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1. INTRODUCTION 

Initially, optimization and the theory of best approximation developed 
independently. However, in the 1960s with the appearance of convex 
analysis, it was realized that best approximation problems can be regarded 
as special problems of optimization. This led to a systematic effort to 
obtain approximation results as special cases of more general theorems of 
optimization theory. This parallel treatment is presented in the 
monographs of Holmes [ 141 and Laurent [ 171, which illustrate that there 
is a strong interaction between approximation theory and what is known 
by now as “nonsmooth analysis.” 

This paper develops along these lines and concentrates on problems of 
stability (sensitivity) and stochastic approximation. 

In the study of stability our main tool is the so called 
Kuratowski-Mosco convergence of sets and the corresponding r-con- 
vergence of proper functions. So we perturb the data determining thef-best 
approximations and the f-farthest points and we examine how the sets of 
these points vary. Such sensitivity analysis is, among other things, very 
important in designing efficient numerical algorithms. Additional results in 
this direction were recently obtained by the authors in [20]. 

In stochastic approximation, which is studied in Section 4, we allow both 
the set and the function to depend measurably on a parameter w and we 
examine the dependence on o of the various notions of approximation 
theory. We also study the approximation problem in which the function is 
the integral functional determined by f( ., ). In all these our main tools are 
the theory of normal integrands of Rockafellar [23,24) and the theory of 
measurable multifunctions. 

Finally in Section 5 we have gathered some general results which 
illustrate the strong interaction between approximation theory and non- 
linear analysis. 
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2. PRELIMINARIES 

Let (52, C) be a measurable space and X a Polish space. Let 
F1Q22~\(qi} b e a multifunction (set-valued function) with closed values. 
Then the following statements are equivalent: 

(i) F-(U)=jwER: F(o)nU#dJECfor all LicXopen, 
(ii) o -+ dl-7J.~) = inf;, /.((,,) /lx - zI/ is measurable for all x E X, 
(iii) there exist measurable functions ,f,,: Q -+ X s.t. 

F~~)=cljfn(~)~,,., for all w 6 Q (Castaing’s representation). 

A multifunction satisfying any of the above statements is said to be 
measurable. If there exists a complete, o-finite measure p( .) on Z, (i) + (iii) 
are all equivalent to 

(iv) Gr F= {(w,x)~QxXx:x~ F(w)) ECX B(X), where B(X) is the 
Bore1 g-field of X. 

From now on assume that (Q, Z, p) is a complete probability space and 
X a separable Banach sspace. By X* we will denote its topological dual. 
We will use the notations 

P,,<,(X) = {A s X: nonempty, closed, (convex) ), 

p(..,,,,,(m = {A g Jr: nonempty, (w-)compact, (convex)}, 

where u’ denotes the weak topology on X. If A c X we will denote by 04( .) 
the support function of A, i.e., for all x* E X* Q~(,Y*) = supvta(.~*, s). 

Consider the set Sk= {f( .) E L!JQ):f(w) E F(w) p-a.e.}, i.e., SL. contains 
all selectors of F( .) belonging to the LebesgueeBochner space L:.(Q). 
Clearly Sz. is a closed (maybe empty) subset of L:(Q). It is nonempty if 
and only if inf,, F(co, lj,xli EL’+ (52). We will say that F( .) is integrably boun- 
ded if and only if suprt F,c,jj /JxI/ = IF( E L’+(Q). Using Sj. we can define 
an integral for F( .), 

[ F(o) 44~) = j f(w) &(w):.f(. ) E SY. R R 

where jnf(w) d/l(o) is the usual Bochner integral. This set-valued integral 
is known as Aumann’s integral. For more details on measurable multi- 
functions and their integral we refer to Castaing-Valadier [4], Himmel- 
berg [lo], and Rockafellar [23]. 

Now let us pass to normal integrands. These were introduced and 
studied by Rockafellar [23, 241, as the appropriate generalization to 
accommodate the needs of optimization and optimal control, of the 
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Caratheodory integrands from the calculus of variations. So assume that 
f: Sz x X + lQ is a proper integrand (i.e., f( ., . ) takes values in ( - rc, + K ] 
and f# +cG). We say that f(., .) is a normal integrand if and only if 
w + epif(w, .) = ((x, n) E Xx IW:f(o, X) < 1) is closed valued and 
measurable. A straightforward application of Von Neumann’s projection 
theorem tells us that the above definition is equivalent to saying that f‘( ., . ) 
is 1 x B(X)-measurable and f(~, .) is 1.s.c. for all w E 9. Recall that nor- 
mality is preserved by the Fenchel transform. For more details the reader 
can look at the excellent survey paper of Rockafellar [23]. 

As we already mentioned in the Introduction, in the next section we will 
be using the Kuratowski-Mosco convergence of sets and the corresponding 
z-convergence of proper functions. Very briefly we will recall those notions. 
Let (A,,,A},~1~2X and set w-hm,,,,A,,=(x~X: .Y=w-lim,,,x,, 
-Yk E A ,,k > k3 1) and S&I,,,, A,,= (xEX:.x=s-lim,,,, x,,, .x,,EA,,, 
n 3 1 }. We say that the A,,‘s converge to A in the Kuratowski-Mosco sense 
(denoted by A,, +K M A) if and only if VP&I A,, = A = s-h A,,. If 
{f,,f}, a r E RX are proper functions then (f, },, a r z-converges to f 
(denoted by f,, -‘f) if and only if epif, +K M epif. For more details we 
refer to Mosco [19] and Salinetti-Wets [25]. 

A last piece of terminology. If .J”E RX is proper, by domf we denote the 
effective domain of f( ), i.e., dom f = {x E X:f(x) < sco }. Moreover, all 
&valued functions will be assumed to be proper. 

3. STABILITY RESULTS 

If f~ RX is a proper function and A G X nonempty, then we set 
fA(x)=@,.A .0x-Y) and P,Jx) = {h E A:fA(x) =f(x - h)}. The 
elements of P,,A(~) are said to be elements off-best approximation (f-b.a.) 
to x from the set A. Throughout this paper we will assume that fA( .) is 
proper. 

A sensitivity analysis was first conducted by Brosowski-Deutch- 
Niirnberger [3], who considered a family (A,},, T of subsets of a normed 
space X parametrized by a topological space T and studied the continuity 
of t -+ PA,(x) (heref( .) = I/ .\I ). Recently Tsukada [28] addressed the same 
problem but with a nonparametrized method. Namely he allowed the sets 
{An),> I to converge to A in the K-M sense and then examined what 
happens to the sequence {P.Jx) } n a , . His study was limited to strictly 
convex, reflexive Banach spaces. 

Our first result examines the behavior of P,,,(x) under variations of the 
set A. Assume that X is a Banach space. 
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THEOREM 3.1. If f: X -+ IF! is continuous and w-sequentially I.s.c. and 

{A,,, ‘4 > II > I G P,.(‘v s.t. A,, -=s A, 

then for all x E X, w-i& P,, A,(x) C P,,(x). 

Proof Let h E IV-& P,.A,(~). Then by definition we can find 
h/( E P/&(x) St. h, + “’ h. Let y E A and let 11~ E A,,, s.t. y, -+’ y. This is 
possible since A,, -+ K M A Then using the properties off’( .) we have 

.f(x - hk) Gf(,v -Yk) 

- lim f(x - hk) < limf(x - yk) 

*f(-x - h) cf(x - y). 

Note that h E A and since YE A was arbitrary we conclude that 
h E P,:,h). Q.E.D. 

Remark. Note that with our assumptions on S( .) we cover the case 
where f( . ) = I/ . /I. We could have also assumed that f( .) is w-sequentially 
continuous. 

Let f( .) = /I. I/. Recall that if X is reflexive and strictly convex then every 
A E PI,.(X) is a Chebyshev set, i.e., PA(x) is a singleton for all x E X. Also X 
is said to have property (H) if and only if for every x, +“x with 
11x,, II + llxll we have x, +’ X. Locally uniformly convex spaces (in par- 
ticular Hilbert spaces) have property (H). Using Theorem 3.1 we can have 
the following corollary which is Theorem 3.2(i) of Tsukada [28]. 

COROLLARY (28). If X is reflexive and strictly convex and 

{A,,, A 1 ,! a, c Pfi(x) with 

A,ftl,A as n-+a, 

then for all x E X, PA,(x) --*II’ PA(x) as n --) 0~. 
Zf in addition X has property (H) then PA,(x) + ’ PA(x). 

Proof: Since PA,(x), PA(x) n > 1 are singletons, the first claim of the 
corollary follows directly from Theorem 3.1. Then IIx - P,,,(x)11 < 
!ir~ I/x- PA,(x)l/. Let y,,~ A, s.t. y, --+’ PA(x). Then Ilx-y,)I -+ 
/Ix - PA(x)II. Since I/x- PA,(x)11 ,< I/x-y,, I/ we get that lim I/.X- PA,(x)/1 d 
jlx - PA(x)(I. Thus I/x - PA,(x)11 -+ J(x - PA(x)11 and because X has property 
(H) we get that PA,(x) +’ PA(x). Q.E.D. 

Remark. In the above proof we also got that dAn( .) --t d,( .). 
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Next we will allow f( .) to vary too. Then we have the following variant 
of Theorem 3.1. Assume X if finite dimensional. By 6,( .) we will denote the 
indicator function of A c X. 

THEOREM 3.2. Jf {f,,,f}rr21 5 Rx are continuous, convex, f, -b f as 
n-+m and {A,,,A},,>_,EP,,(X)~.~. A,-+KMA then for all‘ XE 
x, iii% P(&,(X) E P,,,(x). 

Proof. For any x E X, let f, : X + R be defined by f,( y ) =,f(x - y ). Then 
from Corollary 2E of Salinetti-Wets [25] we have f,,,.,( .) +‘f,( .) as 
n + co. Also since A,, -+ K M A, we have that hAn( .) +‘6,( .). Note that 
domf, - dom 6, = R” - A = KY. So by Theorem 5 of McLindenBergstrom 
Cl81 we get that (f,,,y+~,J.)+’ (f,+S.)(.) * (f,,,,+J,J*(.)+‘* 
(f,+d,)*(.) j Gr(f,,.+6,n)*-+K M Gra(f,+6,4)*(.). But recall that 
P,,&) = aCfH,.Y + ~,4,,1*(0) and PIiA(x) = a[,f, + hAI*( Hence it 7 follows easily that hm P,,,,ti(x) c PfiA(x). Q.E.D. 

We will close this section, with a result analogous to Theorem 3.1 but for 
f-farthest points. IffE RX is a proper function, A E X is nonempty then we 
define fA(x)=supyEAf(x-y) and Q,,,(x)= {hEA:,rA(x)=f(x-h)). To 
avoid trivialities we will always assume that fA( .) is proper. Let X be a 
Banach space. By h( ., .) we will denote the Hausdorff distance on 2x. 

THEOREM 3.3. Iff: X+ R is continuous, (A,,},,>, c Pk(X) and A,, --t” A 
as n -+ 00 then for all x E X, ~Jx) -.f,(x) and s-lim Qr,A,(~) E Q,,A(x). 

Proof First note that AE Pk(X). For any YE A, Let J,~E A,, s.r. J’,, -+‘J. 
Then we have 
lim .fA”(X,. 

.f(x -yn) <f&x) =f(.u -J’) < lim .fA,,(x) =.f’(x) 6 
Let h,EA.nal s.t. .fA,,(x) =,f(x - h,,). Observe that 

d,(h,) < d,“(h,) + h(A,, A) = h(A,,, A) -+ 0 as n -+ cc. So dA(h,,) -+ 0. Let 
a,E A s.t. d,(h,) = llhu-aJ. By passing to a subsequence if necessary, we 
may assume that a,, -+‘h E A. Then llh,, - hll < l(h,, - a,,)/ + IIa,, - 1111 -+ 0. So 
h, -+’ h E A. This implies that 

limfAn(x) = limf(x - h,,) =f(x -h) G.[~(.K). 

Hence we finally have thatf,,n( .) -fA( .). Next let h, E Q,,a,,(x) k 2 1 and 
h, +s h. Then&(x) =f(x - hk) --t f(x - h) =.fA(x) as k + as = h E Q,,A(x) 7 
=> s-h Q,;.&) g Q,.Ax). Q.E.D. 

4. STOCHASTIC APPROXIMATION 

Throughout this section assume that (n, 2, p) is a complete probability 
space and X a separable Banach space. 
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In the first result on the f-approximation of random sets we examine 
how the pointwise approximations are related to the aggregate (integral) 
approximation. So we will obtain a relation between the functions 

fFcw,(x) = inf{f(x -VI: Y E I;(o) } 

and 

THEOREM 4.1. F: 52 + P,(X) is measurable with Sh # 4, f: X --+ R is l,s,c., 
convex andfor all x( .) E T’(x) = {x( .) E L?JsZ): x = jn x(w) dp(o)} and all 
y( .)E Sk, f(x(.) -y( .)) is quasintegrable and integrable for one such pair 
(x’( .), y’( .)) then fjAx) = [j, f,(,,](x), where $o denotes the operation of 
continuous infimal convolution. 

Proof: From Lemma 2.1 of Hiai-Umegaki [9] we know that 
w -+fFcwj(x) is measurable. So the continuous inlimal convolution in the 
conclusion of the theorem is well defined. Also from the definition of the 
Aumann integral we have that 

Let x( .) E P’i(X). Then we have 

f~Ax)=~v~~~~s~f ( jQ (x(w)-y(o)) 444). 

Applying Jensen’s inequality (see Kozek-Suchanecki [ 15, Corollary 
7.11) we get that 

fjF(x) 6 inf -“~.I~5:~~f(x(OI)--y((U))dl(W). 

Since x( .) E 5!“(x) was arbitrary we have that 

fjF(X) d inf s Y(-IES: R f (x(m) -Y(W)) h(o). 
‘i(-)EY’(-i) 

M0/52il-5 
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Applying Theorem 2.2 of [9] we have that 

Hence we have shown that 

(1) 

Next let h E jn F(o) &(o) s.t. f(x - h) <fsF(x) + E, E > 0. Note that 
h = In h(o) &L(w) with h( .) E SL. Let x( .) = x-h + h( .). Clearly 
x( . ) E P(x) and f(x(w) - h(w)) = f(x - h) <ffJx) + E. Also 
fFc,,b(4) GM4 - 04). So we have .&&W) G&4 + E. 
Integrating both sides over S2 we get that 

Let E JO. We have that 

From (1) and (2) we conclude thatfgJx) = [jnfFcw,](x). Q.E.D. 

Remark. If f( .) is such that f(x( .)) is quasintegrable for all 
x( .) E L:(Q), then the theorem is true for all x E X. This is the case iff( .) is 
bounded from below. 

When f( . ) = 11. (I, then the quasintegrability hypothesis is automatically 
satisfied and if F: R -+ P,(X) is as above then: 

COROLLARY. For all x E X, dsF(x) = [fn dncO,](x). 

For the pointwise approximation problem we can say more. By S, we 
will denote the set of measurable selectors of F( .). Also a set A E X non- 
empty is said to be f-proximinal if and only if for all x E X, P,,A(~) # @. 
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THEOREM 4.2. Zf f: X + R is 1s.~. and F: Q --+ P/(X) is measurable with 
F(w) being f-proximinal for all UI EQ then for all XE X, there exists 
h( .) E S,s.t. for all o E 0, fF(Oj(x) =f (x - h(o)). 

Proof. For x E X consider the multifunction w -+ P,-,(,,(x). By 
definition we have that 

P,.w,J-~) = Ch E x:f (x - h) -fmn,(x) = g,(w h) = 0) C-J F(w). 

Recall that w -+fFcwj(x) is measurable, while f (x- .) is 1s.~. Hence 
gI;(w, h) being the sum of two normal integrands is normal. Thus 

Gr P,.fi-C.j(x)= {(w, h):g,(w, h)=O} nGr FEZXB(X). 

Apply Aumann’s selection theorem to find h: Sz -+ X measurable s.t. 
h(o) E P1,FCcoj(x) for all w E a. Therefore f (x - h(w)) =fFtCuj(x). Q.E.D. 

Remark. The above result is still true if instead of XE X we have a 
measurable function x: D + X. 

Next consider the following integral functional 

&(x(.))=jQf( 07 x(u)) dP(U), 

where f: Sz x X + R is a measurable integrand and x: 52 + X is measurable. 
Additional hypotheses will be introduced later. Let Mc L!Js2) and define 

Having established this notation consider a multifunction F: SL + 2*\ { 4) 
s.t. SL# 0. We will examine the following two problems. 

(1) For ~~52, find hEF(o) s.t.f,,,,(o,x(o))=f(w,x(o)-h). 

(2) Find h( .) E Sk s.t. I&x( .)) = Z((x( .) - h( .)). 

BY Pm. .), no,(x(u)h w ESZ we will denote the solution set of problem 
(I), while by P,,&x( . )) we will denote the solution set of (2). 

Under normality and measurability hypotheses on f (., .) and F( .), 
respectively, we can show as in Theorem 4.2 that o --, P,.,,,,, ), FCc,,,(x(w)) is 
nonempty, closed valued, and measurable. 

Our next theorem compares those two solution sets. 

THEOREM 4.3. If f: Q x X + R is a normal, convex integrand s.t. for all 
x( .) E L:(Q), f ( ., x( .)) is integrable and F: C2 + P&X) is integrably 
bounded, then for any x( . ) E L:(Q) we have P,,,,;(x( . )) = S&, ,,~, +(. )) and 
is a w-compact subset of L:(Q). 
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Proof: First note that since for all o ESZ,~(O, .)E f,(x) = {proper, 
I.s.c., convex, R-valued functions defined on X} and F(o) E P,&X), then 
by Weierstrass theorem we have that P I(o, .), F,w)W4) Z 12/. Furthermore 
as we already pointed out w + PfcW, .,,RUJ)(x(o)) is a measurable mul- 
tifunction, with w-compact, convex values. Also it is integrably bounded 
since F( .) is. So from Proposition 3.1 of [21] we deduce that 
S&,, jn,,CXC.jj # QI, is w-compact and convex in L:(Q). 

It is clear that Sb,, ) F( +.)) E P,,s, 
I&x( .)) = Z,(x( .) - h( I)‘). So we have 

I (x( .)). Let h( .) E P+(x( .)). Then 

s Cf(w, x(w) -h(o)) -fF(w)(w x(o))1 44Q)) = 0. 
R 

Since f(w, x(o)) - h(o)) >fF(oJ(o, x(w)) p-a.e. we get that 

fb4 44) - 44) =fFco)b 44) me. 

=h(+S’p/,, ,.n )(d.)). 

Thus the claim of the theorem follows. Q.E.D. 

Remark. When f( ., .) = 11.11, then the above theorem tells us that for 
any x( .) E L:(Q), the best approximation from Sk is also a pointwise best 
approximation to x(w) from F(o) and vice versa. Furthermore the set of 
such best approximations is w-compact in L:(Q). 

Working as above we can have an analogous result forf-farthest points. 

THEOREM 4.4. If f: Sz x X + R is C x B(X)-measurable and w-U.S.C. in x 
and for all x( .) E L:(Q), f (., x( .)) is integrable, while F: Q + P&X) is 
integrably bounded, then &, s;(x( .)) = S&, ,,n ,cxc.Jj for all x( .) E L:(Q). 

Theorem 4.3 is useful in obtaining interesting information about the 
structure of certain f-proximinal sets. 

If f 6 RX is a proper function and A a nonempty subset of X, then we say 
that A is an f-sun if for each XE X\A there exists h E P,,(x) s.t. 
h E P,,(h + 2(x-h)) for all ,? > 0. We will say that A is a strict f-sun if this 
is true for all h E Pr A(~). Note that if f ( .) = 11.11, then the above definition 
reduces to the classical definition of solarity of a set (see Vlasov [29]). 

As before X is a separable Banach space. 

THEOREM 4.5. Zf f: Q x X + Iw is a Caratheodory, sublinear integrand s.t. 
for all x( .) E L:(Q), f (., x( .)) is integrable and F: 52 -+ PWkc(X) is integrably 
bounded, then F(w) is an f (0, .)-sun p-a.e. if and only if Sk is an If-sun. 
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Proof: First assume that Si is a If-sun. This means that for all 
x( .) E Lk(s2) there exists h( .) E P,,s;(x( .)) s.t. h( .) E P,,,,$h( .) + L(x( .) - 
h( .))) for all i > 0. Let x(o) =x and use Theorem 4.3, to get that 

for all A > 0, which means that P,,,, .), Ft.(wj(x) is an f(~, .) sun p-a.e. 
Now assume that Z’(W) is an f(o, .)-sun p-a.e. By definition this means 

that for p-almost all OE Sz we have that, for all x E 2%’ there exists 
hEP fCw, .), FCo)(x) s.t. h E P,-,,, .), ,,,(h +2(x-h)) for all % ~0. Let 
x( .) E L:(O) and consider the multifunction f( .) defined by 

From Govindarajulu-Pai [7] we know that x + P,,,, .j,FCo,,(x) is U.S.C. 
So we can write that 

f(w)= f-j Pm, .), mdh + J(x(w) - A)). 
120 

i. = ratmnal 

3 f( . ) has a measurable graph (see [4, Theorem 111-401). 
Applying Aumann’s selection theorem to find h: !2 + X measurable st. 

h(o)Er(W) for all WE&?. So we have that 

h(o) E P/co, .I, F(W) (h(o) + 440) -h(w))), oEn 

jh(.)ES~(.,.),,.,(h(.)+I(x(.)-h(.))) 

~h(.)~P~.,:(h(.)+;l(x(.)-h(.))), A 2 0. 

which proves that Sk is an ZfLsun. Q.E.D. 

Now we will pass to the integral functional F: X+ R defined by 
F(x) = jnf(o, x) C+(O), wheref( ., .) is a convex integrand. The next result 
provides a necessary and sufficient condition for the existence off-b.a. 

Assume that X is a reflexive, separable Banach space. 

PROPOSITION 4.1. rf f: Q x X -+ W is a normal, convex integrand s.t. for 
all x: Q + X measurable and bounded, f ( ., x( . )) is integrable and A is a non- 
empty, closed, convex subset of X, then for all x E X we have, h E P,,,(x) if 
and only if there exists 

X*(+S&(.+,) s.t.x*= I x*(w) 4(o) and oA(x*) = (x*, h). 
R 
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ProoJ: Note that inf,.. F(x-y)=inf,.,[F,+6,](y), where F,(y)= 
F(x-y). From convex analysis (see [24]) we know that he P,;A(~) if and 
only if OE~(F,+ 6,)(h). But from Theorem 23(a) of Rockafellar [24] we 
know that F( .) is continuous, convex. So applying the Moreau-Rockafellar 
theorem (see Laurent [ 173) we get that 

0 E 8(F, + h,)(h) = dF.,(h) + c%,(h). 

Observe that 8F,(h) = -~F(x-h). Also from Theorem 23 (b) of 
Rockafellar [24] we know that 

iw(x - h) = s, df(o, x-h) d/l(o). 

So there exits x*( .) E SAfc., \-phJ s.t. x* = jn x*(o) @(co) and x* E i36a(h). 
f-fence (x*, y-h) 6 0 for all y E A. Thus CJ~(X*) = (x*, h). Q.E.D. 

Useful for the purposes of numerical analysis is the concept of s-f-best 
approximation. We will say that h E A is an s-fib.a. to x from A if we have 
f(x - h) G&(X) + E. We will denote the set of s-f-best approximations to A 
by f’;A. For those points we have a result analogous to 

Assume that X is a finite dimensional Banach space. 
Proposition 4.1. 

PROPOSITION 4.2. If f: 52 x X + R is a Caratheodory, convex integrand 
s.t. for all x: Sz + X measurable and bounded f (., x( .)) is integrable and 
A G X is nonempty, closed, and convex, then h E P>,,A(~) if and only if there 
exists E:Q-FR+ measurable, E’ 3 0, x*: Sz -+ X* measurable s.t. x*(w) E 
8f (w, x - h) p-a.e., 

x* = 
s 

x*(o) dp(w), OA(X*) - E’ < (x*, h) 
R 

and 

I 
E(W) 

E(O) dp(o) + E’ = E. 
R 

Proof Note that 

P;,,(x)= {kA:F(x-Iz)<F~(x)+E). 

So h E P>,,,(x) is equivalent to saying that for all y E A we have F(x - h) 6 
F(x - y) + E -f=- --E d K(Y) - K(h) * --E G (f-Y + 6,)(Y) - 
(F.Y + s.)(h) o 0 E a,(F, + 6,)(h). From Theorem 23(a) of Rockafellar 
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[24] we know that F,( .) is continuous, convex on X. Also from 
Hiriart-Urruty [ 121 [ 131 we have 

Moreover, again from [13] we have that 

So OE~,(E’, + s,)(h) is equivalent to saying that there exists 
z* ~~~ 8cCwJfX(o, h) L@(O) for which -z* E 8,.6,(h) and jn E(O) L+(W) + 
El=& where E(O) > 0. Hence z* = Jn z*(w) C+(W) with z*(w) E 
d,,,,f,(o, h) p-a.e. But note that ~C~W~fX(w, h) = - 8,,,,,f(o, x - h). So 
finally we can find x*: s2 + X* measurable s.t. x*(o) E 8ECo,f(~, x-h) ,LL- 
a.e., x* = {Q x*(w) L&(O) and x* E 8,.6,(h) which is equivalent to saying 
that gA(x*) - E’ < (x*, h), with jn E(O) &(o) + E’ = E and E(O) > 0 for all 
wEi?. Q.E.D. 

Next we will have a result analogous to Proposition 4.1 for the integral 
functional I,( . ). 

Assume X is a reflexive, separable Banach space. 

PROPOSITION 4.3. If f: 52 x X + R is a normal, convex, integrand s.t. for 
all x( .)EL?JQ), Zf(x( .)) f ‘t 1s ml e and F: 52 + P,,.(X) is integrably bounded, 
then for any x( .) E L:(Q) we have h( .) E P,,,s:.(x( .)) if and only if 

min 
r*(-)tGy, .I, )-h, ,) i 

(x*(w), y(o) - h(o)) 4.4~) d 0 jar all y( .) E S).. 
0 

Proof As before h( .) E PII,s, p(x( .)) if and only if 0 E c~(Z~,, , + a,;)(h( .)). 
Recall that ZYX, ,( .) is continuous, convex on Lfu(L2). So we can apply the 

Moreau-Rockafellar theorem and get that 0 E aZfV, ,(h( .)) + 86,;(h( .)). This 
means that there exists --a*( .) E LYZ,, ,(h( .)) s.t. a*( .) E 86,;(h( .)). Since 
a&, ,(h( .)I = -W,(x(. ) - 4. )) we have a*(.)EaZ,.(x(.)-h(.)) and 
(a*(. ), y( .) - h(. )) d 0 for all y( .) E ST.. Recalling that aZ,(x( .) - h( . )) is 
w*-compact we can write that 

min (x*(.),~(.)-h(.)) .~*(.,Eag(.~(-,-h(.,, 

min (x*(.),y(.)-h(.))GO. X*(. , E ext ii//(X( , - h( ,, 
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From Theorem 2.1(c) of Rockafellar [24] we know that 

az~(x(.)-h(.))=S~(.,,(.,~,,.,, 

* ext dZ,(x(. ) - h(. 1) = ext Sg, ., x( .) - h(.)j 

Then from Benamara [2] we get that 

ext @f(x( .I - ht. )I = %J, af( ., x(. ) ~ h(. )) . 

Therefore we have that 

min 
X*(.)EC,a,, .1( j-h, ,, 1 (x*(o), Y(W) - h(o)) 44~) Q 0 

Q 

for all y( . ) E Sk. Q.E.D. 

Remark. In the above result instead of p = 1, q = + 00 we could have 
used a pair p, q > 1 of conjugate exponents. 

We will close our investigation of the multifunction P,,,,$ .) with a 
theorem concerning its continuity properties. 

Assume X is a reflexive, separable Banach space. 

THEOREM 4.6. Zf f: s2 x X + I&! is a Caratheodory, convex integrand s.t. 
for all x: 51+ X bounded and measurable, f (‘, x( .)) is integrable and 
E 52 -+ P&X) is integrably bounded, then P,,,s$ .) is U.S.C. from Li into 
(L:, WI. 

Proof: We know that for all x( .) E L:(Q), PI/,+(x( .)) = Sh,(, ,,F,,~~X~.~~. 
SO for any x* E X* we have ap,+(x*) = aS;,( ) F( )(~, ), . Then by definition 

0s’ Pi,,l,n,IrII,(x*)= SUP (x*>h(.))> 
h(‘)Es4, , F, ),‘f ,J ., 

where (., .) denotes the duality brackets between L$ and L,“,. Thus we 
have that 

0.9 P,l.,.,,F(.,cx;c ,I@*) =h(.)Es;up ,,., ,.n 1(X(.)) s, tx*, h(o)) dk4o) 

= I sup 
Q 

&(w) = s,o P/l<“, ,,F(w,cxcw,,(x*)d~(~). (*) 
h E J’/(w 1, ~w)(x(o)) 

Next we will show that x(.) + a,,,+(.))(~*) is U.S.C. on Li. So let 
xn(. I+ ‘- L: x( . ). Then by passing to a subsequence if necessary we may 
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assume that x,(w) +’ x(o) p-a.e. Using Fatou’s lemma and (*) we get that 

From Govinarajulu-Pai [7] (Proposition 2.4) we know that 
x is w-U.S.C. So Proposition 2 (p. 122) of Aubin-Ekeland T1; >{. $ft ‘, 

e -+o P,,I,r, ,,,,,,,(xJ(x*) is w-U.S.C. So we have 

= OS1 P,,, ,,fl ,(.~i.))(X*)=~Pll,s~r(.),(X*) 

-x(.)-c p~,s~x(.~~(x*) is U.S.C. 

Since P ,,,&x( .)) has w-compact, convex values in Li, Theorem 10 
(p. 128) of [l] tells us that x( .) -+ P 1,,s$x( .)) is U.S.C. from Lk into (Lk, w). 

Q.E.D. 

Remark. If for all o E Q, f(o, x) = llxll and F(w) is Chebyshev and if 
x,(.)-++~~x(.) and h,(.) are the best approximations to x,( .) from Sb, 
then h,( .) + w- ‘: h( .) = best approximation to x( .) from Sk. 

We will close our study on stochasticf-best approximations, by examin- 
ing what happens when we consider the conditional expectation of the 
integrand f( ., .) with respect to a sub-o-field C, of C. 

Assume X is finite dimensional. 

THEOREM 4.7. Zf f: Sz x X + [w is a Caratheodory, inf-compact integrand 
s.t. for all x E X, Sn f ( w, x) dp(o) d +co and f (co, x) 2 a(w) p-a.e., where 
a( .) is integrable and if A E X is nonempty, closed, bounded, and convex, 
then for all x E X, (Ezof )a(w, x) = EZOfA(co, x) p-a.e. 

Proof: First recall that for all ~ESZ, f,Jw, .)= [f(o, .) q S,]( .) and 
since by hypothesis f (w, .) is inf-compact, using Proposition 6.5.5 of 
Laurent Cl73 we deduce that fa(w, .) is proper. I.s.c., and convex. Also 
Proposition 2R of Rockafellar [23] tells us that fA( ., .) is 1 x B(X)- 
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measurable. Furthermore it is I*-a.e. bounded from below by a(w) which is 
integrable. So fA( ., ) is a quasintegrable integrand and so we can consider 
its conditional expectation with respect to Z,. Let BE C,, x: !3 + X boun- 
ded, C,-measurable and y E A. We have 

I B 
EZOfA(W x(w)) 44w) = jBmA x(w)) 4-40) ~jBfh x(w) -Y) 440). 

= s B ~=“Of(~, x(w) -Y) 44w). 
Invoking Lemma 6 of Thibault [27] we get that 

EZOfA(W, x) d E=“Of(w, x-y) 

for all o E Q\N,, p(N,) = 0. Let { JJ,}~~, be dense in X. Then clearly 
EZofA(w, x) < EZof(w, x - y,) p-a.e. and so exploiting the continuity of 
EZof(w, .) (see [27]) we have that @f,(o, x) < Pof(o, x-y) p-a.e. 3 
EzofA(w, x) d (EzoOf)A(~, x) p-a.e. 

On the other hand for all y: Q + A X,-measurable and all x: a -+ 3’, 
bounded, C,-measurable and for BE ,Z,, we have that 

jB (~="fLb~ x(m)) 440) d jB J+f(QA x(w)-Y(W)) &(w) 

= s Rf(w X(0)-Y(W)) 44w) 

d ,,,,jnst],z,, jBf(W X(0)-Y(O)) 440) 

Yz s B,iy~> X((JJ)-YY)440) 
= s Bfa(~Y x(a)) 44w) 
= s B @“LA w x(w)) 44w). 

As before we get that (Ezof)A(~, x) d EzofA(o, x) p-a.e. (exceptional set 
is independent of x) 

a (EZof)A(co, x) = EZofA(m, x) p-a.e. Q.E.D. 
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Now we change direction and pass to the study of stochastic f-farthest 
points. The first result shows that S ,,s;(x( .)) has a solarity type property. 

Assume X is any separable Banach space. 

PROPOSITION 4.4. Zf f: Sz x X + [w is a Caratheodory, sublinear integrand, 
F: 52 + Pr(X) is a measurable multifunction with Sk # @ and there is a 
yO( .) E St, s.t. Jf(yO( .)) < co, then h( .) E Q,,,;(x( .)) implies that 
h( .) E Q,,,,;(h( .) + 1*(x( .) - h( .))) for all 2 > 0. 

ProoJ By definition h( .) E Q,,, s;(x( .)) means that 

+(x( .)) = Zf(x( .) - h( .)) = [$D, x(o) - h(o)) dp(o). 

Also 

ffs~W)= sup 1 Z&$.)-Y(.)) .v( ) E s, 

= sup -“i.,~s:J~f(w.~(~)-~(~)) ddw) 

= I sup f(~ 40) -Y) 440). 
QEF(U) 

So we have that 

Since h(o) E F(W) p-a.e. we deduce that 

f(w, x(w) - h(o)) = sup f(o, x(w) -y) p-a.e. 
,veUo) 

*h(w) E Q.f(,, -), F(w)(x(~)) w.e. 

From Proposition 2.8 of Govindarajulu-Pai [8] we know that for all 
2 > 0, h(w) E Q,,, .). F(o) (h(o) + 1(x(w) - h(o))) .u-a.e. So for all y( .) E Sk 
we have 

~(QA h(o) + 440) -h(o)) -Y(O)) GIG 4.40) -h(u))) e.e. 

~I,(h(.)+i(~(.)-h(.))-y(.))~Z~(~(x(.)-h(.))) 

*h(.)EQ ,,, ,;(h( .) + A(x( .) - h( .))) for all A> 0. Q.E.D. 
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The next theorem provides a pointwise necessary condition for h( .) to be 
in Q,,, &(. 1)). 

Assume as before that X is a separable Banach space. If A G X, by NA(x) 
we will denote the normal cone to A at the point x (see Clarke [S]). 

THEOREM 4.8. If f: G? x X + R is a k( .)-Lipschitz, L’-measurable 
integrand with k( .) E L”(Q) and F: l2 + P,.,JX) is integrably bounded, then 
h( .) E Q(x( .)) implies that (-~?f( 0,x(w) -h(w))) n N,,,,(h(o)) = 4 we. 

Proof: We will start by showing that if h( .)E Q,,,,;(x( .)1), then for 
some I > 0, h( .) also solves locally the following maximization problem 

sup N,, , Z(.)ELk -&$4)). (*I 

Suppose not. Then for every n b 1 there exists z,( .) +‘- “Lh( .) s.t. 

Zfy, ,(z,(.))-nd.&,(~)) > Z&4.) -ht.)) = @(x(.)). 

Then Zfy, ,(z,(.)) -zfv, ,(h(.))>nd&n(.)) and so 8,, = ds; z,,(.)) +O as 
n + co. Recall that Sk is w-compact in Li. So we can find h,,( .)E Si. s.t. 
ds;(z,( .)) = pn = llz, - h,/I , for all n 2 1. So we have 

zf(xt.1 -h,(.)) <Zf(x(.)- h(.)) = @x(.)) < Zf(x( .) -z,,( .)) - n/l,,. (1) 

On the other hand, from the Lipschitzness hypothesis we have that 

I~(X(.)-Z,(.))~I~(X(.)-~,(.))+ Jbk(w) lIzJo)-h,,(w)ll dp(w) 

Q W. ) - h,(. )I + llkll a B,,. 

Let n >, 1 be such that llkjl o. d n. Then we have 

z/(x(.) - zJ.1) - rlB,, 6 W-4.)-h,,(.)). (2) 

From (1) and (2) above we produce the desired contradiction. Hence, 
knowing that h( .) solves (*) locally, we can write that 

OE wr, , - &.I (h( . ) )t 

where the subdifferential here is the generalized subdifferential in the sense 
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of Clarke [S]. Recall that Clarke’s subdifferential is subadditive. So we 
have that 

o+r, ,(h(.))+ar-ld,:l(h(.)) 
=OEa~fy, ,(h( .))- 1 dd,)(h( .)) = -dZ,(x( .)-h( ‘)) - 1. dd,;(h( ‘)) 

=+ -q(-x(. ) - h(. 1) f-l (w~:(h(~ 1)) z 121. 

From Clarke [6] we know that 8Jf(x( .) - h( .)) c SAY,., .=(.)- h(.jj. Also 
note that d,;( .) and d,,,( .)(w ~a), are Lipschitz, convex functions. 
Moreover, it is easy to see that for any u( .)EL!JSZ) 

Thus for h( .) E Sk, we have that 

Combining all the above observations we deduce that there exists 
x*: 52 -+ x* s.t. 

-x*(o) E df(w, x(w) - h(o)) CL-a.e. and x*(o) E liTd,,,(h(o)) p-a.e. 

But recall that I&I,(,,(h(o)) G N,,,(h(o)) for all w ER. So 
x*(o) E N,,,(h(o)) p-a.e. Therefore finally we have 

(-Vlw -40) -h(w))) n N,,,,@(w)) E 4 Cc-=. Q.E.D. 

Now we turn for a while our attention to the pointwise maximization 
problem and we will examine the multifunction o + Q,,,, .), F(wj(~(~)). 

As always X is a separable Banach space. 

PROPOSITION 4.5. If f: Sz x X+ R is a measurable integrand and 
F: Sz + PJX) is a measurable multifunction then for all x: G? -+ X 
measurable, o + Q fCw, .), FCwj(x(o)) is graph measurable. 

Proof: By definition we have that 

em ), F(w) (x(w)) = {h c f’(o):f(w, 40) -h) =&&W)> 

= {hEX:f(w ~(~)-h)~~F(,,,(x(o,,} nF(o). 

We claim that o +fF,,,,(x(w)) is measurable. To see that let 1> 0. Then 
we have that jl,,,,(x(~)) > 2 if and only if there exists y~F(o) s.t. 

640;52,'1-6 
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f(o, x(o) -y) > 2. So we can write that {~~!Zf(x(w) > E,} = 
proLC{(wy)EQxX: f(o,x(~)--y)>L}nGrF]. Recall that 
Gr FECX B(X). Also since f( ., .) is C x B(X)-measurable, we have 
{(w, y) E Sz x X: f(w, x(o)) -y > 3,) EC x B(X). So their intersection is in 
c x B(X). Then the projection theorem tells us that {o E Sz: 
fF,,,,(x(w)) > I”} EC. Hence o +f’(Jx(w)) is measurable. From this we 
deduce that (0, h) + $(w, h) =f(o, x(o) - h) -fF,,,,(x(w)) is C x B(X)- 
measurable. Now observe that 

GrQ,,.,.,,F(.)(x(.))={(W,h)ERxX:~(o,h)3O}nGrFEZ-xB(X). 
Q.E.D. 

An interesting consequence of this proposition is the following result. 
Assume that the same set of hypotheses is still in effect. 

COROLLARY. If for all w E L2, Q.,,,, ,), n,,(x(w)) # 0, then there exists 
h: Sz + X measurable selector of F( . ) s.t. 

&o&W) =f(x(o) - h(o)). 

ProoJ From the previous proposition we know that 
Gr Q,, ., ), F(. ,(x( . )) E ,Z x B(X). Apply Aumann’s selection theorem to get 
h: 52 -+ X measurable s.t. h(w) E F(o) and fFF(o)(x(o)) =f(w, x(o) - h(o)) 
for all w E fi. Q.E.D. 

Under mild regularity assumptions on f( ., . ), we can have the following 
interesting characterization of the pointwise stochastic f-farthest points. 

PROPOSITION 4.6. If f: !2 x X + R is a measurable integrand s. t. for all 
o E Sz, f (w, . ) is proper, convex, u.s.c., and F: R + P,,+,,(X) is measurable, 
then given any x E X, we can find h: Sz -+ X measurable s.t. for all 
0 E Q, h(o) E ext f’(o) and h(w) E Qfcc,,, .). Fc,,,b(w)). 

Proof: We saw in the proof of Proposition 4.5 that o +fFIc,,)(x) is 
measurable. Consider the multifunction G( .) defined by 

G(o) = {h E ext F(w):f(w, x - h) =~~Coj(x)}. 

From Bauer’s maximum principle, we get that for all o E L2, G(o) # 0. 
Also Gr G = { (0, h) ED x X: f (w, x - h) -fFc,,(x) = 0) n Gr(ext F). Recall 
that the first set in the intersection is in Z x B(X), while from Benamara 
[2] we know that Gr(ext F) E C x B(X). So we can apply Aumann’s selec- 
tion theorem to find h: L? -+ X measurable s.t. for all WE Sz, h(o) E G(w). 
This is the desired h( -). Q.E.D. 

Remark. It is easy to check that this result holds true if instead of a 
fixed x E X, we have x: 52 + X measurable. 
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As with stochastic f-approximations, we will conclude our study of 
stochastic f-farthest points,by looking at the conditional expectation of 
fA( .) with respect to a sub-o-field L’, of C. The result is analogous to 
Theorem 4.7 but our assumptions on the space X and on the integrand 
f( ., .) are less restrictive. The space X is as always a separable Banach 
space. 

THEOREM 4.9. I” f: Q x X+ R is a normal integrand s.t. for all 
x( .)E L:(Q), f( ., x( .)) is integrable and there exists a( .) integrable s.t. 
f (CO, x) >, a(w) ,a-a.e. for all x E X and if FI Q -+ P/(X) is Z,-measurable and 
integrably bounded then for all x( ) E L!JC,) we have 

C-+f lF~~o,(~, 4~)) = ~+.f~~,,~(~, x(w)) v.e. 

Proof From Thibault [27] we know that there exists an increasing 
sequence of Caratheodory integrands (f,( ., )}, a r st. for all x E X we have 
that 

f(w,x)= sup fn(w, x) p-a.e. 
n>l 

So we can write that 

3F,&% x(m))= SUP f(o,.d~)-.Y) 
.): t F(w) 

= SUP SUPfn(W, 40)-Y) 
yEF(‘(O)n>l 

= sup SUP fn(my x(~)-Y)=w (~n)Fc,,(~y x(~))w.e. 
ntl )‘tF(o) n>l 

Since X is separable and f,( ., .) are Caratheodory integrands, we 
have that (fnjn.,( ., .) 

SUP,.l(fJF(.,(~~ .) 

are C x B(X)-measurable. So f’(.,( ., .) = 
is a normal integrand. Furthermore for all XEX, 

3Fcwj(w, x) 3 a(o) we. Hence fFc.,( ., .) is a quasintegrable, normal 
integrand and so Ezof( ., .) exists. Using Proposition 12 of Thibault [27] 
we have that for any A E Z, and any y( .) E SL(C,), 

jA E=Of (~,x(~) - y(o)) 44~) = jAf (0, ~(~1 -Y(O)) &(w) 

* sup s ,(.)tS&) A 
E=“f (w x(w) - Y(O)) 
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On the other hand note that 

sup s I+ f(w), -4~) - Y(W)) 44~) 
.v(. ) E +r:o) A 

= 
s sup E="fb,xW-yW/44 
A .VEF(O) 

= I A (-+fN~, 40)) 44~). (2) 

From (1) and (2) above we get that for all A E ,YO and all x( .) E L:(Z”), 

.r, E=%w(~~ x(w)) 44~) = jA (E’“f Ho, x(m)) 440). 

Invoking Proposition 7 of [27] we conclude that 

EZo&w)(~, x(w)) = (E’Of)(o, x(w)) p-a.e. Q.E.D. 

5. GENERAL RESULTS 

In this section we have gathered some useful general results about f-best 
approximations. 

The first result illustrates how fixed point theory can be instrumental in 
obtaining interesting results about f-best approximations. Our theorem 
generalizes earlier results obtained by Ky Fan [ 163 and Reich [22]. 

Assume that X is a locally convex space. We recall that a set A G X is 
said to be f-approximatively compact if and only if for all x E X, every 
minimizing net {h,} (i.e., f(x - h,) +fa(x)) has a convergent subnet in A. 

THEOREM 5.1. If f: X + R is continuous, sublinear, A G X is a nonempty 
f-approximatively compact, convex set, and $1 A + X is continuous with c$( A) 
compact, then there exists h E A s.t. fA(q5(h)) =f(&h) -h). 
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Proof Consider the multifunction r: A -+ P,,(A) defined by 
T(y) = (P,, 0 4)(y) = P,,(& y)). From [7, Proposition 2.41 we know that 
P,-,( .) is U.S.C. while b(.) is by hypothesis cotinuous. So we deduce that 
(PA A 0 d)(. ) is U.S.C. Moreover, we claim that P,,( . ) has nonempty, com- 
pact, convex values. Nonemptiness follows from Proposition 2.1 of [7], 
while convexity is a straightforward consequence of the sublinearity off( . ). 
For compactness let {zu} be a net in P,,(x). Then by definition we have 
that fA(x) =f(x - z,). So (zO} is trivially a minimizing net in A. Because by 
hypothesis A isf-approximatively compact, we can find a subnet {zb} s.t. 
zb -+ z E A. Also because of the continuity of f( .) we get that 
fA(x) =f(x-z). So ZE P,,(x) and this proves that P,,( .) is compact 
valued. Then since d(A) is compact, we have that P,,(q3(A)) is compact. 
Applying Himmelberg’s fixed point theorem [ 111, we get that there exists 
h E ‘4 St. h E T(h) = &4(4(h)) JfA(O)) =f(&h) -h). Q.E.D. 

Remark. When f( .) =p( .), a continuous seminorm on X, then our 
theorem recovers the result of Reich [22]. 

We will conclude with two propositions on the properties of the mul- 
tifunction PLA( .). In both X is assumed to be a locally convex space. 

PROPOSITION 5.1. If f: X -+ [w is continuous sublinear and A G X is non- 
empty, f-approximatively compact, closed, and convex, then for any K E X 
nonempty, connected, Pf,,(K) = UxcK P,-,(x) is connected too. 

ProoJ: For all XE X, Pr, A(~) is convex and so connected. Also recall 
that P,,( .) is U.S.C. Hence it maps connected sets to connected set. Thus 
P,-,(K) is connected. Q.E.D. 

PROPOSITION 5.2. If f: X + FL! is continuous, sublinear and A c X is non- 
empty closed, f-approximatively compact on K E X nonempty and compact, 
then PA,(K) is nonempty, compact and {x,h} E Kx A: he P,,(x)} is com- 
pact in Xx X. 

ProoJ Since A is f-approximatively compact on K, for all XE K 
PLA(x)6 Pk(X). Also P,,( .) is U.S.C. on K. Then the claims of the propo- 
sition follow from the results of Smithson [26]. Q.E.D. 
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