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A graph is a unique independence graph if it has a unique maximum independent set. If, 
further, the complement of the maximum independent set is independent, the graph is a strong 
unique independence graph. We characterize strong unique independence graphs and unique 
independence trees. 

An independent set in a graph G is a set of vertices no two of which are joined 
by an edge. A maximum independent set is an independent  set of largest 
cardinality. A graph G will be called a unique independence graph if G has a 
unique maximum independent set L If the complement of I is also independent,  
G will be called a strong unique independence graph. Clearly strong unique 
independence graphs are bipartite. We note that our strong unique independence 
graphs are precisely the semi-irreducible graphs of Harary and Plummer [3]. 
There, the interest was in characterizing graphs G such that G = C(G), where 
C(G) is the core of G. 

In this article, our primary interest is in the relationship between strong unique 
independence graphs and their spanning trees. In addition, we characterize unique 
independence trees and we construct families of regular unique independence 
graphs. 

To illustrate these concepts, we note that if m ~ n, the complete bipartite graphs 
Km,,~ are strong unique independence graphs, as are paths with an odd number of 
vertices. The tree in Fig. 1 is a unique independence graph, but not a strong one. 

y 

Fig. 1 

Our first purpose here is to characterize strong unique independence trees in a 
concise fashion. We then show how to construct all unique independence trees 
from forests of unique independence trees. Finally, we obtain a characterization 

of strong unique independence graphs. 
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In what follows, we will consistently use the following terminology. If G is a 

unique independence graph and I is the maximum independent set in G, then 
vertices in I will be called black vertices. Vertices in G not in I will be called 
white vertices. 

Our  first two lemmas provide constructions of larger unique independence 
graphs from smaller ones. 

Lemma 1. Suppose that G and H are unique independence graphs. Suppose that v 
is a white vertex of G and w is a vertex of H. Let J be the graph formed by adding 

the edge vw to the disjoint union of G and H. Then J is a unique independence 

graph. Further, if G and H are strong and w is black, then J is strong. 

Proof. We claim that I (G)  U I (H)  = I is the unique maximum independent  set in 
J. For, any independent set K in J with [KI>~ I/I would have either at least as 

many vertices in G as I (G)  or at least as many vertices in H as I (H) .  Now, if G 

and H are strong and w is black, it is easy to see that the complement of I in J is 

independent,  so J is strong. []  

Observe that the construction of Lemma 1 does not preserve strong unique 

independence. The graph of Fig. 1 may be gotten by applying this construction, 
where G and H are paths with three vertices. 

Lemma 2. Let G1, G 2 , . . .  , On be (strong) unique independence graphs where 
n >t 2. Let vl, v 2 , . . . ,  v,  be black vertices with v~ in Gi. Form a graph H as follows. 

A d d  a new vertex v to the disjoint union of the Gi's. Join v to each vi by an edge. 

Then H is a (strong) unique independence graph. 

Proof. We claim that I =  (_J['=l I(Gi) is the unique maximum independent  set in 
H. Clearly any independent set as large as I must contain v, else it is independent 

in I.J Gi. But any independent  set containing v can contain no more  than 

II(Gi)I-  1 vertices in each G~. Since n >12, this means that such an independent  set 
must be smaller than I. Now, if each G~ is strong, then the white vertices in each 

G~ form an independent set. The new white vertex v is adjacent only to black 

vertices, so H is strong. [ ]  

Theorem 3. A tree T is a strong unique independence tree if and only if the distance 
between any two end vertices is even. 

Proo | .  If T is strong, then the black and white vertices constitute a two-coloring. 
Hence any path in T passes through alternately black and white vertices, and 
certainly the distance between any two black vertices must be even. But  an end 
vertex must certainly be black. For if v is an end vertex with neighbor w and if v 
were white, then I - { w }  U{v} would be another independent set as large as L 



Graphs with unique maximum independent sets 247 

Conversely, suppose that T has the property that the distance between any two 

end vertices is even. If T is a path,  then it has an odd number of vertices and is 
strong. Otherwise, let v be an end vertex of T. Let w be the vertex of degree at 
least three which is closest to v in T. There is a unique path v = 

Vo, Vl, v2, . . . ,  v,, = w. Remove from T the path Vo, . . . ,  Vn-x, leaving w. What  
remains is a tree T',  and, in T' ,  the only end vertices are in fact end vertices of T. 

Hence the distance between any two end vertices in T '  is even. By induction T'  is 

strong. Consider two cases. First, if w is white in T', we claim that n is odd. For, if 
u is an end vertex of T', then the distance from v to u in T is even. But, since w 

is white in T'  and u is black in T' ,  the distance from w to u in T' is odd. It follows 

that the distance from v to w must  be odd, but this distance is n. We note that the 

path Vo, Va, v 2 , . . . ,  v,,-1 is strong and that v,-1 is black in this path. We invoke 
Lemma I with G = T'  and H = the path. Similarly, if w is black in T' ,  it follows 

that n is even, so the path vo, v ~ , . . . ,  v , -2 is strong, and we invoke Lemma 2. []  

The condition characterizing strong unique independence trees is the same 

condition which characterizes block-cutpoint trees of graphs, and appears in 

Hara ry  and Plummer [3]. 

We now prove a lemma necessary for our characterization of strong unique 

independence graphs. Our lemma is a special case of a very nice theorem of 

Su~kov [5]. We present a slightly different proof. In our  proof, we denote bipartite 
graphs as triples (W, B, F) where (W, B) is the bipartition and F is the edge set. 

We refer to vertices in W and B as white and black vertices respectively. If 

A ___ W, we denote the set of vertices in B adjacent to vertices in A by F(A) .  

Lemma 4. Suppose that G = ( W, B, F) 

0 ~ A ~_ W we have 

is a bipartite graph such that for each 

I r (A) l>  IAI. (.) 

Then there is a spanning subgraph H of G such that H has property (*) and such 
that each v e W has degree two in H. 

Proof.  Suppose that v is a white vertex of degree n t> 3. Let el, e2,. • • ,  e,, be the 

edges incident with v, and let vl, v 2 , . . . ,  v,, be the respective end vertices of these 

edges. We will show that some e~ may be deleted from G, without losing property 
(*). Suppose by way of contradiction that the removal of any ei results in the loss 
of property (*).  Denote the graph obtained by deleting e~- (W,  B, Fi). Then, for 

each i there is A~ ___ W so that Ir~(Ai)l~ IA~I. Clearly, since only one edge was 

deleted, this means that IF~(A,)I= IA, I. Note that each Ai contains v. Hence 

Ir(A,)l--- X +IA, I, and letting A ' i=  A~-{v} ,  we have Ir(A',)l = a +IA',I. 

Note that Fi(A'i) contains each vj, ]:/: i. Hence Fi(A'~)n Fj(A;):~ ¢, but  this is the 

same as saying F(A'~) n F(A}) ~ O. 
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By repeatedly deleting edges incident with white vertices of degree larger than 

two, we obtain a spanning subgraph H with the desired properties. [] 

Theorem 5. A connected graph is a strong unique independence graph if and only 
if it is bipartite and has a spanning tree which is a strong unique independence tree. 

Proof. Suppose G is bipartite and has a spanning strong unique independence 
tree T. Let I be the maximum independent  set in T. Then the complement of I is 

independent  in T, since T is strong. We claim that each edge of G not in T joins a 
vertex in I to a vertex not in I. For, each such edge, added to T, determines a 
cycle. And  if such an edge joined two vertices of I or two vertices not in I, then an 
odd cycle would be formed, contradicting the bipartiteness of G. It follows that I 

and its complement a r e  independent in G. Hence I is certainly maximum 
independent  in G, and G is a strong unique independence graph. 

Conversely, suppose that G is a strong unique independence graph, with 
maximum independent set B. We may then use notation consistent with that in 
Lemma  4, G = (W, B, F). We note first that G has property (*). For, if there were 
0 ~ A _ W such that IF(A)I <~ IA[, then B - F(A)  tA A would be another indepen- 
dent set at least as large as B, which is a contradiction. By Lemma 4, G has a 

spanning subgraph H which still enjoys property (*) and such that every v e W 
has degree two in H. We first claim that H is a forest. For, if H contained a cycle 

C, necessarily even, then the white vertices in C would dominate only the black 
vertices in C. Letting A = C fq W, we would then have !F~(A)I = IAI, contradicting 
(*) in H. Note that every end vertex of the forest H must be in B, since each 
vertex in W has degree two. In any component of H, then, the distance between 
any two end vertices is even, so each component of H is a strong unique 
independence tree. We now extend H to a spanning tree T of G by adding as 
many edges as necessary. Since all end vertices of T are in B, it is clear that B is a 
strong unique independence tree. [] 

We have characterized strong unique independence trees and strong unique 
independence graphs. Now we turn our attention to unique independence trees. 

Theorem 6. A tree T is a unique independence tree with independent set I if and 
only if T has a spanning forest F such that: 

(i) Each component of F is a strong unique independence tree; 
(ii) Each edge in T - F  joins two vertices not in L 

Proof.  One implication follows immediately from Lemma 1. For the other, 
assume T is a unique independence tree with n edges, and that the conditions 
hold for unique independence trees with fewer than n edges. If T has no edges 
which join two vertices not in 1, then clearly the distance between any two end 
vertices of T is even, and T is itself a strong unique independence tree. Otherwise 
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we remove an edge e which joins two vertices not i n / ,  leaving two components T~ 

and T2. We claim that each of T~ and T2 is a unique independence tree. For, if in 

T1 there is another independent set 12 as large as T~ fq/, then (T2 fq I)  U I2 would 
be another independent set in T as large as L It follows that T~ is a unique 

independence tree. So likewise is T2. By induction, each of T1 and T2 has a 
spanning forest with the desired properties. The union of these two forests is the 

desired forest. []  

We now construct some families of regular unique independence graphs. As 

noted above, strong unique independence graphs are bipartite, but  this restriction 

does not apply to unique independence graphs in general. First, we note some 
bounds on the size of independent sets in unique independence graphs. 

Theorem 7. Let G be a unique independence graph, with maximum degree r, and 
suppose that G has n vertices. Let I be the maximum independent set in G. Then: 

(i) II1>I 2n/(r + 2); 

(ii) if G is regular of degree r, Ill < n/2. 

ProoL In Lemma 1 of [4], it is proved that III ~ 2n/(r + 2) - a i/(r + 2), where a ~ is 
the number of vertices in the complement of I with one neighbor in L Clearly 

a l  = 0 and (i) follows, since r III edges are incident w i th / ,  (ii) is clear. [] 

For each r > 2, we now construct a unique independence graph which is regular 

of degree r and whose maximum independent set has exactly the fraction 2/(r + 2) 
of the vertices. Let  e be an edge of a copy G of the complete graph K,+I, and 

suppose e joins vertices v and w. Let e' joining v' and w' be an edge of another 

copy G '  of K,+I. Let  a and b be the vertices of a copy H of K 2. To the graph 

(G - e) LI ( G ' -  e') t.J H, add the edges av, av', bw, and bw'. It is easy to check that 

this is a unique independence graph with 4 independent vertices out of 2r + 4. In 

case r =  3, the above graph is already regular.  If r~>4, we regularize by the 
s tandard technique (see [1, p. 10]), and all the relevant properties are preserved. 

Now we construct examples in which the unique maximum independent set has 

close to half the vertices. Let r >I 4. Let  H be a bipartite graph with bipartition 

(A, B), A = {a~, a2, .  • •, a,}, B = {bl, b2,. • . ,  bn}, and suppose H is chosen so that 
every vertex has degree r -  1, and so that for each i, ai is not adjacent to hi. Join 

a,_~ to a ,  with a new edge, and for each i, 1 <~ i ~< n -  2, Join a~ to b, with a new 

edge. The resulting graph G is a unique independence graph in which b~_l and b, 

have degree r - 1  and all other vertices have degree r. Now, let G1 and G2 be 
copies of G, and let v be a new vertex. Join v to each of the four vertices of 

degree r - 1  in G~ and G2. The resulting graph is a unique independence graph 
with 2n independent vertices out of 4n + 1. If r = 4, the example is regular. If 
r > 4, we regularize as above, and all relevant properties are preserved. In case 

r = 3, a similar construction works. 
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