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Metallothionein Suppresses Angiotensin II–Induced
Nicotinamide Adenine Dinucleotide Phosphate Oxidase
Activation, Nitrosative Stress, Apoptosis, and
Pathological Remodeling in the Diabetic Heart

Guihua Zhou, MD, PHD,*¶ Xiaokun Li, MD, PHD,¶ David W. Hein, PHD,† Xilin Xiang, MD, PHD,*
James P. Marshall, BS,* Sumanth D. Prabhu, MD,*‡� Lu Cai, MD, PHD*†§¶

Louisville, Kentucky; and Wenzhou, China

Objectives We evaluated metallothionein (MT)-mediated cardioprotection from angiotensin II (Ang II)–induced pathologic
remodeling with and without underlying diabetes.

Background Cardiac-specific metallothionein-overexpressing transgenic (MT-TG) mice are resistant to diabetic cardiomyopa-
thy largely because of the antiapoptotic and antioxidant effects of MT.

Methods The acute and chronic cardiac effects of Ang II were examined in MT-TG and wild-type (WT) mice, and the signal-
ing pathways of Ang II–induced cardiac cell death were examined in neonatal mouse cardiomyocytes.

Results Acute Ang II administration to WT mice or neonatal cardiomyocytes increased cardiac apoptosis, nitrosative
damage, and membrane translocation of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) iso-
form p47phox. These effects were abrogated in MT-TG mice, MT-TG cardiomyocytes, and WT cardiomyocytes pre-
incubated with peroxynitrite or superoxide scavengers and NOX inhibitors, suggesting a critical role for NOX acti-
vation in Ang II–mediated apoptosis. Prolonged administration of subpressor doses of Ang II (0.5 mg/kg every
other day for 2 weeks) also induced apoptosis and nitrosative damage in both diabetic and nondiabetic WT
hearts, but not in diabetic and nondiabetic MT-TG hearts. Long-term follow-up (1 to 6 months) of both WT and
MT-TG mice after discontinuing Ang II administration revealed progressive myocardial fibrosis, hypertrophy, and
dysfunction in WT mice but not in MT-TG mice.

Conclusions Metallothionein suppresses Ang II–induced NOX-dependent nitrosative damage and cell death in both nondiabetic
and diabetic hearts early in the time course of injury and prevents the late development of Ang II–induced
cardiomyopathy. (J Am Coll Cardiol 2008;52:655–66) © 2008 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2008.05.019
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key pathophysiological event in the development of diabetic
ardiomyopathy is the excessive generation of reactive oxygen
pecies (ROS) and reactive nitrogen species (RNS) in the heart
1–3). Metallothionein (MT) is a cysteine-rich protein that
cavenges a wide range of free radicals, including superoxide,
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rogram (0625285B). Drs. Zhou and Li contributed equally to this work; Drs.
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itric oxide, hydrogen peroxide, and peroxynitrite (3,4).
ardiac-specific metallothionein-overexpressing transgenic

MT-TG) mice have been shown to be protected against the
evelopment of diabetic cardiomyopathy in streptozotocin
STZ)-induced type 1 diabetes (3,5–7), spontaneous type 1
iabetes (8), and sucrose feeding-induced insulin resistant,
re-diabetic mice (9,10). We previously demonstrated that
T suppresses peroxynitrite-derived nitrosative damage in

iabetic hearts (3). However, the cellular mechanisms under-
ying this beneficial effect remained unclear.

See page 667

Cardiac angiotensin II (Ang II) is thought to play an
mportant role in the pathogenesis of diabetic cardiomyop-
thy (11–13). Angiotensin II acts via its receptors AT1 or

T2 to induce nicotinamide adenine dinucleotide phos-
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phate oxidase (NOX) activation
and is involved in a wide range of
pathogenic processes in the dia-
betic heart, including the induc-
tion of apoptosis and fibrosis
(11–15). We have demonstrated
that apoptosis is increased in the
diabetic heart and contributes
importantly to the development
of cardiomyopathy (5,16). Previ-
ous studies also have indicated
that Ang II–mediated ROS gen-
eration in vitro is significantly
attenuated in cardiomyocytes
isolated from MT-TG diabetic
hearts compared with wild-type
(WT) diabetic hearts (8). To what
extent this occurs in vivo and the
responsible underlying mecha-
nisms are unknown. Several possi-
ble mechanisms of MT-induced
Ang II modulation in diabetic car-
diomyopathy may be invoked: 1)
MT may down-regulate AT1 or
AT2 receptor expression or down-
regulate NOX expression; or 2)
MT may directly scavenge ROS
without influencing the Ang II
axis. In the current study, we
tested the hypothesis that the car-
dioprotective benefits of MT in
diabetes are related in part to sup-
pression of Ang II–induced NOX
activation via the AT1 and AT2

eceptors, resulting in attenuation of oxidative and nitrosative
amage and apoptosis in the heart. Consequently, MT sup-
ression of Ang II–mediated early cardiac cell death prevents
he late development of cardiomyopathy.

ethods

ardiac-specific MT-TG and catalase-overexpressing
ransgenic (CAT-TG) mice along with their WT FVB
ice were used, and the animal care conditions, experimen-

al treatments, and detailed methods are provided in the
nline Appendix. In brief, 4 sets of animal studies were

erformed, and the hearts were harvested for protein,
essenger ribonucleic acid (mRNA), and histopathological

nalysis. The 4 groups investigated were: study A, the effect
f diabetes on cardiac Ang II receptor expression in diabetic
ice induced by a single dose of STZ (150 mg/kg body
eight) (16); study B, the acute cardiac effects of Ang II in
T, MT-TG, and CAT-TG mice after a single subcuta-

eous injection of 1 mg of Ang II/kg body weight; study C,
he subchronic cardiac effects of Ang II in MT-TG and

Abbreviations
and Acronyms

Ang II � angiotensin II

ANOVA � analysis of
variance

CAT-TG � catalase-
overexpressing transgenic

CTGF � connective tissue
growth factor

ET � endothelin

LV � left
ventricle/ventricular

MT � metallothionein

MT-TG � cardiac-specific,
metallothionein-
overexpressing transgenic

NOX � nicotinamide
adenine dinucleotide
phosphate oxidase

NT � nitrotyrosine

PAI � plasminogen
activator inhibitor

RNS � reactive nitrogen
species

ROS � reactive oxygen
species

STZ � streptozotocin

TNF � tumor necrosis
factor

TUNEL � terminal
transferase dUTP nick end
labeling

WT � wild type
T mice after subcutaneous injection of subpressor doses i
f Ang II (0.5 mg/kg body weight) every other day for 2
eeks; and study D, the subchronic effects of Ang II in diabetic
earts by similar protocols used for studies A and C.
Primary cultures of neonatal cardiomyocytes from WT

nd MT-TG mice were used for the in vitro study by
ncubating these cells with 100 nmol/l Ang II for 24 h to
nvestigate the signaling pathways of Ang II–induced nitro-
ative damage and cell death.

To quantitatively determine the induction of apoptosis by
ng II, we measured deoxyribonucleic acid fragmentation
y using a Cell Death Detection ELISA kit (Roche Diag-
ostics, Basel, Switzerland). Real-time quantitative poly-
erase chain reaction was used to analyze AT1, AT2, atrial

atriuretic peptide, endothelin (ET)-1, tumor necrosis
actor-alpha (TNF-�), and plasminogen activator inhibitor
PAI)-1 gene expression (11–15). Western blotting was
sed for analysis of NOX p47phox phosphorylation, the
ctivated form of caspase-3, AT1, AT2, 3-nitrotyrosine
NT), and connective tissue growth factor (CTGF). For
he detection of apoptosis in the heart, we performed the
erminal transferase dUTP nick end labeling (TUNEL)
ssay by using the In Situ Apoptosis Detection Kit (Chemi-
on International, Temecula, California), and mouse testic-
lar tissue was used as a positive control (16). In addition,
mmunofluorescent staining was used to localize activated
aspase-3 by double stains for cardiomyocytes with alpha
arcomeric actin and caspase-3 (5) and also to directly detect
eroxynitrite formation in cultured myocytes with its spe-
ific probe HKGreen-1 (kindly provided by Dr. Dan Yang
rom The University of Hong Kong) (17). Serum and
ardiac Ang II were measured with the Ang II Enzyme
mmunoassay Kit (SPI-BIO, Massy, France). Cardiac func-
ion was monitored as previously described, with echocar-
iography (18) and aortic and left ventricular (LV) pressure
easurement (19) (Online Appendix).

tatistical analysis. Data were expressed as mean � SD for
ormally distributed variables. For statistical analysis, 1- or
-way analysis of variance (ANOVA) was used as appropriate.
he overall F-test was performed to test the significance of the
NOVA models. The significance of the interactions and
ain effects were taken into consideration and then multiple

omparisons were performed by the Bonferroni test. The
ignificance level was considered at p � 0.05.

esults

ffect of MT on AT1 and AT2 expression in diabetic
earts. Diabetes was induced by STZ in MT-TG and WT
ice with blood glucose levels �12 mmol/l on day 3 after

TZ treatment. AT1 and AT2 protein levels in the hearts of
iabetic mice at 2 weeks after STZ treatment were signif-
cantly increased in both WT and MT-TG diabetic hearts
elative to control hearts (Online Fig. 1). Levels for AT1 or
T2 mRNA were also significantly increased in both WT

nd MT-TG diabetic hearts (data not shown). These results

ndicated that cardiac AT1 and AT2 are both up-regulated
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n STZ-induced diabetes and that MT overexpression does
ot significantly affect this response.

etallothionein alleviates Ang II–induced cardiac apo-
tosis, nitrosative stress, and NOX activation in vivo.
e next examined whether Ang II induced apoptosis and

itrosative damage in the heart and whether MT protected
gainst these effects. The WT and MT-TG mice were given a
ingle subcutaneous injection of Ang II at 1 mg/kg body
eight, and their hearts were collected 7 and 24 h later (20).
he use of TUNEL staining revealed significantly increased
yocardial apoptosis in Ang II–treated WT mice but not Ang

I–treated MT-TG mice (Fig. 1A). Western blotting for the
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ration, peroxynitrite formation, and associated protein
itration. Western blotting data for caspase-3 activation
Fig. 1B) showed no significant interaction effects, tested by
he F test for the significance of 2-way ANOVA (p � 0.05)
ut indeed showed a significant difference for the main
ffect (p � 0.05). The post-hoc multiple comparisons
howed a significant difference between Ang II–treated WT
nd WT control groups, suggesting that Ang II–induced
aspase-3 activation was attenuated by both MT and cata-
ase. Analysis of 3-NT accumulation (Fig. 1D) showed
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he hearts of Ang II–treated WT mice, an effect not
bserved in Ang II–treated MT-TG mice (Fig. 1E), sug-
esting that NOX inactivation may contribute to MT-
ediated protection against Ang II–induced injury.
etallothionein prevents Ang II–induced apoptotic sig-

aling and 3-NT accumulation in cardiomyocytes in
itro. Neonatal cardiomyocytes were exposed to Ang II
00 nmol/l for 24 h. Apoptosis, as detected by TUNEL
ssay (Online Fig. 2A) and deoxyribonucleic acid fragmen-
ation (Fig. 2A), was significantly increased in WT cells but
ot in MT-TG cells. Angiotensin II–induced 3-NT accu-
ulation was also significantly increased only in WT

ardiomyocytes (Fig. 2B).
Peroxynitrite levels were directly measured in Ang II–

xposed (6 h) cardiomyocytes with the use of the fluorescent
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ventricular end-systolic pressure (LV ESP), and left ventricular end-diastolic pressu
and eosin staining (B) and messenger ribonucleic acid (mRNA) expression of tumo
(C and D). *p � 0.05 versus corresponding control.
robe HK Green-1 (17). Confocal microscopy showed
ncreased fluorescence in Ang II–treated WT cardiomyo-
ytes but not in Ang II–treated MT-TG cardiomyocytes
Fig. 2C). Moreover, Ang II–induced apoptosis in WT
ardiomyocytes was prevented by coincubating (1 h before
nd during Ang II exposure) with 100 �mol/ml urate
peroxynitrite scavenger), 50 �mol/ml Mn(111) tetrakis
-methyl 4-pyridylporphyrin pentachloride (superoxide dis-
utase mimetic), and 100 �mol/ml NG-nitro-L-arginine
ethyl ester (nitric oxide synthase inhibitor) (Fig. 2D),

uggesting that peroxynitrite is an important mechanism of
ng II–mediated apoptosis and is generated from superox-

de and nitric oxide interaction. Similarly, Ang II–mediated
poptosis was prevented by coincubation with 100 �mol/ml
pocynin, a specific NOX inhibitor, supporting the primary
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nvolvement of NOX activation and NOX-dependent su-
eroxide generation (Fig. 2D). In contrast, the inhibition of
38 MAPK and phosphatidylinositol 3 kinase with their
nhibitors (SB203580 and LY294002, respectively) did not
nfluence Ang II–induced apoptosis (Online Fig. 2B).
dditionally, in agreement with the in vivo results (Fig.
E), Ang II induced NOX p47phox membrane translocation
n WT cardiomyocytes but not in MT-TG cardiomyocytes
Fig. 2E).

etallothionein attenuates Ang II–induced long-term
ardiac remodeling and dysfunction. We next evaluated
hether short-term Ang II exposure in vivo induced late
anifestations of cardiac dysfunction and, if so, whether MT

ttenuated or prevented these events. The WT and MT-TG
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Figure 4 Chronic Exposure to Ang II–Induced Cardiac Apoptosi

Mice (n � 5) were given Ang II at 0.5 mg/kg body weight for 2 weeks, during whic
labeling assay (A), Western blotting of activated caspase-3 (B), and colocalization
cent staining (C). *p � 0.05 versus corresponding control. Abbreviations as in Fig
ice were given subpressor doses of Ang II (0.5 mg/kg)
very other day for 2 weeks as in previous studies (21,22)
o induce apoptosis without altering mechanical load.
fter the 2-week Ang II exposure, animals were followed

or up to 6 months to assess for the development of
ardiomyopathy.

As shown in Figure 3A, no change was found for the
ean aortic blood pressure, LV end-systolic pressure, or LV

nd-diastolic pressure at 1 month after Ang II administra-
ion in both WT and MT-TG mice, indicating the lack of
persistent pressor effect at the dose used. Hematoxylin and
osin staining of hearts exposed to 2 weeks of Ang II
evealed no significant necrotic damage in the heart aside
rom very rare loci of endomyocardial cardiomyocytes with
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ondensed nuclei or faint blue nuclei with eosinophilic
taining (Fig. 3B). However, there were significant increases
n cardiac TNF-� and ET-1 mRNA expression from these

ice (Figs. 3C and 3D).
Angiotensin II–treated WT mice, but not MT-TG
ice, showed an increased number of TUNEL positive

uclei in the heart on day 7 during Ang II treatment (Fig.
A), which was confirmed by Western blotting for
ctivated caspase-3 (Fig. 4B). Double staining revealed
hat activated caspase-3 was predominantly localized in
ardiomyocytes of Ang II–treated WT mice, whereas
uch staining was not observed in the hearts of Ang
I–treated MT-TG mice (Fig. 4C). Increased expression of
ctivated caspase-3 was also observed in the hearts of WT mice on
ay 14 during Ang II treatment, but not on day 30 after receiving
ng II (e.g., 2 weeks after the last injection of Ang II) (data not

hown). These results suggested that cardiac apoptosis was signif-
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Figure 5 MT Prevents Ang II–Induced Cardiac 3-NT Formation a

Mice (n � 5) were given Ang II at 0.5 mg/kg for 2 weeks, and then the hearts wer
Ang II administration for measuring 3-NT by Western blotting (A), and PAI-1 mRNA
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ological factors induced by Ang II in vivo. This notion is
lso supported by the results in the acute model (Figs. 1B
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evels at 1, 3, and 6 months after Ang II infusion were
xamined with the use of real-time polymerase chain reac-
ion (Fig. 5B), and PAI-1 protein was assessed with the use
f immunohistochemistry (Fig. 5C). We found that PAI-1
xpression was significantly increased in the hearts of the

T mice, but not MT-TG mice, from 1 to 6 months after
weeks of Ang II exposure, exactly paralleling the pattern

f 3-NT accumulation (Fig. 5A).
The aforementioned results suggest that although Ang

I– derived oxidative and/or nitrosative damage (Fig. 5A)
oes not cause significant cardiac necrosis (Fig. 3B), it
an still induce apoptosis (Fig. 4) and inflammatory
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eptide mRNA expression (Fig. 6C) and the ratio of
-MHC to �-MHC protein expression (Fig. 6D). Analo-
ous to cardiac fibrosis, these hypertrophic responses were
lso abrogated in the Ang II–treated MT-TG mice.

Echocardiography (Table 1) revealed that MT-TG mice
ere mildly hypercontractile at baseline, as indicated by the

ncreased fractional shortening and velocity of circumferen-
ial fiber shortening (Vcf), but were without significant
ypertrophy compared with WT mice. One and 3 months
fter Ang II exposure, no significant differences in LV
tructure or function were observed in either the WT or the

T-TG Ang II–treated mice compared with the control
ice. In contrast, at 6 months after exposure, Ang II–

reated WT mice exhibited significantly increased wall
hickness and a trend toward reduced chamber size, which is
onsistent with concentric hypertrophy. These changes were
bsent in Ang II-treated MT-TG mice. Representative

-mode echocardiograms at 6 months after Ang II expo-
ure are shown in Online Figure 4, illustrating marked
ypertrophy in Ang II–treated WT mice that is not ob-
erved in Ang II–treated MT-TG mice. Taken together,
hese results indicate that cardiac MT overexpression pro-
ects against late, load-independent, Ang II–mediated fi-
rosis and hypertrophy.

etallothionein attenuates Ang II–induced pathologic
ffects in the diabetic heart. We next performed similar
xperiments in diabetic mice to define whether MT-
ediated protection against Ang II–induced cardiac injury

xtends to diabetes. One month after STZ treatment, WT
nd MT-TG diabetic mice were administered Ang II at 0.5
g/kg for 2 weeks and sacrificed 12 h after the 2-week Ang II

ffects of 2 Weeks of Ang II Administration on Cardiac Function in

Table 1 Effects of 2 Weeks of Ang II Administration on Cardiac

1 Month

Baseline Control Ang II

WT mice

HR (beats/min) 492 � 17 546 � 32 556 � 29

LVEDD (mm) 4.2 � 0.2 3.8 � 0.6 3.7 � 0.2

LVESD (mm) 2.1 � 0.3 2.0 � 0.3 1.8 � 0.3

FS (%) 49 � 5 47 � 2 49 � 8

AWT (mm) 0.70 � 0.03 0.76 � 0.09 0.81 � 0.06

PWT (mm) 0.71 � 0.03 0.77 � 0.08 0.80 � 0.06

RWT 0.34 � 0.02 0.42 � 0.11 0.44 � 0.05

Vcf (circ/s) 9.4 � 1.0 9.5 � 0.4 10.0 � 1.9

MT-TG mice

HR (beats/min) 556 � 53† 548 � 47 545 � 47

LVEDD (mm) 3.9 � 0.3 3.7 � 0.6 3.7 � 0.4

LVESD (mm) 1.8 � 0.2† 1.8 � 0.4 1.8 � 0.2

FS (%) 55 � 4† 52 � 5† 51 � 5

AWT (mm) 0.69 � 0.03 0.79 � 0.08 0.79 � 0.06

PWT (mm) 0.71 � 0.02 0.79 � 0.07 0.79 � 0.06

RWT 0.36 � 0.02 0.44 � 0.10 0.43 � 0.06

Vcf (circ/s) 11.7 � 1.3† 10.3 � 1.3 10.0 � 1.3

p � 0.05 versus age-matched control; †p � 0.05 versus age-matched and treatment-matched W
Ang II � angiotensin II; AWT � anterior wall thickness; FS � fractional shortening; HR � heart ra
cardiac-specific, metallothionein-overexpressing transgenic; PWT � posterior wall thickness; RW
xposure. Diabetes slightly increased serum Ang II and signif- w
cantly increased cardiac Ang II in both WT and MT-TG
ice compared with control mice (Figs. 7A and 7B). After 2
eeks of Ang II exposure, there was no further increase in

erum Ang II levels, but there was additional augmentation
f cardiac Ang II levels in diabetic WT and MT-TG mice.
owever, there was no significant difference for the aug-
entation of cardiac Ang II levels between the WT and
T-TG mice, suggesting that cardiac MT overexpression

id not impact the tissue clearance of Ang II. Moreover,
hen comparing Ang II–induced effects in diabetic versus
ondiabetic hearts, there was no additional augmentation of
-NT accumulation (Fig. 7C), caspase-3 activation (Fig.
D), inflammatory response (Fig. 7E), and CTGF up-
egulation (Fig. 7F) in WT diabetic mice. In addition,
ardioprotection against these detrimental pathophysiolog-
cal responses was maintained in MT-TG hearts, even in
he presence of diabetes (Figs. 7C to 7F), suggesting that
iabetes does not diminish MT-mediated protection
gainst Ang II–induced cardiac injury.

iscussion

e report for the first time that MT is cardioprotective
gainst Ang II–induced cardiac cell death and nitrosative
amage, which play a critical role in the development of
ardiac remodeling under both diabetic and nondiabetic
onditions. Although we previously reported that the pre-
ention of peroxynitrite-mediated nitrosative damage and
arly cardiac cell death in MT-TG diabetic mice abrogated
he development of cardiomyopathy (3,5,26), how apoptotic
ell death led to the development of cardiomyopathy and

nd MT-TG Mice

ction in WT and MT-TG Mice

3 Months 6 Months

Control Ang II Control Ang II

572 � 19 592 � 41 525 � 41 515 � 36

3.6 � 0.1 3.7 � 0.2 4.2 � 0.3 3.8 � 0.4

1.4 � 0.1 1.7 � 0.2 2.1 � 0.2 1.7 � 0.3

61 � 3 56 � 3* 49 � 1 56 � 4

0.83 � 0.06 0.84 � 0.04 0.73 � 0.04 0.92 � 0.05*

0.83 � 0.06 0.85 � 0.05 0.73 � 0.05 0.91 � 0.05*

0.45 � 0.03 0.45 � 0.02 0.35 � 0.03 0.49 � 0.07*

11.4 � 0.7 11.3 � 1.2 9.2 � 1.7 11.3 � 1.3

578 � 5 559 � 28 539 � 35 551 � 32

3.6 � 0.2 3.6 � 0.1 3.9 � 0.2 3.8 � 0.2

1.5 � 0.1 1.5 � 0.1 1.7 � 0.2 1.7 � 0.2

58 � 2 59 � 2† 56 � 3 56 � 3

0.79 � 0.03 0.80 � 0.05 0.89 � 0.08† 0.82 � 0.08

0.79 � 0.03 0.79 � 0.06 0.88 � 0.08 0.82 � 0.08

0.43 � 0.04 0.44 � 0.03 0.45 � 0.06 0.43 � 0.05

11.4 � 0.7 11.7 � 0.7 11.4 � 0.6 11.2 � 0.3

D � left ventricular end-diastolic diameter; LVESD � left ventricular end-systolic diameter; MT-TG
lative wall thickness; WT � wild-type.
WT a

Fun

T.
hether cardiac cell death was directly related to nitrosative
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amage remained unclear. The finding that up-regulation of
ng II expression in the heart of diabetic patients and

nimals was accompanied with 3-NT accumulation and the
oss of cardiac cells (14,15) suggests that Ang II might
nduce cardiac cell death via induction of oxidative and/or
itrosative damage in diabetic cardiomyopathy. The present
tudy establishes that Ang II–induced cardiac apoptosis is
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ignal-regulating kinase-1–deficient mice (27). Mice defi-
ient in poly (ADP-ribose) polymerase-1, a chromatin-
ound enzyme activated by oxidative stress that mediates
poptosis (28), are protected from Ang II–induced cardiac
ypertrophy (21). However, these 2 studies only observed
ardiac remodeling within the Ang II infusion period of 2
eeks or 6 weeks. A novel finding of the present study is

hat transient induction of cardiac apoptosis and nitrosative
amage induced by a limited, 2-week exposure to Ang II

nduced significant late remodeling with cardiac fibrosis and

Figure 8 Schematic Illustration for the Protection of MT
Against Ang II Pathogenic Effects on the Heart

iNOS � inducible nitric oxide synthase; NO � nitric oxide; ONOO � peroxyni-
trite; other abbreviations as in Figures 1 and 2. Figure illustration by Rob
Flewell.
ypertrophy 6 months after exposure, further supporting the I
ritical role of apoptosis in the development of cardiomy-
pathy (Fig. 8).
The renin-angiotensin aldosterone system plays a central

ole in the development of diabetic cardiomyopathy (11–
3). Diabetes stimulates systemic and cardiac Ang II elab-
ration, which stimulates aldosterone release from the
drenal cortex and ET-1 release from vascular endothelial
ells. Both aldosterone and ET-1 play a critical role in the
athogenesis of hypertension, endothelial dysfunction, and
irect tissue damage (11,25). Pharmacological renin-
ngiotensin aldosterone system blockade with angiotensin-
onverting enzyme inhibitors or angiotensin receptor block-
rs attenuated diabetes-related cardiac dysfunction without
ignificant affecting blood pressure (11–13) and decreased
lucose-induced NOX activation (8). Moreover, cardiac-
pecific overexpression of endogenous Ang II, a mouse
odel without hypertension, developed cardiac hypertrophy

nd dysfunction with aging (29).
The principal effects of Ang II and aldosterone in the

eart include the excessive generation of ROS and/or RNS,
hich leads to oxidative and/or nitrosative stress, cell death
f endothelial and fibroblast cells and myocytes (mainly as
ecrotic death in perivascular regions), and stimulation of
enes that promote vasoconstriction (such as ET-1), in-
ammation (TNF-�, intercellular adhesion molecule-1, and
AI-1), endothelial dysfunction, cell hypertrophy, excess
xtracellular matrix deposition, and fibrosis (PAI-1, trans-
orming growth factor-�, and connective tissue growth
actor) (23–25). Although we identified an important role
or NOX-dependent ROS/RNS generation in Ang II–
ediated injury in vitro (Fig. 2), we cannot exclude the

ontribution of intermediary pathways linking Ang II and
OX activation in vivo. Potential intermediaries can in-

lude ET-1, aldosterone, and alterations in intracellular
alcium in response to Ang II (13,24,30).

As shown in Figure 8, cardiac dysfunction may be
redominantly attributed to the cardiac fibrosis resulting in
bnormal cardiac stiffness, impairment of cell–cell commu-
ication, and cardiac arrhythmia (12,31). Several studies
ave demonstrated that Ang II–induced microinfarction
predominantly necrotic death of myocytes) triggers cardiac
nflammatory and fibrotic responses and cardiac remodeling
23–25). In the present study, we demonstrated predomi-
antly apoptotic cell death (Fig. 4) rather than necrosis (Fig.
B). This does not exclude the presence of microscopic
ecrotic injury which escaped detection by the relatively

nsensitive hematoxylin and eosin staining. Indeed, the
p-regulation of the inflammatory cytokines TNF-� (Fig.
C) and PAI-1 (Figs. 5B and 5C) suggested a predilection
or microinfarction and necrotic injury (23). Therefore, we
ssumed that MT prevents Ang II–induced oxidative
nd/or nitrosative damage that leads to cardiac cell death,
nflammatory and fibrotic responses, and cardiac remodeling
nd dysfunction (Fig. 8).

We also provide evidence that MT suppresses Ang

I–induced NOX 47phox activation and attendant oxidative
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nd nitrosative damage in nondiabetic hearts. Moreover,
ardiac MT expression does not influence the augmentation
f systemic and cardiac Ang II levels (Fig. 7A) and the Ang
I receptor expression that occurs in diabetes (Online Fig.
), suggesting that MT-induced cardioprotective signaling
ccurred distal to the Ang II receptors. Indeed, subpressor
oses of Ang II augmented serum and cardiac Ang II levels
omparable to those seen in diabetes alone (Fig. 7A).
urthermore, although both diabetes and subpressor doses
f Ang II induced similar cardiac pathology, including
itrosative damage, apoptosis, inflammation, and fibrotic
esponses, exogenous Ang II administration did not result
n additive damage to that seen in diabetic hearts (Fig. 7).
he lack of additive effects suggests that cardiac injury in
iabetes shares common mechanisms with Ang II (8),
hich are counteracted by MT (Fig. 8).
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or an online Materials and Methods section and

upplementary figures, please see the online version of this article.
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