of symmetric 2-H*-algebras. Then there exists a continuous group
homomorphism

F* : U(T ) � U(FT)

such that F*(:) equals the horizontal composite F b :. Moreover, (F*)*
equals F up to a unitary 2-homomorphism.

Dolan [7] has noted that a generalization of the Doplicher�Roberts
theorem to even symmetric 2-H*-algebras��not necessarily connected��
amounts to a categorification of the Gelfand�Naimark theorem. The spec-
trum of a commutative H*-algebra H is a set Spec(H) whose points are
homomorphisms from H to C. The Gelfand�Naimark theorem implies that
H is isomorphic to the algebra of functions from Spec(H) to C. Similarly,
we may define the ``spectrum'' of an even symmetric 2-H*-algebra H to be
the groupoid Spec(H) whose objects are homomorphisms from H to Hilb,

174 JOHN C. BAEZ



File: 607J 161751 . By:CV . Date:12:05:97 . Time:13:47 LOP8M. V8.0. Page 01:01
Codes: 2801 Signs: 2080 . Length: 45 pic 0 pts, 190 mm

and whose morphisms are unitary 2-homomorphisms between these.
Moreover, we shall show that H is equivalent to a symmetric 2-H*-algebra
whose objects are ``representations'' of Spec(H)��certain functors from
Spec(H) to Hilb. Indeed, our proof of this uses an equivalence

^ : H � Rep(Spec(H ))

that is just the categorified version of the ``Gelfand transform'' for com-
mutative H*-algebras.

In fact, there is no need to restrict ourselves to symmetric 2-H*-algebras
that are even. To treat a general symmetric 2-H*-algebra H we need
objects of Spec(H ) to be homomorphisms from H to a symmetric 2-H*-
algebra of `super-Hilbert spaces.' The spectrum will then be a super-
groupoid'��though not at all the most general sort of thing one could
imagine calling a supergroupoid. (Perhaps a better term would be `balanced
groupoid.')

Definition 59. Define SuperHilb to be the category whose objects are
Z2-graded (finite-dimensional) Hilberty spaces, and whose morphisms are
linear maps preserving the grading.

The category SuperHilb can be made into a symmetric 2-H*-algebra
where the V-structure is the ordinary Hilbert space adjoint, the product is
the usual tensor product of Z2-graded Hilbert spaces, and the braiding is
given on homogeneous elements v # x, w # y by

Bx, y (v�w)=(&1)deg v deg w w�v.

Definition 60. If H is a symmetric 2-H*-algebra, define Spec(H ) to be
the category whose objects are symmetric 2-H*-algebra homomorphisms
F : H � SuperHilb and whose morphisms are unitary 2-homomorphisms
between these.

Definition 61. A topological groupoid is a groupoid for which the
hom-sets are topological spaces and the groupoid operations are con-
tinuous. A compact groupoid is a topological groupoid with compact
Hausdorff hom-sets and finitely many isomorphism classes of objects.

Definition 62. A supergroupoid is a groupoid G equipped with a
natural transformation ; : 1G O 1G , the balancing, with ;2=1. A compact
supergroupoid is a supergroupoid that is also a compact groupoid.

Let H be a symmetric 2-H*-algebra. Then Spec(H ) becomes a topologi-
cal groupoid if for any S, T : H � Hilb we give hom(S, T ) the topology in
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which a net :* converges to : if and only if (:*)x � :x in norm for any
x # H. We shall show that Spec(H ) is a compact groupoid. Also, Spec(H )
becomes a supergroupoid if for any object T # Spec(H ) we define
;T : T O T by

( ;T )x=bT (x)=T(bx)

for any object x # H. One can check that ; : 1Spec(H ) O 1Spec(H ) is a natural
transformation, and ;2=1 because the balancing for H satisfies b2

x=1 for
any x # H.

Definition 63. Given a compact supergroupoid G, a (continuous,
unitary, finite-dimensional) representation of G is a functor F : G � SuperHilb
such that F( g) is unitary for every morphism g in G, F : hom(x, y) �
hom(F(x), F( y)) is continuous for all objects x, y # G, and

F( ;x)=bF(x)

for every object x # G. We define Rep(G) to be the category having
representations of G as objects and natural transformations between these
as morphisms.

Let G be a compact supergroupoid. Then the category Rep(G) becomes
an even symmetric 2-H*-algebra in a more or less obvious way as follows.
Given objects F, F $ # Rep(G), we make hom(F, F $ ) into a Hilbert space
with the obvious linear structure and the inner product given by

(:, ;)=:
x

tr(:*x ;x)

where the sum is taken over any maximal set of nonisomorphic objects
of G. This makes Rep(G) into a Hilb-category. Moreover, Rep(G) becomes
a 2-Hilbert space if we define the dual of : : F O F $ by (:*)x=(:x)*. We
define the tensor product of objects F, F $ # Rep(G) by

(F�F $)(x)=F(x)�F $ (x), (F�F $ )( f )=F( f )�F $( f )

for any object x # G and morphism f in G. It is easy to define a tensor
product of morphisms and associator making Rep(G) into a monoidal
category, and to check that Rep(G) is then a 2-H*-algebra. Finally, Rep(G)
inherits a braiding from the braiding in SuperHilb, making Rep(G) into a
symmetric 2-H*-algebra.

Now suppose H is an even symmetric 2-H*-algebra. Then there is a
functor

^ : H � Rep(Spec(H )),
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the categorified Gelfand transform, given as follows. For every object x # H,
x̂ is the representation with

x̂(T )=T(x)

for all T # Spec(H ), and

x̂(:)=:x

for all : : T O T $, where T, T $ # Spec(H ). For every morphism f : x � y in
H, f� : x̂ O ŷ is the natural transformation with

f� (T )=T( f )

for all T # Spec(H ). Our generalized Doplicher�Roberts theorem states:

Theorem 64. Suppose that H is a symmetric 2-H*-algebra. Then Spec(H )
is a compact supergroupoid and ^ : H � Rep(Spec(H )) extends to an equiv-
alence of symmetric 2-H*-algebras.

Proof. We have described how Spec(H ) is a supergroupoid. To see
that it is compact, note that for any S, T # Spec(H ) the hom-set hom(S, T )
is a compact Hausdorff spaces by Tychonoff 's theorem. We also need to
show that Spec(H ) has finitely many isomorphism classes of objects. The
unit object 1H is the direct sum of finitely many nonisomorphic simple
objects ei , the kernels of the minimal projections pi in the commutative
H*-algebra end(1H ). Any object x # H is thus a direct sum of objects
xi=ei�x, and any morphism f : x � y is a direct sum of morphisms
fi : xi � yi . In short, H is, in a fairly obvious sense, the direct sum of finitely
many connected symmetric 2-H*-algebras Hi . Any homomorphism T : H �
SuperHilb induces a homomorphism from end(1H ) to end(1SuperHilb)$C,
which must annihilate all but one of the projections pi , so T sends one of
the objects xi to 1SuperHilb and the rest to 0. Thus Spec(H ) is, as a groupoid,
equivalent to the disjoint union of the groupoids Spec(Hi), and hence has
finitely many isomorphism classes of objects.

To show that the categorified Gelfand transform is an equivalence, first
suppose that H is even and connected. Then the supergroupoid Spec(H )
has ;=1, so every representation F : Spec(H ) � SuperHilb factors through
the inclusion HilbYSuperHilb. Moreover, by Theorem 57 all the objects
of Spec(H ) are isomorphic, so Spec(H ) is equivalent, as a groupoid, to the
group U(T ) for any T # Spec(H ). We thus obtain an equivalence of sym-
metric 2-H*-algebras between Rep(Spec(H )) and Rep(U(T )) as defined in
Theorem 57. Using this, the fact that T� : H � Rep(U(T )) is an equivalence
translates into the fact that ^ : H � Rep(Spec(H )) is an equivalence.
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Next, suppose that H is even but not connected. Then H is a direct sum
of the even connected symmetric 2-H*-algebras Hi as above, and
Rep(Spec(H )) is similarly the direct sum of the Rep(Spec(Hi)). Because the
categorified Gelfand transform ^ : Hi � Rep(Spec(Hi)) is an equivalence for
all i, ^ : H � Rep(Spec(H )) is an equivalence.

Finally, we treat the general case where H is an arbitrary symmetric
2-H*-algebra. Note that if H and K are symmetric 2-H*-algebras, a sym-
metric 2-H*-algebra homomorphism F : H � K gives rise to a symmetric
2-H*-algebra homomorphism F � : H � � K � between their bosonizations,
where F � is the same as F on objects and morphisms. Note also that F is
an equivalence of symmetric 2-H*-algebras if and only if F � is. Thus to
show that ^ : H � Rep(Spec(H )) is an equivalence, it suffices to show
^ � : H � � Rep(Spec(H ))� is an equivalence.

For this, note that any supergroupoid G has a bosonization G � , in which
the underlying compact groupoid of G is equipped with the trivial balanc-
ing ;=1. Moreover, there is a homomorphism of symmetric 2-H*-algebras

Rep(G )� w�
X

Rep(G � )

sending any representation F # Rep(G )� to the representation X(F ) #
Rep(G � ) given by the commutative square

G � ww�
X(F )

SuperHilb

I
E

G ww�
F

SuperHilb.

Here I : G � � G is the identity on the underlying groupoids, while the
2-H*-algebra homomorphism E : SuperHilb � SuperHilb maps any super-
Hilbert space to the even super-Hilbert space with the same underlying
Hilbert space, and also acts as the identity on morphisms. One may check
that X(F ) is really a compact supergroupoid representation. Similarly,
given a morphism : : F O F $ in Rep(G )� , we define X(:) to be the horizon-
tal composite I b : b E. In fact, X is an equivalence, for given any representa-
tion F of G � we can turn it back into a representation of G by equipping
each Hilbert space F(x), x # G, with the grading F( ;x), where ; is the
balancing of G.

Similarly, for any symmetric 2-H*-algebra H there is an equivalence

Spec(H )� w�
Y

Spec(H � )
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sending any object T # Spec(H )� to the object Y(T ) # Spec(H � ) given by
the commutative square

H � ww�
Y(T )

SuperHilb

I
E

H ww�
T

SuperHilb

where I : H � � H is the identity on the underlying 2-H*-algebras, while E
is given as above.

We thus have equivalences

Rep(Spec(H ))� w�t Rep(Spec(H )� ) w�t Rep(Spec(H � ))

and their composite gives a diagram commuting up to natural isomorphism:

H � ww�^ �

Rep(Spec(H ))�

^

Rep(Spec(H � )).

It follows that ^ � : H � � Rep(Spec(H ))� is an equivalence, as was to be
shown. K

Presumably what Theorem 64 is trying to tell us that there are 2-functors
Rep and Spec going both ways between the 2-category of compact super-
groupoids and the 2-category of symmetric 2-H*-algebras, and that these
extend to a 2-equivalence of 2-categories. We shall not try to prove this
here. However, it is worth noting that for any compact supergroupoid G,
there is a functor

8 : G � Spec(Rep(G))

given as follows. For every object x # G, v is the object of Spec(Rep(G))
with

x� (F )=F(x)

for all F # Rep(G), and

x� (:)=:x
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for all : : F � F $, where F, F $ # Rep(G). For every morphism g : x � y in G,
g� : x� O y� is the natural transformation with

g� (F )=F( g)

for all F # Rep(G ). Presumably, 8 : G � Spec(Rep(G)) is in some sense an
equivalence of compact supergroupoids.

6.1. Compact Abelian Groups

The representation theory of compact abelian groups is rendered espe-
cially simple by the use of Fourier analysis, as generalized by Pontryagin.
Suppose that T is a compact abelian group. Then its dual T� is defned as
the set of equivalence classes of irreducible representations \ of T. The dual
becomes a discrete abelian group with operations given as follows:

[ \][ \$]=[ \�\$],

[ \]&1=[ \*].

Then the Fourier transform is a unitary isomorphism

f : L2(T ) � L2(T� )

given by

f (/\)=$[ \] ,

where /\ is the character of the representation \, and $[ \] is the function
on T� which equals 1 at [ \] and 0 elsewhere.

The Fourier transform has an interesting categorification. Note that the
ordinary Fourier transform has as its domain the infinite-dimensional
Hilbert space L2(T ), which has a basis given by the characters of
irreducible representations of T. The categorified Fourier transform will
have as domain the 2-Hilbert space Rep(T ), which has a basis given by the
irreducible representations themselves. (Taking the character of a represen-
tation is a form of ``decategorification.'') Similarly, just as the ordinary
Fourier transform has as its codomain an infinite-dimensional Hilbert
space of C-valued functions on T� , the categorified Fourier transform will
have as its codomain a 2-Hilbert space of Hilb-valued functions on T� .

More precisely, define Hilb[G] for any discrete group G to be the
category whose objects are G-graded Hilbert spaces for which the total
dimension is finite, and whose morphisms are linear maps preserving the
grading. Alternatively, we can think of Hilb[G] as the category of hermitian
vector bundles over G for which the sum of the dimensions of the fibers
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is finite. We may write any object x # Hilb[G] as a G-tuple [x( g)] g # G

of Hilbert spaces. The category Hilb[G] becomes a 2-H*-algebra in an
obvious way with a product modelled after the convolution product in the
group algebra C[G]:

(x�y)( g)= �
[ g$, g" # G : g$g"=g]

x( g$)�y( g").

If G is abelian, Hilb[G] becomes a symmetric 2-H*-algebra.
Now suppose that T is a compact abelian group. Given any object

x # Rep(T ), we may decompose x into subspaces corresponding to the
irreducible representations of T :

x= �
g # T�

x( g).

We define the categorified Fourier transform

F : Rep(T ) � Hilb[T� ]

as follows. For any object x # Rep(T ), we set

F(x)=[x( g)]g # T� .

Moreover, any morphism f : x � y in Rep(T ) gives rise to linear maps
f ( g) : x( g) � y( g) and thus to a morphism F ( f ) in Hilb[T� ]. One can
check that F is not only a 2-Hilbert space morphism but actually a
homomorphism of symmetric 2-H*-algebras. This is the categorified analog
of how the ordinary Fourier transform sends pointwise multiplication to
convolution. Note that, in analogy to the formula

f (/\)=$[ \]

satisfied by the ordinary Fourier transform, for any irreducible representa-
tion \ of T the categorified Fourier transform F(\) is a hermitian vector
bundle that is 1-dimensional at [\] and 0-dimensional elsewhere.

Theorem 65. If T is a compact abelian group, the categorified Fourier
transform F : Rep(T ) � Hilb(T� ) is an equivalence of symmetric 2-H*-
algebras.

Proof. There is a homomorphism G : Hilb[T� ] � Rep(T ) sending each
object [x( g)]g # T� in Hilb[T� ] to a representation of T which is a direct sum
of spaces x( g) transforming according to the different isomorphism classes
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g # T� of irreducible representations of T. One can check that FG and GF
are naturally isomorphic to the identity. K

6.2. Compact Classical Groups

The representation theory of a ``classical'' compact Lie group has a dif-
ferent flavor from that of general compact Lie groups. The representation
theory of general compact Lie groups heavily involves the notions of
maximal torus, Weyl group, roots, and weights. We hope to interpret this
theory in terms of 2-Hilbert spaces in a future paper. However, the
representation theory of a classical group can also be studied using Young
diagrams [29]. This approach relies on the fact that its category of
representations have simple universal properties. These universal properties
can be described in the language of symmetric 2-H*-algebras, and a
description along these lines represents a distilled version of the Young
diagram theory.

For example, consider the group U(n). The fundamental representation
of U(n) on Cn is the ``universal n-dimensional representation.'' In other
words, for a group to have a (unitary) representation on Cn is precisely for
it to have a homomorphism to U(n). This universal property can also be
expressed as a universal property of Rep(U(n)). Suppose that G is a
compact group. Then any n-dimensional representation y # Rep(G) is
isomorphic to a representation of the form \ : G � U(n). The representa-
tion \ gives rise to a homomorphism

\* : Rep(U(n)) � Rep(G ),

and letting x denote the fundamental representation of U(n), we have
\*(x)=\. Since \ and y are isomorphic, there is a unitary 2-homomor-
phism from \* to a homomorphism

F : Rep(U(n)) � Rep(G )

with F(x)=y.
In short, for any n-dimensional object y # Rep(G ) there is a homomor-

phism F : Rep(U(n)) � Rep(G) of symmetric 2-H*-algebras with F(x)=y.
On the other hand, suppose F $ : Rep(U(n)) � Rep(G) is any other homo-
morphism with F $(x)=y. We claim that there is a unitary 2-homomor-
phism from F to F $. By Corollary 58, there exists a homomorphism
\$ : G � U(n) with a unitary 2-homomorphism from F $ to \$*. On the
other hand, by construction there is a unitary 2-homomorphism from F to
\* for some \ : G � U(n). To show there is a unitary 2-homomorphism
from F to F $, it thus suffices to show that \ and \$ are isomorphic in
Rep(G ). This holds because \$y=F $(x)$\$*(x)=\$.
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Now, since any connected even symmetric 2-H*-algebra is unitarily
equivalent to Rep(G) for some compact G by Theorem 57, we may restate
these results as follows. Suppose H is a connected even symmetric 2-H*-
algebra and let y be an n-dimensional object of H. Then there exists a
homomorphism F : Rep(U(n)) � H with F (x)=y. Moreover, this is unique
up to a unitary 2-homomorphism. Furthermore, we can drop the assump-
tion that H is even by working with the full subcategory whose objects are
all the even objects of H.

We may thus state the universal property of Rep(U(n)) as follows:

Theorem 66. Rep(U(n)) is the free connected symmetric 2-H*-algebra
on an even object x of dimension n. That is, given any even n-dimensional
object y of a connected symmetric 2-H*-algebra H, there exists a homo-
morphism of symmetric 2-H*-algebras F : Rep(U(n)) � H with F(x)=y, and
F is unique up to a unitary 2-homomorphism.

Let 4nx denote the cokernel of pA : x�n � x�n (complete antisym-
metrization), and let S nx denote the cokernel of pS : x�n � x�n (complete
symmetrization). We can describe the category of representations of SU(n)
as follows:

Theorem 67. Rep(SU(n)) is the free connected symmetric 2-H*-algebra
on an even object x with 4nx$1.

Proof. Suppose that G is a compact group and the object y # Rep(G )
has 4ny$1. It follows that y is n-dimensional by the computation in
Proposition 52, and the isomorphism 4ny$1 determines a G-invariant
volume form on the representation y. Thus y is isomorphic to a representa-
tion of the form \ : G � SU(n). The rest of the proof follows that of
Theorem 66. K

Here we can see in a simple context how our theory is a distillation of
the theory of Young diagrams. (The Young diagram approach to represen-
tation theory is more familiar for SU(n) than for U(n).) In heuristic terms,
the above theorem says that every representation of SU(n) is generated
from the fundamental representation x using the operations present in a
symmetric 2-H*-algebra��the V-structure, direct sums, cokernels, tensor
products, duals, and the symmetry��with no relations other than those
implied by the axioms for a connected symmetric 2-H*-algebra and the fact
that x is even and 4nx$1. The theory of Young diagrams makes this
explicit by listing the irreducible representations of SU(n) in terms of mini-
mal projections p : x�x � x�k, or in other words, Young diagrams with k
boxes. The symmetric 2-H*-algebra of representations of a subgroup
G/SU(n), such as SO(n) or Sp(n), is a quotient of Rep(SU(n)). We may
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describe this quotienting process by giving extra relations as in Theorems
69 and 70 below. These extra relations give identities saying that different
Young diagrams correspond to the same representation of G.

The classical groups O(n) and Sp(n) are related to the concept of self-
duality. Given adjunctions (x, x*, ix , ex) and ( y, y*, iy , ey) in a monoidal
category C, for any morphism f : x � y there is a morphism f - : y* � x*,
given in the strict case by the composite:

y*=y*�1 www�
y*�ix y*�x�x* wwww�

y*� f �x* y*�y�x* ww�
ey�x*

1�x*=x*.

(Our notation here differs from that of HDA0.) Since the left dual of an
object in a 2-Hilbert space is also its right dual as in Proposition 40, given
a morphism f : x � x* we obtain another morphism f - : x � x*. Using this
we may describe Rep(O(n)) and Rep(Sp(n)) as certain ``free connected
symmetric 2-H*-algebras on one self-dual object'':

Theorem 68. Rep(O(n)) is the free connected symmetric 2-H*-algebra
on an even object x of dimension n with an isomorphism f : x � x* such that
f -=f.

Proof. Suppose that G is a compact group and the object y # Rep(G ) is
n-dimensional and equipped with an isomorphism f : x � x* with f -=f.
Then there is a nondegenerate pairing: F : y�y � 1 given by F=( y� f ) i*y .
A calculation, given in the proof of Proposition 71, shows that F is sym-
metric. It follows that y is isomorphic to a representation of the form
\ : G � O(n). The rest of the proof follows that of Theorem 66. K

Theorem 69. Rep(Sp(n)) is the free connected symmetric 2-H*-algebra
on one even object x with 4nx$1 and with an isomorphism f : x � x* such
that f -=&f.

Proof. The proof is analogous to that of Theorem 68, except that the
pairing F is skew-symmetric. K

Following the proof of Theorem 67 we may also characterize Rep(SO(n))
as follows:

Theorem 70. Rep(SO(n)) is the free connecteed symmetric 2-H*-
algebra on an even object x with 4nx$1 and with an isomorphism f : x � x*
such that f -=f.

The conditions on the isomorphism f : x � x* in Theorems 68 and 69 are
quite reasonable, in the following sense:
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Proposition 71. Suppose that x is a simple object in a symmetric
2-H*-algebra and that x is isomorphic to x*. Then one and only one of the
following is true : either there is an isomorphism f : x � x* with f = f -, or
there is an isomorphism f : x � x* with f=&f -.

Proof. Note that there is an isomorphism of complex vector spaces

hom(x, x*)$hom(x�x, 1)

f [ (1� f ) i*x ,

and note that

hom(x�x, 1)$hom(S 2x, 1)�hom(42x, 1).

Suppose f : x � x* is an isomorphism and let F=(1�f ) i*x . Since x is
simple, f and thus F � is unique up to a scalar multiple, so F must lie either
in hom(S 2x, 1) or hom(42x, 1). In other words, Bx, xF=\F. Choose a
well-balanced adjunction for x. Assuming without loss of generality that
the 2-H*-algebra is strict, we have

f -=(x� ix)(x�f�x*)(i*x�x*)

=(x� ix)(F�x*)

=\(x� ix)(Bx, xF�x*)

=\( f � ix)(Bx*, x�x*)(i*x�x*)

=\ f bx* .

Since bx*=\1x* depending on whether x, and thus x*, is even or odd, we
have f -=\ f. K

This result is well known if H is a category of compact group representa-
tions [13]. Here one may also think of the morphism f : x � x* as a con-
jugate-linear intertwining operator j : x � x. The condition that f=\ f - is
then equivalent to the condition that j2=\1x . One says that x is a real
representation if j2=1x and a quaternionic representation if j 2=&1x ,
establishing the useful correspondence:

real : complex : quaternionic :: orthogonal : unitary : symplectic.

The following alternate characterization of Rep(U(1)) is interesting
because it emphasizes the relation between duals and inverses. Whenever T
is a compact abelian group and x # Rep(T ), the dual x* is also the inverse
of x, in the sense that x�x*$1. We have:
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Theorem 72. Rep(U(1)) is the free connected symmetric 2-H*-algebra
on an even object x with x�x*$1.

Proof. By Theorem 66 it suffices to show that an object x in a con-
nected symmetric 2-H*-algebra is 1-dimensional if and only if x�x*$1.
On the one hand, by the multiplicativity of dimension, x�x*$1 implies
that dim(x)=1. On the other hand, suppose dim(x)=1. Then we claim
ix : 1 � x�x* and i*x : x�x* � 1 are inverses. First, ix*ix is the identity
since dim(x)=1. Second, ix*ix # end(x�x*) is idempotent since dim(x)=1.
Since x�x* is 1-dimensional, it is simple (by the additivity of dimension),
so ix*ix must be the identity. K

Finally, it is interesting to note that SuperHilb is the free connected sym-
metric 2-H*-algebra on an odd object x with x�x$1. This object x is the
one-dimensional odd super-Hilbert space.

7. CONCLUSIONS

The reader will have noted that some of our results are slight reworkings
of those in the literature. One advantage of our approach is that it
immediately suggests generalizations to arbitrary n. While the general study
of n-Hilbert spaces will require a deeper understanding of n-category
theory, we expect many of the same themes to be of interest. With this in
mind, let us point out some problems with what we have done so far.

One problem concerns the definition of the quantum-theoretic hierarchy.
A monoid is essentially a category with one object. More precisely, a
category with one object x can be reconstructed from the monoid end(x),
and up to isomorphism every monoid comes from a one-object category in
this way. Comparing Tables 1 and 2, one might at first hope that by analogy
an H*-algebra would be a 1-dimensional 2-Hilbert space. Unfortunately,
the way we have set things up, this is not the case.

If H is a 1-dimensional 2-Hilbert space with basis given by the object x,
then end(x) is an H*-algebra. However, end(x) is always isomorphic to C;
one does not get any other H*-algebras this way. The reason appears to be
the requirement that a 2-Hilbert space has cokernels, so that if end(x) has
nontrivial idempotents, x has subobjects. If we dropped this clause in the
definition of a 2-Hilbert space, there would be a correspondence between
H*-algebras and 2-Hilbert spaces, all of whose objects are direct sums of
a single object x. Perhaps in the long run it will be worthwhile to modify
the definition of 2-Hilbert space in this way. On the other hand, an H*-
algebra is also an H*-category with one object. An H*-category has sums
and differences of morphisms, but not of objects, i.e., it need not have
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direct sums and cokernels. Perhaps, therefore, a k-tuply monoidal n-Hilbert
space should really be some sort of ``(n+k)-H*-category'' with one
j -morphism for j<k, and sums and differences of j-morphisms for j�k.

A second problem concerns the program of getting an invarant of
n-tangles in (n+k)-dimensions from an object in a k-tuply monoidal
n-Hilbert space. Let us recall what is known so far here.

Oriented tangles in two dimensions are the morphisms in a monoidal
category with duals, C1, 1 . Here by ``monoidal category with duals'' we
mean a monoidal V-category in which every object has a left dual, the ten-
sor product is a V-functor, and the associator is a unitary natural trans-
formation. Suppose that X is any other monoidal category with duals, e.g.,
a 2-H*-algebra. Then any adjunction (x, x*, i, e) in C uniquely determines
a monoidal V-functor F : C1, 1 � H up to monoidal unitary natural iso-
morphism. The functor F is determined by the requirement that it maps the
positively oriented point to x, the negatively oriented point to x*, and the
appropriately oriented ``cup'' and ``cap'' tangles to e and i.

According to our philosophy we would prefer F to be determined by an
object x # X rather than an adjunction. However, F is not determined up
to natural transformation by requiring that it map the positively oriented
point to x. For example, take X=Hilb and let x # X be any object. We
may let F send the negatively oriented point to the dual Hilbert space x*,
and send the cap and cup to the standard linear maps e : x*�x � C and
i : C � x�x*. Then F(ii*)=dim(x) 1x . Alternatively, we may let F send
the cap and cup to e$=:&1e and i$=:i for any nonzero : # C. Then
F(ii*)=|:| 2 dim(x) 1x . The problem is that while adjunctions in X are
unique up to unique isomorphism, the isomorphism is not necessarily
unitary.

In HDA0 we outlined a way to deal with this problem by strictifying the
notion of a monoidal category with duals. Roughly speaking, this amounts
to equipping each object with a choice of left adjunction, and requiring the
functor F : C1, 1 � X to preserve this choice. Then F is determined up to
monoidal unitary natural transformation by the requirement that it map
the positively oriented point to a particular object x # X. In this paper we
have attempted to take the weak rather than the strict approach. Our point
here is that the weak approach seems to make it more difficult to formulate
the sense in which C1, 1 is the free monoidal category with duals on one
object.

In higher dimensions the balancing plays an interesting role in this issue.
Framed oriented tangles in three dimensions form a braided monoidal
category C1, 2 with duals. Here by ``braided monoidal category with duals''
we mean a monoidal category with duals which is also braided, such that
the braiding is unitary and every object x has a well-balanced adjunction
(x, x*, i, e). For any object x in a braided monoidal category X with duals,
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there is a braided monoidal V-functor F : C1, 2 � X sending the positively
oriented point to x. Moreover, because well-balanced adjunctions are
unique up to unique unitary isomorphism, F is unique up to monoidal
unitary natural isomorphism. This gives a sense in which C1, 2 is the free
braided monoidal category with duals on one object.

Similarly, framed oriented tangles in four dimensions form a symmetric
monoidal category with duals C1,3 , i.e., a braided monoidal category with
duals for which the braiding is a symmetry. Again, for any object x in a
symmetric monoidal category X with duals, there is a symmetric monoidal
V-functor F : C1,3 � X sending the positively oriented point to x, and F is
unique up to monoidal unitary natural isomorphism. (For an alternative
``strict'' approach to the 3- and 4-dimensional cases, see HDA0.)

In short, we need to understand the notion of k-tuply monoidal
n-Hilbert spaces more deeply, as well as the notion of ``free'' k-tuply
monoidal n-categories with duals.
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