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Abstract

The inter-quark potential is dominated by anti-screening effects which underly asymptotic freedom. We calculate @Féamiescreening
contribution from light fermions and demonstrate that these effects introduce a non-local divergence. These divergences are shown to make
impossible to define a coupling renormalisation scheme that renormalises this minimal, anti-screening potential. Hence the beta function cann:
be divided into screening and anti-screening parts beyond lowest order. However, we then demonstrate that renormalisation can be carried out
terms of the anti-screening potential.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction dimensions is, up to some finite terms,

50(1.2\ _ @0
Asymptotic freedom is the paradigm effect of QCD. It hasv (k ) =—4rCr k2
been shown in many approacHés-12] that the leading order 11 ny k2 1
beta function can be divided into screening and anti-screening {1— —<1—2C €> [I (vz) — —] } (2)

effects. In QCD withn ¢ light fermions this decomposition €

reads wherev is a dimensional scale parameter and5W(N), Cr =
(N2 —1)/(2N) andC4 = N. This may be renormalised by the
Blg) = — g3 4 1 ﬁ (1) standard charge renormalisation where the bare couplrg
8= " an)2 3 3 V27,0 where
where the dominant term (the 4) corresponds to anti-screening _ 1 <11CA _ ”_f> 1 3)
and the smaller—§ — %5 terms describe screening by glue and 12 6 /)€

by matter. It is well known that the gluonic screening effects arerhis yields to ordet?
due to physical (gauge invariant) glue. Anti-screerjBigs due 1 )
to the_ contrlt_)u_u_on of glue which is needed to construct a gauge}(kz) — —47TCF% {1 - _( Cy— n_f) |og<q—2> } 4)
invariant definition of a coloured charg3]. q 12 6 v
The static inter-quark potentigl4,15]would seem to offer The Wilson loop approach does not, however, display the
a direct way to study the screening and anti-screening effeciscreening/anti-screening decomposition of the potential. We
in QCD The potential can be calculated via Wilson loops. Atwill therefore study here the interaction between two gauge in-
orderg* the momentum space bare potentiél, in D = 4—2¢ variant descriptions of the colour charges. This has previously
been seeff9,11] to show the decomposition of screening and
" Corresponding author. anti—screenin_g in 3 1 dimensions as well as in the.potential in
E-mail addresseshagan@ifae.efE. Bagan)mlavelle@plymouth.ac.yk 2+ 1 dimensiong10] ,(Where the beta function V,amShe_s)'
m.lavelle@plymouth.ac.ugM. Lavelle), dmcmullan@plymouth.ac.uk The structure of this Letter is as follows. We first review how
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how anti-screening effects are produced. Then we calculate, fatamiltonian. The potential is given by the dependence of the
the first time, how at ordeg® anti-screening effects due to light energy on the quark separatien= |y — y’|. The lowest order
fermions arise in the quark potential and that, due to non-locatontribution from either charge is of ordgand so, to calculate
divergences, a minimal (or anti-screening) charge renormalisahe potential at ordeg* between two charges, we only need to
tion approach breaks down here. Renormalising the potenti@xpand the two dressings up to orgér The potential is there-
directly is shown to consistently handle the non-local structure$ore

and the full result for the renormalised potential at this order is 1 _
given. V=g | Ex{F0rmET OGN

It has previously been showt6,17]that the correct gauge 02 02 - 1, ,
invariant description of static charges in the ground state is x (Ef () + B “() [§ MAMA DY (v)), (10)

given by 2~y whereh~1 is a field dependent dressing that which implies
surrounds the matter fieldt. The dressing has a rich structure

o : 1
which in QED is as follows: V(r) = Y tr/ d3x (0|[E;‘(x), h_l(y)]h(y)
0
[ 0F 0 A, x [E{ (0. i1 0)]R()I0), 11
h_l(x)zexp ie/ ds —zo(s,x) exp(—ie > ) (5) [ . Y ] Y b
. \ v where the trace is over colour and we have used the facBthat

commutes with the minimal dressing.

Here the second exponential is tménimal dressingvhich en- It follows at leading order fron11) that

sures that the minimally dressed matter field,@xig’5: )y, is
gauge invariant. The other factor, which we call duitional _ & 3 a d
dressingis itself gauge invariart. Vin= N tr dx (O|[Ei (. 131 (y)]

The structure of the dressing is reflected in calculations of « TdTb[Eq(x)’ Xf(y’)]lo)- (12)
the potential between charges: anti-screening coming from the .
minimal dressing9] while the effects of screening were shown Inserting the fundamental equal time commutafdry (x),
to come from the additional gauge invariant dresgitig. The ~ A%()] =i8“"$(x — y), into this last equation gives at leading
different factors in the dressing also make their presence sepfder
arately felt in the infra-red structure of the on-shell Green’s $2Cr
functions of dressed fields: soft divergences are cancelled by (r) = — dnr
the effects of the minimal dressing, while phase divergence . .
are removed by the additional dressing. §Ve recognise the Coulombic inter-quark potenii#,20].

The descriptiorf5) has been extended to QCD order by order Ink general, atnd espeualllytat hllgher orde:s,t. itis ts;mpljer 0
in perturbation theory. With the inclusion of colour, tiénimal work In momentum space. Integral representations based upon

(13)

dressingup to orderg? is given by[13] the identity
d_, d .4
hH) = explg () + 0 (g"). S e e AN
a d_ bl
with x = x*T* = (x{ + gx§ + g%x$)T“ and %) @ (2m) (‘12)2 ¢
5. A make the calculations much easier. In this way the contribution
x4 = T x4 = fabeybe x4 = fach peef yefb to the quark potential from the minimal dressingtg*) has
1 2 2 3 ) .
previously een shown to be
\ 7) Iy[9] b h tob
where \;)ve have defi:r;ed —3g4CFCA Kikm d4p l-DITmT (p) as)
. j . 4 d(J— g2’
XbL v]2< bAc + E(ainb)Xi>» (8) k 2m)¢ (k—p)
whered is the number of spatial dimensions£ 3 — 2¢) and
and the tree level equal time gluon propagator in momentum space
0 1 1 is given by
1" = Vz( TG+ S5 = 5x (05x]) ) |
1 1 f iDlm(P):/ddXiDlm(o7 x)e '’ (16)
+50x) 1 = 5 0;x5) 1 Xf) ©) o _— -
The superscripf in (15) signifies projection upon the trans-

To now calculate the potential between such charges, we takeerse componentk,-AiT = 0. This shows the gauge invariance
aquark and an anti-quark, both dressed according t@@Eagv-  of (15)and it is straightforward, if tedious, to show that the lon-
erage over colours and study the expectation value of the QCBitudinal, gauge dependert- fields cancel in this result. At

order g* this corresponds to inserting the free transverse pro-

1 The dressing may be obtained from the requirement of gauge invariancbeCted’ equal time propagator
plus an additional dressing equation which may be defji¢6fifrom the heavy z—w)i(z—w)
. . . T T _ J k
charge effective theory or from a study8] of the asymptotic dynamics of (A HOYY: (2))= T
T

charged particles. |z — w|
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which yields the dominant part of the bare potential correspond 42 (0|TA; (x)A;(0)]0) g ipx
ing to anti-screening: _
! 2 2 2 2

> =32 [pipj +38ij(pg — p9)]T(pg — p7).  (20)
VO (k?) = —471CFZ—2 (pg — P?)?

2 7 1 The one loop equal time propagator in momentum spﬁbg,

% {1 _%c, [Iog(—z) +2log(2) — 5 _} } is now defined to be
b4 Vv €

o
(18 - dpo i
. . . iDj(p)=- / o 53 Pipi + 8 (p§ — 7]
This should be contrasted with the bare poter(#al The dif- 21 (pg— p?)
ference between the divergences in these two results is due to ) )
screening. The equations clearly show that gluons screen as x I (pg — p°). (21)

well as ant|jscreen. The screening effect is dge to transve,rsﬁ’rojecting onto the transverse components (which are gauge in-
gauge invariant glue from the additional dressing. The relativg , iant at this order iR) via i — pip1/ p2 ands —p/pm/pz
weighting of gluonic anti-screening to screening by glue is 1zgives ‘ ‘

to 1. (There is no anti-screening contribution from the matter

fields at this order.) 0

These effects have also been calculd@] in 2+ 1 di- D] (p) = —(81,,, - p”;’") f @2’717(195 - pP).
mensions where it was seen that the relative weighting of anti- pe /) J 2m (py— p?)
screening and screening in the potential is the same within 1%. (22)
Inserting(19) yields
2. Theleadingin n s potential at order g8
- NTT 2 Pl Pm
iDp, (p)=—gny (51m - —2)
At the next order in the coupling there are contributions from P 14d
gluons and from light quarks. Here we will calculate the quark 1 1 IE-dI'(7") (23)

X .
contribution, i.e., the y dependent terms, to the minimal dress- (p?)%% 22+dz s (33 (E)
ing. As is well known, quarks produce at next to leading order .
sreening of (ectic anc)colour crarges and e fave sogg 10 LS e Sependettpart o e pecsal e o
above that, at ordeg?, there are no contributions from quarks XDIESSION Vi ) P, gn, 9
to the minimal anti-screening potential. However, we will now SXPression via
show that at next to next to leading order quarks also produce (k- p)? 1( k2 2>

— + ceey

W 4 24

an anti-screening effect. This contribution is needed to ensuré—

gauge invariance at higher orders. It occurs through the one

loop, fermionic correction to the gluon propagato(13). where we havedroppedterms that only contribute massless
In addition to(15) there are other contributions to the min- tadpoles in the subsequent integral and will hence vanish in di-

imal potential at ordeg®. They arise by higher order expan- mensional regularisation. This leads to the oggfecontribution

sions of the dressings and will involve Green’s functions sucho the potentia(18)

asg®(0|AAA|0) andg®(0]JAAAA|0). These Green’s functions L

will only depend on the: s light fermions through loops and gnsCrCy 3 TER-dI(HY)

it is easy to see that they will first introduce quark contribu- k2 o4+dz 5 T(359)I(Z9)

tions beyond ordeg® in the coupling. We conclude that the

. oo . . . dép 1 k2 p?

first quark contribution to the anti-screening potential comes v . (2_ — - _2) (25)
from (15) alone. @) (p2)2~2 (k — p)? Tk

It should also be noted that although the QCD two pointT
function (0|AT AT|0) in (15) is not generally gauge invariant
at higher orders (see Appendix A [if3]), at one loop its: ¢
dependent part is indeed gauge invariant. At oggfewe have agnprCA
the well-knowrn » dependent term from the one loop contribu- W
tion to the gluon polarisation 5

1 1] 14 k
x {6—2 + E[? — 2y — 2log<m> — 4Iog(2):|}. (26)

Note that these divergences are ultra-violet singularities as can
be seen from power counting {5) and (23) The leading sin-
where we skip the obvious transverse projection tensor. Thigularity here is local, but the sub-leading divergences include
enters the one loop propagator via the contributid,71i D, the % log(k?) term which is a non-local divergence. The imme-
which implies diate question is can renormalisation deal with this infinity?

he divergent part of this contribution, in terms of the bare cou-
pling ag, is

g’ny D=2 z)g_znz—g)rz(g_l)

(p) = -—< ,
(p) @n?D-1 T(D—2)

(19)
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3. Renormalising the minimal potential This corresponds to
2
The minimal part of the inter-quark potential has been previ-y, .- — —47rCF1 {1 — ﬁcA Iog(k—> } + (’)(a3). (32)
ously calculated at order* in both four and three dimensions. k? T v2

The result in four dimensionl8) may be renormalised by Qur interpretation of this additional factafy, is that it is a
usingminimalcharge renormalisation where we define the min-renormalisation of the additional potential energy between ex-
imally renormalised couplingy’, throughao = Z7)"a’ where  cited, minimally dressed charges compared to the true ground

_ o 1 state of the fully dressed system, i.e., with screening effects in-
ZIM=1-— —Cyu-. (27)  cluded.

L S We will now show that this second approach may still be
This anti-screening renormalisation is defined so that used at the next order of perturbation theory, i.e., the minimal
. ) o o 1 potential is indeed renormalised by the full coupl{@yand the
Vimin (k%) = —47TCFP [1 - ;CA E} potential renormalisation q29) and (30) At ordera® scheme

, s dependence appears and we uséMBBescheme. We require the
w11 “_CA log kY _1 standard two loop coupling renormalisation
T v2 el) )
is finite at this order in the minimal coupling: Zo=1+ Zéﬁ + zg (ﬁ) , (33)
b T
B / 1 k2
V(%) = ~4rCr % {1 _Ye, Iog<—2>} L0, where
g Vv
(28) 2 1/11C4 ny 2 1 17Cf‘ Crny 5CAnf
This is a very direct way to extract the minimal, anti-screeningz" e\ 12 6 e\ 48 16 48 )

beta function which has also been observed in very different (34)
ways[4]. This minimal coupling clarifies the nature and impor- \We now define
tance of anti-screening in non-Abelian gauge theories. 1 1
It is, however, very simple to show that the ‘anti-screenings? = 6§ = + 63 =. (35)

coupling’ cannot be used at next order. We have seen that there €
is a non-local,n ; dependent divergence in the minimal po- At Ol’del’nfot3 in the potential, we first consider th¢é[2 terms.
tential at orderg® and this is theonly n ;s dependence in the Inserting all the above renormalisation constants and demand-
minimal potential(26) up to this order. There is a logarithm ing the cancellation of 4 terms leads to
at orderag which might help produce non-local divergences at 2 n

o . . . " 2a 2 ny
a3 but it is notn ; dependent and in the leading anti-screening®y’ = Ca <3CA + 12)- (36)
charge renormalisatiof27) there is non ; dependence either. )
Any n; dependence irZT" at ordera’3 would, of course, (Note that ther s independent term must be corrected by glu-
be local and not introduce any logs into the potential at ordePNiC anti-screening effects which we neglect.)
«'3. Thusnothing can cancel the non-local divergence at or- Inserting this into the potential and demanding the vanishing
der '3 in this approach. We are forced to conclude that thef the local Je terms yields
anti-screening or minimal charge renormalisation of the mini- 5 Cr
mal potential breaks down beyond leading order. It is, in othefy = —7f (@CA + 1_6> (37)
words, impossible to define a coupling renormalisation scheme ) ) ]
that renormalises the minimal, anti-screening potential. We carlus various: s independent terms from the purely gluonic con-
not, beyond lowest order, speak of screening and anti-screenifgPutions to the anti-screening potential.
structures in the beta function. Having now fixed the renormalisation constant, it is very

It is, however, not necessary to use the anti-screening co§alisfying to see that the non-local divergenceg) are can-
pling in the minimal potential. Instead one can use full couplingce"ed in this scheme. At order there are three such non-local

renormalisatior(3) plus an additional multiplicative renormal- (€rms: they are generated by dependent local divergences in
isation of the minimal potential i(L8); the renormalisation constants multiplying the logarithm in the
one loop potential18). One is from the: » part of Zy:

Vimin =12 Zy Vi (K?), (29) A o 2\ 1
i _F RS Rl e
where we write 2 2 76 |09< U2> o (38)
Zy =1+ S%Z +62 <ﬁ> 4o, (30)  While there are two further ; dependent contributions from the
T T coupling constant renormalisati@8) sincexg occurs twice in

The minimal potential is easily seen to be finite at this order if (18). Each of these yields

1 ne\l 2Cradn K\ 1
1_ C f F f
Oy (12 47 )e' (31) K2 7w 6 IOg(v2> € (39)
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and adding all three of these terms together we see that the The results presented here suggest that a decomposition of
ny dependent, non-local divergences Wpn at ordere? in- the potential into a minimal, anti-screening part plus an addi-
deed cancel. We stress that this cancellation is a stringent tetsbnal screening structure is indeed possible. Further studies
of the method since there was no freedom in the calculatiorof this decomposition may help to clarify the structure of the
We conclude that this renormalisation programme can be caferces between heavy quarks.

ried through.
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