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Abstract

The inter-quark potential is dominated by anti-screening effects which underly asymptotic freedom. We calculate the orderg6 anti-screening
contribution from light fermions and demonstrate that these effects introduce a non-local divergence. These divergences are shown
impossible to define a coupling renormalisation scheme that renormalises this minimal, anti-screening potential. Hence the beta func
be divided into screening and anti-screening parts beyond lowest order. However, we then demonstrate that renormalisation can be c
terms of the anti-screening potential.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Asymptotic freedom is the paradigm effect of QCD. It h
been shown in many approaches[1–12] that the leading orde
beta function can be divided into screening and anti-scree
effects. In QCD withnf light fermions this decompositio
reads

(1)β(g) = − g3

(4π)2

[
4− 1

3
− 2nf

3

]
,

where the dominant term (the 4) corresponds to anti-scree

and the smaller−1
3 − 2nf

3 terms describe screening by glue a
by matter. It is well known that the gluonic screening effects
due to physical (gauge invariant) glue. Anti-screening[9] is due
to the contribution of glue which is needed to construct a ga
invariant definition of a coloured charge[13].

The static inter-quark potential[14,15]would seem to offer
a direct way to study the screening and anti-screening ef
in QCD. The potential can be calculated via Wilson loops.
orderg4 the momentum space bare potential,Ṽ 0, in D = 4−2ε
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dimensions is, up to some finite terms,

Ṽ 0( )
k2 = −4πCF

α0

k2

(2)×
{

1− α0

π

(
11

12
CA − nf

6

)[ (
log

k2

ν2

)
− 1

ε

]}
,

whereν is a dimensional scale parameter and, inSU(N), CF =
(N2 − 1)/(2N) andCA = N . This may be renormalised by th
standard charge renormalisation where the bare couplingα0 =
ν Z−2ε

αα where

(3)Zα = 1− α

π

(
11

12
CA − nf

6

)
1

ε
.

This yields to orderα2

(4)Ṽ
( )
k2 = −4πCF

α

q2

{
1− α

π

(
11

12
CA − nf

6

)
log

(
q2

ν2

)}
.

The Wilson loop approach does not, however, display
screening/anti-screening decomposition of the potential.
will therefore study here the interaction between two gauge
variant descriptions of the colour charges. This has previo
been seen[9,11] to show the decomposition of screening a
anti-screening in 3+ 1 dimensions as well as in the potential
2+ 1 dimensions[10] (where the beta function vanishes).

The structure of this Letter is as follows. We first review h
a gauge invariant description of physical charges directly sh
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how anti-screening effects are produced. Then we calculate
the first time, how at orderg6 anti-screening effects due to lig
fermions arise in the quark potential and that, due to non-l
divergences, a minimal (or anti-screening) charge renorma
tion approach breaks down here. Renormalising the pote
directly is shown to consistently handle the non-local structu
and the full result for the renormalised potential at this orde
given.

It has previously been shown[16,17] that the correct gaug
invariant description of static charges in the ground stat
given by h−1ψ whereh−1 is a field dependent dressing th
surrounds the matter fieldψ . The dressing has a rich structu
which in QED is as follows:

(5)h−1(x) = exp

(
ie

x0∫
−∞

ds
∂iFi0

∇2
(s,x)

)
exp

(
−ie

∂iAi

∇2

)
.

Here the second exponential is theminimal dressingwhich en-
sures that the minimally dressed matter field, exp(−ie∂iAi

∇2 )ψ , is
gauge invariant. The other factor, which we call theadditional
dressing, is itself gauge invariant.1

The structure of the dressing is reflected in calculation
the potential between charges: anti-screening coming from
minimal dressing[9] while the effects of screening were show
to come from the additional gauge invariant dressing[11]. The
different factors in the dressing also make their presence
arately felt in the infra-red structure of the on-shell Gree
functions of dressed fields: soft divergences are cancelle
the effects of the minimal dressing, while phase divergen
are removed by the additional dressing.

The description(5)has been extended to QCD order by or
in perturbation theory. With the inclusion of colour, theminimal
dressingup to orderg3 is given by[13]

(6)h−1(x) = exp
(
gχ(x)

) + O
(
g4),

with χ = χaT a = (χa
1 + gχa

2 + g2χa
3 )T a and

(7)
χa

1 = ∂jA
a
j

∇2
, χa

2 = f abcχbc, χa
3 = f acbf cef χef b,

where we have defined

(8)χbc = ∂j

∇2

(
χb

1Ac
j + 1

2

(
∂jχ

b
1

)
χc

1

)
,

and

χef b = ∂j

∇2

(
χef Ab

j + 1

2
Ae

jχ
f

1 χb
1 − 1

2
χef

(
∂jχ

b
1

)
(9)+ 1

2

(
∂jχ

ef
)
χb

1 − 1

6

(
∂jχ

e
1

)
χ

f

1 χb
1

)
.

To now calculate the potential between such charges, we
a quark and an anti-quark, both dressed according to Eq.(6), av-
erage over colours and study the expectation value of the Q

1 The dressing may be obtained from the requirement of gauge invar
plus an additional dressing equation which may be derived[16] from the heavy
charge effective theory or from a study[18] of the asymptotic dynamics o
charged particles.
or

l
a-
al
s

s

f
e

p-

y
s

ke

D

e

Hamiltonian. The potential is given by the dependence of
energy on the quark separation,r := |y − y′|. The lowest order
contribution from either charge is of orderg and so, to calculate
the potential at orderg4 between two charges, we only need
expand the two dressings up to orderg3. The potential is there
fore

V (r) = 1

2N2

∫
d3x

〈
ψ̄(y)h(y)h−1(y′)ψ(y′)

∣∣
(10)× (

Ea
i

2
(x) + Ba

i
2
(x)

)∣∣ψ̄(y)h(y)h−1(y′)ψ(y′)
〉
,

which implies

V (r) = − 1

N
tr

∫
d3x 〈0|[Ea

i (x), h−1(y)
]
h(y)

(11)× [
Ea

i (x), h−1(y′)
]
h(y′)|0〉,

where the trace is over colour and we have used the fact thaBa
i

commutes with the minimal dressing.
It follows at leading order from(11) that

V (r) = −g2

N
tr

∫
d3x 〈0|[Ea

i (x),χd
1 (y)

]
(12)× T dT b

[
Ea

i (x),χb
1 (y′)

]|0〉.
Inserting the fundamental equal time commutator,[Ea

i (x),

Ab
j (y)] = iδabδ(x − y), into this last equation gives at leadin

order

(13)V (r) = −g2CF

4πr
.

We recognise the Coulombic inter-quark potential[19,20].
In general, and especially at higher orders, it is simple

work in momentum space. Integral representations based
the identity

(14)
1

(x2)a
= 4

d
2 −aπ

d
2 
(d

2 − a)


(a)

∫
ddq

(2π)d

1

(q2)
d
2 −a

eiq·x,

make the calculations much easier. In this way the contribu
to the quark potential from the minimal dressing atO(g4) has
previously[9] been shown to be

(15)−3g4CF CA

klkm

k4

∫
ddp

(2π)d

iD̃T T
lm (p)

(k − p)2
,

whered is the number of spatial dimensions (d = 3 − 2ε) and
the tree level equal time gluon propagator in momentum sp
is given by

(16)iD̃lm(p) =
∫

ddx iDlm(0,x)e−ip·x .

The superscriptT in (15) signifies projection upon the tran
verse components,kiA

T
i = 0. This shows the gauge invarian

of (15)and it is straightforward, if tedious, to show that the lo
gitudinal, gauge dependentAL

i fields cancel in this result. A
orderg4 this corresponds to inserting the free transverse
jected, equal time propagator

(17)
〈
AT

j (w)AT
k (z)

〉 = 1

2π2

(z − w)j (z − w)k

|z − w|4 ,
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which yields the dominant part of the bare potential correspo
ing to anti-screening:

Ṽ 0
min

(
k2) = −4πCF

α0

k2

(18)

×
{

1− α0

π
CA

[
log

(
k2

ν2

)
+ 2 log(2) − 7

3
− 1

ε

]}
.

This should be contrasted with the bare potential(2). The dif-
ference between the divergences in these two results is d
screening. The equations clearly show that gluons scree
well as anti-screen. The screening effect is due to transv
gauge invariant glue from the additional dressing. The rela
weighting of gluonic anti-screening to screening by glue is
to 1. (There is no anti-screening contribution from the ma
fields at this order.)

These effects have also been calculated[10] in 2 + 1 di-
mensions where it was seen that the relative weighting of a
screening and screening in the potential is the same within

2. The leading in nf potential at order g6

At the next order in the coupling there are contributions fr
gluons and from light quarks. Here we will calculate the qu
contribution, i.e., thenf dependent terms, to the minimal dres
ing. As is well known, quarks produce at next to leading or
a screening of (electric and) colour charges and we have
above that, at orderg4, there are no contributions from quar
to the minimal anti-screening potential. However, we will n
show that at next to next to leading order quarks also prod
an anti-screening effect. This contribution is needed to en
gauge invariance at higher orders. It occurs through the
loop, fermionic correction to the gluon propagator in(15).

In addition to(15) there are other contributions to the mi
imal potential at orderg6. They arise by higher order expa
sions of the dressings and will involve Green’s functions s
asg5〈0|AAA|0〉 andg6〈0|AAAA|0〉. These Green’s function
will only depend on thenf light fermions through loops an
it is easy to see that they will first introduce quark contrib
tions beyond orderg6 in the coupling. We conclude that th
first quark contribution to the anti-screening potential com
from (15)alone.

It should also be noted that although the QCD two po
function 〈0|AT AT |0〉 in (15) is not generally gauge invarian
at higher orders (see Appendix A of[13]), at one loop itsnf

dependent part is indeed gauge invariant. At orderg2 we have
the well-knownnf dependent term from the one loop contrib
tion to the gluon polarisation

(19)Π(p) = g2nf

(4π)
D
2

D − 2

D − 1

(−p2)D
2 −2
(2− D

2 )
2(D
2 − 1)


(D − 2)
,

where we skip the obvious transverse projection tensor.
enters the one loop propagator via the contribution,iDiΠiD,
which implies
-

to
as
e,
e

r

i-
.

r
en

e
re
e

s

t

is

∫
dDx 〈0|TAi(x)Aj (0)|0〉e−ip·x

(20)= − i

(p2
0 − p2)2

[
pipj + δij

(
p2

0 − p2)]Π(
p2

0 − p2).
The one loop equal time propagator in momentum space,iD̃ij

is now defined to be

iD̃ij (p) = −
∞∫

−∞

dp0

2π

i

(p2
0 − p2)2

[
pipj + δij

(
p2

0 − p2)]

(21)× Π
(
p2

0 − p2).
Projecting onto the transverse components (which are gaug
variant at this order ing) via δil −pipl/p

2 andδjm −pjpm/p2

gives

(22)

iD̃T T
lm (p) = −

(
δlm − plpm

p2

) ∞∫
−∞

dp0

2π

i

(p2
0 − p2)

Π
(
p2

0 − p2).
Inserting(19)yields

iD̃T T
lm (p) = −g2nf

(
δlm − plpm

p2

)

(23)× 1

(p2)2− d
2

1

22+dπ
d
2


(3− d)
(1+d
2 )


(5−d
2 )
(2+d

2 )
.

To calculate thenf dependent part of the potential, we no
insert this into(15). It is helpful, though, to rewrite the resultin
expression via

(24)1− (k · p)2

k2p2
= 1

4

(
2− k2

p2
− p2

k2

)
+ · · · ,

where we havedropped terms that only contribute massle
tadpoles in the subsequent integral and will hence vanish i
mensional regularisation. This leads to the orderg6 contribution
to the potential(18)

g6nf CF CA

k2

3

24+dπ
d
2


(3− d)
(1+d
2 )


(5−d
2 )
(2+d

2 )

(25)×
∫

ddp

(2π)d

1

(p2)2− d
2 (k − p)2

(
2− k2

p2
− p2

k2

)
.

The divergent part of this contribution, in terms of the bare c
pling α0, is

α3
0nf CF CA

3k2π

(26)×
{

1

ε2
+ 1

ε

[
14

3
− 2γE − 2 log

(
k2

4πν2

)
− 4 log(2)

]}
.

Note that these divergences are ultra-violet singularities as
be seen from power counting in(15) and (23). The leading sin-
gularity here is local, but the sub-leading divergences inc
the 1

ε
log(k2) term which is a non-local divergence. The imm

diate question is can renormalisation deal with this infinity?
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3. Renormalising the minimal potential

The minimal part of the inter-quark potential has been pr
ously calculated at orderg4 in both four and three dimension
The result in four dimensions(18) may be renormalised b
usingminimalcharge renormalisation where we define the m
imally renormalised coupling,α′, throughα0 = Zmin

α′ α′ where

(27)Zmin
α′ = 1− α′

π
CA

1

ε
.

This anti-screening renormalisation is defined so that

Ṽmin
(
k2) = −4πCF

α′

k2

[
1− α′

π
CA

1

ε

]

×
{

1− α′

π
CA

[
log

(
k2

ν2

)
− 1

ε

]}
,

is finite at this order in the minimal coupling:

(28)

Ṽmin
(
k2) = −4πCF

α′

k2

{
1− α′

π
CA log

(
k2

ν2

)}
+O

(
α′3).

This is a very direct way to extract the minimal, anti-screen
beta function which has also been observed in very diffe
ways[4]. This minimal coupling clarifies the nature and impo
tance of anti-screening in non-Abelian gauge theories.

It is, however, very simple to show that the ‘anti-screen
coupling’ cannot be used at next order. We have seen that
is a non-local,nf dependent divergence in the minimal p
tential at orderg6 and this is theonly nf dependence in th
minimal potential(26) up to this order. There is a logarith
at orderα2

0 which might help produce non-local divergences
α2

0 but it is notnf dependent and in the leading anti-screen
charge renormalisation(27) there is nonf dependence eithe
Any nf dependence inZmin

α′ at orderα′3 would, of course,
be local and not introduce any logs into the potential at o
α′3. Thusnothing can cancel the non-local divergence at
der α′3 in this approach. We are forced to conclude that
anti-screening or minimal charge renormalisation of the m
mal potential breaks down beyond leading order. It is, in o
words, impossible to define a coupling renormalisation sch
that renormalises the minimal, anti-screening potential. We
not, beyond lowest order, speak of screening and anti-scree
structures in the beta function.

It is, however, not necessary to use the anti-screening
pling in the minimal potential. Instead one can use full coupl
renormalisation(3) plus an additional multiplicative renorma
isation of the minimal potential in(18):

(29)Ṽmin = ν−2εZV Ṽ 0
min

(
k2),

where we write

(30)ZV = 1+ δ1
V

α

π
+ δ2

V

(
α

π

)2

+ · · · .
The minimal potential is easily seen to be finite at this orde

(31)δ1
V = −

(
1

12
CA + nf

6

)
1

ε
.

-

t

re

r

-
r
e
-

ng

u-

This corresponds to

(32)Ṽmin = −4πCF

α

k2

{
1− α

π
CA log

(
k2

ν2

)}
+O

(
α3).

Our interpretation of this additional factor,ZV , is that it is a
renormalisation of the additional potential energy between
cited, minimally dressed charges compared to the true gro
state of the fully dressed system, i.e., with screening effect
cluded.

We will now show that this second approach may still
used at the next order of perturbation theory, i.e., the mini
potential is indeed renormalised by the full coupling(3) and the
potential renormalisation of(29) and (30). At orderα3 scheme
dependence appears and we use theMS scheme. We require th
standard two loop coupling renormalisation

(33)Zα = 1+ z1
α

α

π
+ z2

α

(
α

π

)2

,

where

(34)

z2
α = 1

ε2

(
11CA

12
− nf

6

)2

− 1

ε

(
17C2

A

48
− CF nf

16
− 5CAnf

48

)
.

We now define

(35)δ2
V = δ2a

V

1

ε2
+ δ2b

V

1

ε
.

At ordernf α3 in the potential, we first consider the 1/ε2 terms.
Inserting all the above renormalisation constants and dem
ing the cancellation of 1/ε2 terms leads to

(36)δ2a
V = CA

(
2

3
CA + nf

12

)
.

(Note that thenf independent term must be corrected by g
onic anti-screening effects which we neglect.)

Inserting this into the potential and demanding the vanish
of the local 1/ε terms yields

(37)δ2b
V = −nf

(
5

48
CA + CF

16

)
,

plus variousnf independent terms from the purely gluonic co
tributions to the anti-screening potential.

Having now fixed the renormalisation constant, it is ve
satisfying to see that the non-local divergences in(26) are can-
celled in this scheme. At orderα3 there are three such non-loc
terms: they are generated bynf dependent local divergences
the renormalisation constants multiplying the logarithm in
one loop potential(18). One is from thenf part ofZV :

(38)−4CF

k2

α3

π

nf

6
log

(
k2

ν2

)
1

ε
,

while there are two furthernf dependent contributions from th
coupling constant renormalisation(3) sinceα0 occurs twice in
(18). Each of these yields

(39)−2CF

k2

α3

π

nf

6
log

(
k2

ν2

)
1

ε
,
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and adding all three of these terms together we see tha
nf dependent, non-local divergences inVmin at orderα3 in-
deed cancel. We stress that this cancellation is a stringen
of the method since there was no freedom in the calcula
We conclude that this renormalisation programme can be
ried through.

Our final result for the renormalised, anti-screening poten
is

(40)

Ṽmin
(
k2) = −4παCF

k2
+ α2Ṽ 2

min

(
k2) + α3Ṽ 3

min

(
k2) + · · · ,

where

(41)Ṽ 2
min

(
k2) = 4CACF

3k2

(
−7+ 6 log(2) + 3 log

(
k2

ν2

))
,

and thenf dependent terms

Ṽ 3
min

(
k2) = CACF nf

27πk2

(
125− 3π2 + 12 log(2)

[−7+ 3 log(2)
]

(42)

+ 3 log

(
k2

ν2

)[
−14+ 12 log(2) + 3 log

(
k2

ν2

)])
,

whereν2 = 4πν2e−γE .

4. Conclusions

We have seen that the decomposition of the beta func
into screening and anti-screening structures breaks down
yond one loop. This we saw by calculating the light qu
contributions to the anti-screening potential: non-local div
gences arose in fermion loops in the minimal potential at o
g6 which are not cancelled by an anti-screening beta func
This is due to anti-screening effects from light fermions wh
are necessary consequences of a gauge invariant construc
charges.

However, we have seen that it is possible to renormalise
potential via full charge renormalisation plus a multiplicat
renormalisation of the potential. This renormalisation provi
a stringent test of the method. It is to be understood as a re
malisation of the additional energy due to the neglect of scr
ing interactions in a minimally dressed construction of char
e

st
.
r-

l

n
e-

-
r
.

of

is

r-
-
.

The results presented here suggest that a decompositi
the potential into a minimal, anti-screening part plus an a
tional screening structure is indeed possible. Further stu
of this decomposition may help to clarify the structure of
forces between heavy quarks.
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