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Abstract

We present a method to compute abduction in logic programming. We translate an abduc-

tive framework into a normal logic program with integrity constraints and show the corre-

spondence between generalized stable models and stable models for the translation of the

abductive framework. Abductive explanations for an observation can be found from the stable

models for the translated program by adding a special kind of integrity constraint for the ob-

servation. Then, we show a bottom-up procedure to compute stable models for a normal logic

program with integrity constraints. The proposed procedure excludes the unnecessary con-

struction of stable models on early stages of the procedure by checking integrity constraints

during the construction and by deriving some facts from integrity constraints. Although a bot-

tom-up procedure has the disadvantage of constructing stable models not related to an obser-

vation for computing abductive explanations in general, our procedure avoids the

disadvantage by expecting which rule should be used for satisfaction of integrity constraints

and starting bottom-up computation based on the expectation. This expectation is not only

a technique to scope rule selection but also an indispensable part of our stable model construc-

tion because the expectation is done for dynamically generated constraints as well as the con-

straint for the observation. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Abductive logic programming; Generalized stable models; Integrity constraint;

Bottom-up computation

1. Introduction

We present a method of calculating abduction discussed in Refs. [11,20,21]. Re-
cent researches have revealed that abduction plays an important role in arti®cial in-
telligence, as stated in Ref. [11]. Various researchers have studied abduction in terms
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of logic programming framework [11,20,21] (called abductive logic programming) and
shown relationships with nonmonotonic reasoning framework such as negation as
failure, assumption-based truth maintenance system and autoepistemic logic. Kakas
et al. [22] survey the ®eld of abductive logic programming.

In this paper, we give a method of computing abduction in logic programming.
To do that, we ®rst give a translation of an abductive framework to a normal logic
program with integrity constraints and show that a stable model [15] for the trans-
lated logic program coincides with some generalized stable model for the abductive
framework de®ned in Ref. [21]. Then, we provide a nondeterministic bottom-up pro-
cedure which calculates stable models for a normal logic program with integrity con-
straints. With the above translation, our procedure computes abduction.

In contrast to previous works, the proposed method is important in the following
three points. First, it is enough to consider normal logic programs with integrity con-
straints in order to handle abductive frameworks. We show that a set of hypotheses
used for the explanation de®ned in an abductive framework coincides with a part of
the stable model for the translated logic program which satis®es a special integrity
constraint representing an observation. Second, our method is correct for any abduc-
tive logic program because of correctness of our procedure proposed in this paper.
Third, our procedure is designed so as to be suitable for query evaluation (especially
for query for abductive observations), though the procedure computes models in
bottom-up. In the following, we discuss the second and third points of arguments
of this paper in detail.

Kakas and Mancarella [20] have provided an abductive proof procedure to calcu-
late an explanation for a given observation in abductive logic programming. They
extend Eshghi's top-down procedure for abduction [11] in order to manipulate arbi-
trary hypotheses. However, their procedure inherits a problem of Eshghi's procedure
that correctness does not hold in general for logic programs with recursion as shown
in Ref. [11, p. 251].

In Ref. [34], authors proposed a query evaluation procedure for abductive logic
programming. The procedure in Ref. [34] can be regarded as an extension of the pro-
cedure of Kakas and Mancarella [20] by adding forward (or bottom-up) evaluation
of rules and consistency check for implicit deletion. The procedure in Ref. [34] is cor-
rect for generalized stable model semantics when an abductive framework has at
least one generalized stable model. In other words, the procedure in Ref. [34] is
not correct for an abductive framework which has no generalized stable model.

The procedure proposed in this paper is based on a procedure calculating grounded
extension [32] of TMS [8] and can be regarded as an extension of a well-founded bot-
tom-up procedure for calculating stable model for logic programs without integrity
constraints [13,31]. The procedure computes stable model semantics correctly for
any normal logic program with integrity constraints. As a result, our method, the
translation of abductive frameworkwith the proposed procedure, is correct for any ab-
ductive framework whether the framework has generalized stable models or nomodel.

Although the proposed method in this paper is correct, one may suspect that a
bottom-up procedure is not e�cient for computing abductive explanations for an
observation. We can compute hypotheses for an explanation by computing general-
ized stable models and then taking out hypotheses from the generalized stable mod-
els satisfying the observation. This is correct but apparently ine�cient, because many
of the generalized stable models not related to the observation might be constructed.
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In the previous version [33] of this paper, authors have paid attention to integrity
constraints to save search space as much as possible by excluding unsatis®able stable
models. We enhance a well-founded bottom-up procedure [13,31] by dynamically
checking integrity constraints during the computation of stable models and by ac-
tively deriving some facts from integrity constraints. But, the procedure checks an
integrity constraint corresponding to an abductive observation at the last stage of
the procedure. This means that our procedure still su�ers from construction of irrel-
evant models to an abductive observation.

In this paper, we overcome the ine�ciency in the procedure proposed in Ref. [33].
We enhance our procedure to use information given in the observation by top-down
expectation for the integrity constraint which is regarded as a goal in backward rea-
soning. The integrity constraint added for the observation is a sort of goal-like con-
straint. The idea of this enhancement is to search a rule which has the possibility of
satisfying the integrity constraint and if such a rule does not exist, the procedure im-
mediately fails.

Moreover, this enhancement contributes to e�ciency even when there is no goal-
like constraint explicitly presented in programs. Since constraints tried to be satis®ed
by the top-down expectation are dynamically generated during the bottom-up com-
putation, the expectation is done for not only a constraint for an observation but
also dynamically generated ones. This fact means that the enhancement is not only
a technique to scope rule selection but also a part of our stable model construction.

The structure of the paper is as follows. In Section 2, we show de®nitions and
properties of stable models. We de®ne a translation of an abductive framework to
a normal logic program with integrity constraints in Section 3. In Section 4, we pro-
vide a procedure which calculates a stable model for a normal logic program with
integrity constraints. In Section 5, we consider an enhancement of the procedure
by the top-down expectation. We mention related works and conclusion of the paper
in the last two sections. As mentioned above, this paper is a revision and expansion
of the paper in Ref. [33].

2. Stable model semantics

2.1. Preliminary de®nitions

We follow the de®nition in Refs. [20,21] but restrict ourselves to considering the
propositional case. If we consider predicate case, we change it into a ground logic
program by instantiating every variable to an element of Herbrand universe of con-
sidered logic program to obtain a propositional program.

Firstly, we de®ne a normal logic program and integrity constraints.

De®nition 1. Let Ai be propositional symbols. A normal logic program consists of
(possibly countably in®nite) rules of the form

A0  A1 . . . ;Am; notAm�1; . . . ; notAn:

We call A0 the head of a rule R (denoted as head of �R�) and A1; . . . ;An the body of
the rule. The set of fhead of �R�g, the set of propositions A1; . . . ;Am in R, and the
set of propositions Am�1; . . . ;An in R are denoted as head�R�, pos�R� and neg�R�,

N. Iwayama, K. Satoh / J. Logic Programming 44 (2000) 179±206 181



respectively. As a conceptual de®nition we consider the special rule nil rule such that
head�nil rule� � pos�nil rule� � neg�nil rule� � ;.

We de®ne integrity constraints as special rules.

De®nition 2. Let Ai be propositions. A set of integrity constraints consists of (possi-
bly countably in®nite) rules of the form

? A1 . . . ;Am; notAm�1; . . . ; notAn:

In this de®nition, ? is the special propositional symbol which means contradic-
tion. Since we write integrity constraints as rules, we do not have to distinguish con-
straints and rules. In the following, we call a normal logic program with integrity
constraints as a normal logic program, or a logic program simply when it is obvious
to distinguish that from the context. To be precise, we only consider a special form of
integrity constraints whereas in Refs. [20,21] they allow any form of integrity con-
straints. However, those constraints can be translated into our form of integrity con-
straints.

We extend the de®nition of stable models in Ref. [15] for a normal logic program
with integrity constraints as follows.

De®nition 3. A program T be a normal logic program with integrity constraints. A
stable model for a normal logic program with integrity constraints is a set of prop-
ositions M such that
1. M is equal to the least model (by set inclusion) of the positive program TM where

TM is obtained by the following operation from T. We say thatM is a stable model
of T.

(a) Deleting every rule R from T if some n 2 neg�R� is in M.
(b) Deleting every negated atom in the remaining rules.

2. ?62 M .

This de®nition gives a stable model of T which satis®es all integrity constraints.

2.2. Groundedness of stable models

Stable models are shown to be related to nonmonotonic truth maintenance system
(TMS) or justi®cation-based TMS proposed by Doyle [8]. Because syntactic features
of TMS resemble those of normal logic programming, we can show that the charac-
teristics of TMS are borrowed to discuss the characteristics of normal logic program-
ming. Elkan [10] showed that a stable model for a logic program without integrity
constraints is equivalent to a grounded extension of TMS. Fages [13] showed the
same result as Elkan independently. In this paper, we use the result by Elkan and
Fages to consider our procedure calculating stable models. It is important to state
the concept of grounded models because the concept implies a constructive de®nition
of stable models.

The groundedness of TMS extensions is translated into the next de®nition. The
de®nition is the same as Elkan's grounded model for logic programs except that
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we consider logic programs with integrity constraints. The de®nition of grounded
models provides us with the constructive de®nition of stable models.

De®nition 4. Let T be a logic program with integrity constraints. A set of proposi-
tions M is a ®nite grounded model for T if the following are satis®ed.
1. M is a model of T.
2. ?62 M .
3. M can be written as a sequence of propositions hP1; P2; . . . ; Pni such that each Pj

has at least one rule Rj such that pos�Rj� � fP1; . . . ; Pjÿ1g, where P1; . . . ; Pjÿ1 are
the elements of the sequence up to jÿ 1, Pj � head of �Rj� and neg�Rj� \M � ;.
We say a sequence of such rules for every proposition in M, hR1;R2; . . . ;Rni, is
a sequence of supporting rules for M.

We can prove the following corollary by extending Ref. [10, Theorem 3.8].

Corollary 5. Let T be a logic program with integrity constraints. A set of propositions
M is a finite grounded model for T if and only if M is a finite stable model for T.

The de®nition of grounded model leads a procedure to compute stable model in
constructive way. The procedure, denoted as proc S, is shown in Figs. 1 and 2. We
say that proc S outputs M with a sequence of rules R0; . . . ;Rn if R0; . . . ;Rn are selected
in this order in simple select rule of proc S, and proc S outputs M after selecting
these rules.

The procedure proc S can compute stable models. In the following theorem, we
show that outputs of proc S are all stable models of a given logic program with in-
tegrity constraints.

Theorem 6.

1. If proc S outputs M, then M is a stable model for T.
2. If T is finite, then proc S outputs all stable models by exhaustive search.

Fig. 1. Procedure proc S.
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Proof.

1. If proc S outputs M with a ®nite sequence of selected rules R0; . . . ;Rn, then this
sequence actually gives a sequence of supporting rules. We can show that M is
a model of T and ?62 M . Therefore, M is a ®nite grounded model and, so, a ®nite
stable model for T by Corollary 5.

2. Let T be a ®nite logic program. Suppose M is a stable model for T. Since T is a
®nite logic program, M is a ®nite stable model and therefore, a ®nite grounded
model by Corollary 5. Then, there is a ®nite sequence of supporting rules
R0; . . . ;Rn. We can show that proc S outputs M with this sequence of rules. Since
all sequences of rules can be selected by exhaustive search, proc S outputs all sta-
ble models. �

In Section 4, we will consider the procedure to compute stable models more e�-
ciently than the procedure proc S.

3. Translating abductive framework to logic program

In this section, we propose the translation of abductive frameworks into normal
logic programs with integrity constraints. Firstly, we follow the de®nition of abduc-
tive framework in Refs. [20,21]. Since integrity constraints are represented as rules in
the following de®nition, we do not need mention the constraints explicitly in the def-
inition.

De®nition 7. An abductive framework is a tuple hT ;Ai where
1. A is a (possibly countably in®nite) set of propositional symbols called abducible

propositions.
2. T is a normal logic program where no rule's head is equal to any element of A.

We follow the de®nition of generalized stable models and explanation with respect
to hT ;Ai in Refs. [20,21].

Fig. 2. Subprocedure simple select rule.
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De®nition 8. Let hT ;Ai be an abductive framework and D be a subset of A. A gen-
eralized stable model M�D� of hT ;Ai is a stable model of T [ F �D� where
F �D� � fp  jp 2 Dg.

De®nition 9. Let hT ;Ai be an abductive framework, and q be a proposition called
observation, and D be a subset of A. The proposition q has an abductive explanation
with a set of hypotheses D if and only if there exists a generalized stable model M�D�
such that q 2 M�D�.

At ®rst sight, an abductive framework seems to extend logic programming by in-
troducing abducibles, but it turns out that we can embed an abductive framework
into a logic program with integrity constraints. We translate an abductive framework
as follows.

De®nition 10. Translation of abductive framework
Let hT ;Ai be an abductive framework.

1. For each abducible p in A, we introduce a new proposition ~p which is not used in
hT ;Ai.

2. We add the following pair of rules in T for each abducible p in A

p not ~p and ~p  not p:

We denote the set of added rules as C�A�, that is
C�A� � fp  not ~p jp 2 Ag [ f~p not p jp 2 Ag:

3. We obtain a normal logic program T [ C�A� as the translation of the abductive
framework hT ;Ai.

The above pair of rules expresses that p and ~p are mutually exclusive. So, ~p intu-
itively means that p is not believed. The ®rst rule p  not ~p is used to assume p and
the second rule ~p  not p is used not to assume p. Especially, if we get a contradic-
tion by assuming p, the latter rule is used to prevent the former rule from being used
to assume p. In Ref. [31] Sacc�a and Zaniolo state that stable model semantics endows
logic programming with the expressive power of don't-care nondeterminism. The
above translation is regarded as the utilization of the nondeterminism in stable mod-
el semantics.

We have the following correspondence between abductive framework and its
translation.

Theorem 11. Let hT ;Ai, T [ C�A�, and D be an abductive framework, its translation,
and a subset of A respectively. M�D� is a generalized stable model of hT ;Ai if and only
if there exists a stable model M 0 for T [ C�A� such that M 0 � M�D� [ e» wheree» � f~p jp 2 �Aÿ D�g.

Proof. See Appendix A. �

Example 12 (Generalized stable models). Consider the following logic program T
with abducibles A � fa; bg:
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p b �1�
q a �2�
r  not b �3�
? q; b �4�
? not q; r �5�

From the above abductive framework hT ;Ai, we can get M1�D1� � fb; pg where
D1 � fbg and M2�D2� � fa; q; rg where D2 � fag as generalized stable models.

Translation from this abductive framework is as follows. We will add the follow-
ing rules, C�A� to the above logic program.

a not ~a �6�
~a not a �7�
b not ~b �8�
~b not b �9�

We can see that the following two sets of propositions are actually stable models
of T [ C�A�:

M 01 � M1�D1� [ fr1 � fb; pg [ f~ag � fb; p; ~ag
and

M 02 � M2�D2� [ fr2 � fa; q; rg [ f~bg � fa; q; r; ~bg:

We have another correspondence with respect to hypotheses used for explanation.

Corollary 13. Let hT ;Ai be an abductive framework, T [ C�A� its translation, and q an
observation. The observation q has an explanation with a set of hypotheses D if and only
if there is a stable model M for T [ C�A� [ f? not qg such that D � M \ A:

Proof. See Appendix A. �

Example 14 (Explanation). Consider the abductive framework in Example 12. Sup-
pose an observation q is given. This observation has the unique explanation with a
set of hypotheses fag. The following integrity constraint corresponding to the obser-
vation is added to the program T [ C�A�:

? not q �10�
M 02 � fa; q; r; ~bg is the unique stable model for T [ C�A� [ f? not qg and we can
see that M 02 \ A � fag is equal to the set of hypotheses.

4. Computing stable models for programs with integrity constrains

In this section, we give a nondeterministic bottom-up procedure to compute stable
models for a logic program with integrity constraints. To combine the previous
translation and the following procedure, we can calculate abduction.
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There are previous works to deal with procedures calculating stable models. Sacc�a
and Zaniolo proposed the backtracking ®xpoint procedure in Ref. [31]. Fages con-
sidered a ®xpoint semantics related to well-founded model semantics and stable
model semantics in Ref. [13]. Fages mentioned a bottom-up procedure based on
his ®xpoint semantics. When considering only computation for normal logic pro-
grams without integrity constraints, procedures shown in Refs. [13,31] are more
e�cient than the procedure proc S in Section 2.2, because the procedure in
Refs. [13,31] keeps track of which propositions are assumed to be out of models.
Our bottom-up procedure proposed in the below is same as the procedures in
Refs. [13,31] on the point of keeping propositions not included in models.

From the de®nition of stable models, one might think that it is su�cient to use the
procedure of Refs. [13,31] and remove every stable model which does not satisfy some
integrity constraints in order to obtain all stable models. The procedure proc S shown
in Section 2.2 computes exactly in this way on integrity constraints. However, we may
save search space if we can check integrity constraints during the process of con-
structing stable models. The following procedure performs not only such dynamic
checking of integrity constraints but also active use of integrity constraints to derive
some facts. Moreover, we can use integrity constraints introduced for a given obser-
vation actively to ®nd hypotheses used in explanation for the observation.

There is one further point on integrity constraint that we must not ignore in our
procedure. We have the cases in which rules are considered as integrity constraints
besides rules' direct contribution to model construction (addition of heads to mod-
els). During model construction in our procedure, suppose that a proposition
p(� head �R�) is decided to be out of belief for the rule R, or we decide that not p
is true. After that point, the rule R works as an integrity constraint C such that
head of �C� �?, pos�C� � pos�R� and neg�C� � neg�R�. This accelerates the model
construction in our procedure, because this means that a new integrity constraint,
which is not in an original program, is added to the program.

At ®rst, in Fig. 3 we give a skeleton of the procedure to show how the procedure
works. In the procedure,Mi expresses a set of propositions which are decided to be in

Fig. 3. A procedure to compute a stable model (skeleton).
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the belief set after selecting i rules by select rule shown in Fig. 4. In subprocedure
select rule, simple integrity checking is incorporated into subprocedure
simple select rule in Fig. 2. In the next section, subprocedure select rule in Fig. 3
will be replaced to subprocedure topdown select so as to exclude unnecessary model
construction.eMi expresses a set of propositions which are decided to be out of the belief set. We
add the proposition ?, representing contradiction, to eM0 at the beginning of the pro-
cedure because all integrity constraints should be satis®ed. If there is a con¯ict be-
tween Mi and eMi then Mi is not a possible candidate for a stable model. The
procedure has a nondeterministic choice point in subprocedure select rule. There-
fore fail in the procedure expresses trying an alternative choice. Although we do
not assume any speci®c search strategy in this procedure, the trial is returning to
the most recent choice point under depth-®rst search strategy.

In the following subsection, we provide details of subprocedure propagate.

4.1. Subprocedure of propagation

Subprocedure propagate constructs a model candidate and checks integrity con-
straints actively. Subprocedure propagate in Fig. 5 performs the following three
tasks:
1. Bottom-up construction of the model (by case 1): The body of a rule is satis®ed in

the current model candidate, and the head of the rule is not included either pos-
itively or negatively in the model candidate yet. So, the head is included in the
model candidate.

2. Dynamic checking of the integrity constraint (by case 3): The body of a rule is sat-
is®ed in the current model candidate, but the head of the rule is decided to be out
of the belief set. Since this means contradiction, the procedure fails and tries an
alternative choice. The integrity constraints in original programs whose heads

Fig. 4. Subprocedure select rule.
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are ? are also checked in this case, because ? is included in the eM0 at the begin-
ning of the procedure.

3. Active use of the integrity constraints which derive that not q is true from the integ-
rity constraint ? q. (by case 2): The propositions in the body of a rule are de-
cided to be true except that one of the propositions (p) in the body is not
decided yet to be true or false. In addition to this condition, the head of the rule
is decided to be false. In this situation, suppose the proposition p be decided to be
true, then the decision brings us contradiction. So we should decide that the prop-
osition p is false in stable model, or that p is added to eM .
The sets Mi and eMi are equivalent to Mi and eMi in the procedure of Ref. [31, p.

215] except that in our procedure we check integrity constraints dynamically (the
con¯ict checking in the main procedure and case 3 in subprocedure propagate)
and eMi might increase by case 2 in subprocedure propagate.

4.2. Examples

We compare our procedure with the procedure of Ref. [31] with integrity con-
straint check afterwards. The procedure of Ref. [31] is essentially the same as
the procedure proc S described in Section 2.2. The following example shows the
di�erence.

Example 15 (Difference of two procedures). Consider the following program:

p q �1�
r not q �2�
q not r �3�
? p �4�

Fig. 5. Subprocedure propagate.
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The procedure of Ref. [31] produces stable models fp; qg and frg for a logic program
of (1), (2) and (3). So, this process has a nondeterminism of producing two stable
models. Then, we discard fp; qg because this model does not satisfy the integrity con-
straint (4).

On the other hand, the execution of our procedure is as follows:
0. M0 � frg; eM0 � f?; p; qg; because from (4), p must be in eM0 by case 2 in propa-

gate, and from (1), qmust be in eM0 by case 2 in propagate, and from (2), rmust be
in M0 by case 1 in propagate.

1. Since select_rule returns nil_rule, M0 is returned.
Therefore, in this example, we have calculated the stable model deterministically in
our procedure. Note that, in this execution, the integrity constraint (4) is used to de-
rive that p is out of belief and the rule (1) is used to derive that q is out of belief. So,
this example shows an active usage of integrity constraints and a top-down propa-
gation of a disbelieved atom in our procedure.

We can calculate abduction by combining the translation from an abductive
framework into a logic program with integrity constraints and the above procedure
to compute stable models for the translated logic program with integrity con-
straints.

Example 16 (Combination of translation and bottom-up procedure). We calculate ab-
ductive explanation for (1)±(9) in Example 12 and the observation (10) in Example
14. We show how Mi and eMi are constructed for all combinations for selections of
the rules in the above procedure.

Selection 1.
0. M0 � ;; eM0 � f?g:
1. Select rule (3). Then, M1 � fr; ~bg; eM1 � f?; bg:
2. Select rule (6). Then, M2 � fr; ~b; a; qg; eM2 � f?; b; ~ag:
3. Since there is no selected rule, M2 is returned.

Selection 2.
0. M0 � ;; eM0 � f?g:
1. Select rule (3). Then, M1 � fr; ~bg; eM1 � f?; bg:
2. Select rule (7). Then, M2 � fr; ~b; ~ag; eM2 � f?; b; ag:
3. Although there is no selected rule,M2 does not satisfy integrity constraint (10). So,

this process fails.

Selection 3.
0. M0 � ;; eM0 � f?g:
1. Select rule (6). Then, M1 � fa; q; r; ~b; rg; eM1 � f?; ~a; bg:
2. Since there is no selected rule, M1 is returned.

Selection 4.
0. M0 � ;; eM0 � f?g:
1. Select rule (7). Then, M1 � f~ag; eM1 � f?; ag:
2. Select rule (3). Then, M2 � f~a; r; ~bg; eM2 � f?; a; bg:
3. Although there is no selected rule, M2 does not satisfy integrity constraint (5). So,

this process fails.
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Selection 5.
0. M0 � ;; eM0 � f?g:
1. Select rule (7). Then, M1 � f~ag; eM1 � f?; ag:
2. Select rule (8). Then, M2 � f~a; b; pg; eM2 � f?; a; ~b; q; rg:
3. Although there is no selected rule,M2 does not satisfy integrity constraint (10). So,

this process fails.

Selection 6.
0. M0 � ;; eM0 � f?g:
1. Select rule (7). Then, M1 � f~ag; eM1 � f?; ag:
2. Select rule (9). Then, M2 � f~a; ~b; rg; eM2 � f?; a; bg:
3. Although there is no selected rule, M2 does not satisfy integrity constraint (5). So,

this process fails.

Selection 7.
0. M0 � ;; eM0 � f?g:
1. Select rule (8). Then, M1 � fb; p; ~ag; eM1 � f?; ~b; q; a; rg:
2. Although there is no selected rule,M1 does not satisfy integrity constraint (10). So,

this process fails.

Selection 8.
0. M0 � ;; eM0 � f?g:
1. Select rule (9). Then, M1 � f~b; rg; eM1 � f?; bg:
2. Select rule (6). Then, M2 � f~b; r; a; qg; eM2 � f?; b; ~ag:
3. Since there is no selected rule, M2 is returned.

Selection 9.
0. M0 � ;; eM0 � f?g:
1. Select rule (9). Then, M1 � f~b; rg; eM1 � f?; bg:
2. Select rule (7). Then, M2 � f~b; r; ~ag; eM2 � f?; b; ag:
3. Although there is no selected rule, M2 does not satisfy integrity constraint (5). So,

this process fails.
So by exhaustive search, we ®nd all stable models for (1)±(9) and (10). In this ex-

ample, the program has only one stable model, that is fa; q; r; ~bg.

5. Incorporating top-down expectation

As shown in the previous example, the procedure shown above generates irrele-
vant models to the integrity constraint corresponding to an abductive observation.
In this section, we consider how to select a rule in order to drive the bottom-up mod-
el construction so as to exclude the irrelevant cases.

5.1. Idea of top-down expectation

To exclude irrelevant models, there are cases where we should select a speci®c rule.
For the integrity constraint, ? not p, for example, which is introduced to ®nd the
hypotheses in abductive explanation in the previous section, we know that p must be
in the models. Suppose p is not in any stable model. This means that there is no sta-
ble model satisfying the integrity constraint. So ®rst of all, we should select a rule
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which directly derives p. If such a rule does not exist, we should select a rule which
has a chance of deriving p. Therefore, it is important to consider the integrity con-
straint of the form of ? not p at the early stage of the procedure, especially for
computing an abductive explanation for an observation.

To explain the possibility and chance to derive p, we consider the following exam-
ple:

p q; r; not s �1�
q not t �2�
r not u �3�

Given the integrity constraint, ? not p, p must be in all the models of the above
example. Because only rule (1) has p as its head, rule (1) must be used to derive p.
In order for p to be in the models, q and r must also be in the models by rule (1).
We can derive q from rule (2) if we can assume that t is not in the models, so rule
(2) has a possibility to derive q. In a similar way, we ®nd that rule (3) also has a pos-
sibility to derive r. Both rules (2) and (3) have therefore the chance to derive p. In this
way, we can ®nd rules with possibility or chance to derive p in a top-down manner
from an integrity constraint of the form ? not p.

Although one might say that this enhancement is just a technique to scope rule
selection, which is known well in the ®eld of theorem proving, the enhancement
plays an important role in our stable model construction. In fact, this enhance-
ment is an equivalent technique to a relevance check [28] which is added to Man-
they and Bry's model generation theorem prover SATCHMO [23] for ®rst-order
predicate calculus as we show in Section 6.5. However, we argue that the top-
down expectation is an important device in our whole stable model construction
procedure.

In addition to a given constraint for observation, the expectation is done for other
constraints. Let us consider the rule p not q. Suppose, during the computation, the
proposition p has been decided to be not in the model. After this point, we treat the
rule as an integrity constraint ? not q because q must be in the model. This means
that we can do top-down expectation for this ``dynamically'' generated constraint. In
other words, the expectation contributes to e�ciency even when there is no goal-like
constraint explicitly presented in programs.

5.2. Implementing top-down expectation

In the following, we describe technical details of the top-down expectation.
To check whether there is a selectable rule and to decide which rule should be se-

lected, we modify the procedure in Fig. 3. We replace subprocedure select rule with
subprocedure topdown select (Fig. 6). Subprocedure topdown select plays the same
role to select one rule among selectable rules as subprocedure select rule. But in
topdown select the selection is done on the basis of top-down information, instead
of a random selection in select rule.

The purpose of topdown select is to ®nd a starting point at which subprocedure
topdown check performs backward reasoning (Fig. 7). The starting point is a propo-
sition p for a form of integrity constraint like ? not p. Initially topdown select
checks whether there is this type of integrity constraint for which top-down expecta-
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tion is performed. The check is done not only for integrity constraints but also rules
whose heads are already in eMi, because such rules play same role as integrity con-
straints. If there is not such an integrity or rule (else part), top-down expectation
is not performed and we must select a rule with no clue (in exactly same way as
select rule). Otherwise, we perform top-down expectation (then part).

In the part then of topdown select, we select the starting point from propositions in
an integrity (or rule) not from propositions of all integrity constraints (or rules) sat-
isfying the if condition. It is enough to select the starting point of backward reason-
ing from propositions in one integrity, because the failure of all possibilities of
backward reasoning from the starting point means that there is no model in which
the integrity constraint is satis®ed.

Subprocedure topdown check performs backward reasoning from the proposition
found in topdown select in order to ®nd a rule starting the bottom-up model con-
struction in our whole procedure. In topdown check, by Mt and eMt, a rule is selected
which is consistent with the rules previously selected during top-down expectation.
Moreover Mu is used to exclude cyclic derivations. We also exclude local cycles at
the if condition 2.

Fig. 6. Subprocedure topdown select.
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In the part then of topdown check, we commit one proposition in Pos and then se-
lect a rule to be able to derive the committed proposition. That is because we do not
want to construct a complete proof tree for the starting point (goal p) of backward
reasoning. We should notice that it is not necessary to select other propositions from
Pos than prj. If all the alternatives to derive prj fail, goal p of topdown check cannot
be derived even though other propositions in Pos were proved.

Our procedure computes mainly in a bottom-up manner. Top-down expectation
is only `expectation', since procedure topdown check does not construct a model but
provides some clue in order to begin computation of procedure propagate.

We denote the procedure in Fig. 3 as proc O, the procedure, in which subproce-
dure select rule in proc O is replaced with topdown select, as proc N respectively.
As proc S in Section 2.2, we say that proc O �proc N� outputs M with a sequence
of rules R0; . . . ;Rn if R0; . . . ;Rn are selected in this order in select rule
(topdown select) of proc O (proc N ) and case 1 in propagate, and proc O (proc N )
outputs M after selecting these rules.

Fig. 7. Subprocedure topdown check.

194 N. Iwayama, K. Satoh / J. Logic Programming 44 (2000) 179±206



In the next theorem, we show that models generated by proc O (proc N ) are equiv-
alent to models generated by proc S presented in Section 2.2.

Theorem 17.

1. If proc O �proc N� outputs M with a sequence of rules then proc S outputs M with
the same sequence of rules

2. Let T be finite. If proc S outputs M with a sequence of rules then there exists a se-
quence of rules with which proc O �proc N� outputs M.

Proof. See Appendix A. �

We can show that proc O (proc N ) returns every stable model by an appropriate
selection of rules, and it is complete for the ®nite propositional case.

Corollary 18. Let T be a normal logic program with integrity constraints.
1. If proc O �proc N� outputs M, then M is a stable model for T.
2. If T is finite, then proc O (proc N ) outputs all stable models by an exhaustive search.

Proof. We have already showed that outputs by proc S are actually all stable models
of a given logic program (Theorem 6). The corollary is proved by Theorems 6 and
17. �

In the following example, we show how e�ciently our procedure computes abduc-
tive explanations.

Example 19 (Combination of translation and bottom-up procedure with top-down
expectation). We consider the same program in Example 16, which is the translation
of an abductive framework and an observation. The execution of proc N for the pro-
gram is as follows:

0. M0 � ;; eM0 � f?g:
1. In topdown select an integrity constraint (10) satis®es the if condition as a candi-

date of starting point to reason backwards in topdown check. Select rule (2) and
(6) in topdown check�M0; eM0; q�. Then, rule (6) is returned by topdown check since
rule (6) has no positive proposition. So, by propagate, M1 � fa; q; r; ~bg; eM1 �
f?; ~a; bg.

2. Since topdown select returns nil rule, M1 is returned.

So, we get an abductive explanation M1 \ A � fag by the correspondence proved
in Section 3. Note that we deterministically compute the model at each choice point.

If we did not consider the top-down expectation, then we would have nine alter-
natives for selecting rules as shown in Example 16. Among the nine alternatives,
there is the same rule selection (selection 3 in Example 16) as above. However, six
of the other alternatives cannot provide any explanation for the observation q be-
cause the alternatives do not select rule (6) which is necessary to derive q. The other
two alternatives (selection 1 and 8 in Example 16) result in the same model as the
above computation but ®rst select the irrelevant rules for q. This example makes
clear that we can reduce the amount of backtracking thanks to top-down expectation
of integrity constraints.
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5.3. Experimental results

We have implemented our procedure in ordinary Prolog and KL1 (a concurrent
logic programming language). The detail of the KL1 implementation is shown in
Ref. [32]. In the following, we consider the Prolog implementation of our procedure.1

We show our experimental results in order to examine the e�ect of top-down ex-
pectation. The 3-coloring problem for ladder-graphs is used as test cases. As shown
in Ref. [24], the 3-coloring problem is translated from a graph into a logic program
in the following way. For each vertex a with neighbors p1; . . . ; pj and each color
i 2 0; 1; 2, the program includes the rule:

color�a; i�  not color�pi; i�; . . . ; not color�pj; i�;
not color�a; i� 1mod3�; not color�a; i� 2mod3�

and for each vertex a the program includes the integrity constraint:

? not color�a; 0�; not color�a; 1�; not color�a; 2�:
The number of rules (and constraints) in the program is 4V if V is the number of

vertices.
To examine the e�ect of top-down expectation, all stable models for the above

program, which correspond to all possible colorings of the coloring problem, are
computed. The computation is done by an exhaustive search of rule selection both
for the procedures with and without top-down expectation.

The results are shown in Table 1. For each size of ladder graph, number of stable
models computed and the time (seconds) to ®nd all stable models are shown by the
procedure with and without top-down expectation. The experiments were run on a
PC (133 MHz Pentium processor, Linux 2.0.35, 48 MB of memory), and on SWI-
Prolog (Version 3.2.2)2 with default memory asignment. The timing is obtained by
``time'' meta call and ``cputime'' in SWI-prolog.

We have found all stable models (colorings) with no duplication by the procedure
with top-down expectation, because in each call of topdown check one rule is select-
able in the program. On the other hand, without top-down expectation, same models
are repeatedly generated, because all enumeration of selectable rules should be com-
puted.

1 The codes of the procedure and test case generator are available from http://www.inagaki.nuie.nagoya-

u.ac.jp/person/iwayama/lp/.

Table 1

Performance for the 3-coloring problem of ladder graphs

Vertices Top-down No top-down

Models s Models s

4 18 0.10 408 1.19

6 54 0.42 27168 77.28

8 162 1.55

10 486 5.37

2 SWI-Prolog is available from http://swi.psy.uva.nl/projects/SWI-Prolog/.
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To compare our procedure with other procedures (SLG [3] and sm [25]), we show
the time (seconds) to ®nd ®rst stable model for the 3-coloring problem in Table 2.
The results of SLG and sm are cited from Ref. [25].

6. Related work

6.1. TMS

The procedure proposed in this paper is related to a procedure computing Doyle's
TMS (justi®cation-based Truth Maintenance System) [8] as stated in Section 2.2. In
this paper, by generalizing Elkan's results [10] of the relationship between TMS and
logic programming we modify a procedure for TMS to a procedure to compute sta-
ble models for a logic program with integrity constraints. There have been a lot of
researches on semantics of Doyle's TMS [10,14,19,26,30]. However, none of these
works except [14] considers integrity constraints (nogoods in TMS terminology) ex-
plicitly in the de®nition of TMS. In this connection, the algorithm in Ref. [19] is also
related, but it does not consider nogoods explicitly. In Ref. [32], we have given a pro-
cedure which computes a grounded extension of TMS including nogoods.

Giordano and Martelli [16] have given a translation of a set of TMS justi®cations
with integrity constraints to another set of justi®cations without integrity constraints
to produce all stable models including stable models obtained by dependency-direct-
ed backtracking (DDB). Although this work is important in its own right to give a
semantics for DDB of Doyle's TMS, this semantics con¯icts with the original usage
of integrity constraints in deductive databases, that is, checking integrity violation by
updates. The problem is that even if an update is violated by the current integrity
constraints, we might get other consistent states by performing DDB and therefore,
we might not be able to detect a violation of the updates.

6.2. Computation of stable models

There are many works to show the methods computing stable models. Among the
previous works, in Refs. [13,31] a well-founded bottom-up procedure for calculating
stable models for logic programs without integrity constraints is provided. Our pro-
cedure can be regarded as an extension of the bottom-up procedure provided in Refs.
[13,31]. The point of the extension is that our procedure deals with integrity con-
straints and utilizes the integrity constraints to reduce search spaces, especially for
abduction by top-down expectation.

Eshghi [12] has given an algorithm using ATMS and a ®ltering mechanism to
generate stable models from labels in ATMS. However, he considers only logic
programs without integrity constraints.

Table 2

Comparison with SLG and sm

Vertices Top-down No top-down SLG sm

10 0.11 0.12 0.72 0.03

20 0.48 0.46 132.89 0.04

100 13.83 12.90 0.24
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In recent years, new directions for computing stable model semantics are pro-
posed. Rao et al. [29] have developed a logic programming system XSB. Among
its features, it should be noted that XSB evaluates programs according to well-
founded semantics and provides a basis for computing partial stable model seman-
tics [13]. While XSB does not support computation of partial stable model semantics
directly, we can ®nd partial stable models from results of XSB's computation.

Cholewi�nski et al. [4] proposed a reasoning system DeReS for Reiter's default
logic. As a special case of default logic, DeReS computes stable model semantics
for normal logic programs. DeReS has a technique that eliminates the need for
some global consistency checks, because in DeReS, defaults in a theory are divid-
ed into strata and extensions of the original default theory are constructed by
linking extensions of the strata [5]. This technique shows substantial speedup in
computation.

Niemel�a and Simons [24,25] developed a system for computing well-founded
and stable model semantics for range-restricted function-free normal programs.
The system, called Smodels, contains three components of expand, test and selec-
tion of proposition. In this sense, the system Smodels is closely related to our pro-
cedure because our procedure has the three corresponding components (propagate,
consistency check, and select rule) to those of Smodel. We distinguish Smodels to
our procedure in the following two points. First, in subprocedure propagate we
make the ordinary deductive closure stronger by considering integrity constraints
like ? p, while a Fitting operator is used in Smodels. Second, we divide cases
according to applicable rules in select rule, while the case splitting in Smodels is
based on a proposition. In addition to assumption of a negative literal (not p), it
is a substantially di�erent point of Smodels from our procedure to assume a pos-
itive literal (p) and to check whether the assumed positive literal be able to be
derived.

6.3. Translation of abductive logic programming

In this paper, we present a method of calculating abduction by translating an ab-
ductive framework into a logic program with integrity constraints and computing
stable models for the program. Although there are previous works based on the
transformation of abductive logic programs into other formalisms, the proposal
by authors in the preliminary version [33] of this paper is, to the best of authors'
knowledge, the ®rst attempt.

Toni and Kowalski [35] are related to our approach deeply, because the transla-
tion in this paper is used as a part of the transformation in Ref. [35]. They show a
transformation of abductive logic programs into normal logic programs without in-
tegrity constraints. They deal with default abducibles and non-default abducibles.
Our translation is used for their transformation for default abducibles. The transfor-
mation is correct and complete with respect to many semantics formulated in an ar-
gumentation framework discussed in Refs. [1,2].

Inoue et al. [17] proposed a transformation of normal (and extended) logic pro-
grams into disjunctive logic programs, in which the ®xpoints of the disjunctive pro-
grams correspond to stable models (answer sets) for the original programs. Inoue
and Sakama [18] show a transformation of abductive logic programs into disjunctive
logic programs based on the transformation proposed in Ref. [17] and the general-
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ized stable models are captured in the ®xpoints of the transformed disjunctive pro-
grams. The ®xpoint of a transformed disjunctive program is obtained without non-
deterministic choices. Instead of that, the ®xpoint manages nondeterminism
(discussed in Ref. [31]) in (generalized) stable models because the ®xpoint consists
of models which are constructed by branching models when dealing negation by fail-
ure literals and abducibles. Based on the characterization in Refs. [17,18], the proce-
dures computing (generalized) stable models are implemented on bottom-up model
generation theorem provers.

6.4. Top-down procedures for abductive logic programming

Our procedure proposed here mainly computes in bottom-up manner and uses
top-down technique in topdown check to ®nd some clue starting the bottom-up com-
putation. Procedures in Refs. [17,18] are bottom-up, or forward reasoning. From the
view point of computing abductive logic programming in backward reasoning, there
are related works to the proposed method.

Kakas and Mancarella [20] have extended Eshghi's top-down procedure [11] for
abduction so that arbitrary abducibles can be used. Although their procedure is cor-
rect for a certain class of logic programs in stable model semantics,3 they show that
their procedure is suitable for a truth maintenance mechanism to manipulate consis-
tent explanations for a series of observations which can be regarded as a non-mono-
tonic extension of ATMS.

Authors have proposed a query evaluation method for abductive logic program-
ming in Ref. [34]. The procedure in Ref. [34] can be regarded as an extension of the
procedure of Kakas and Mancarella [20] by adding forward (or bottom-up) evalua-
tion of rules and consistency check for implicit deletion. The procedure in Ref. [34]
can be regarded as blending forward reasoning with backward reasoning. The pro-
cedure in Ref. [34] is correct for generalized stable model semantics when the pro-
gram has at least one generalized stable model. In contrast to these previous
works, the method proposed in this paper is correct for any program as mentioned
in Section 1.

Denecker and De Schreye present an extension of SLDNF resolution for abduc-
tive logic programs in Refs. [6,7]. The procedure is correct under their 3-valued com-
pletion semantics. Their proof procedure, SLDNFA, solves the ¯oundering
abduction problems: non-ground abducibles can be selected, whereas we consider
only ground abducibles. Since the procedure proposed in Refs. [17,18,34] deals with
range-restricted and function free programs, we do not need consider non-ground
abducibles in the procedures.

6.5. Forward reasoning enhanced by backward reasoning

We have two objectives to incorporate top-down expectation; one super®cial rea-
son is to search a rule which has the possibility of satisfying integrity constraints, and
another more important one is to make use of dynamically generated top-down in-

3 The top-down procedure by Eshghi and Kowalski [11] is sound with the preferential semantics by

Dung [9].
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formation in order to accelerate model construction. As we have suggested in Section
6.5, the top-down expectation is an equivalent technique to a relevance check [28]
which is added to Manthey and Bry's model generation theorem prover SATCHMO
[23] for ®rst-order predicate calculus.

The theorem prover SATCHMO generates model candidates by forward reason-
ing to check satis®ability of formulas. When any SLD proof to yield contradiction
under a current model candidate fails, SATCHMO splits and expands the model
candidate by applying a disjunctive rule applicable under the current model candi-
date. At this stage, there might be possibilities to choose an irrelevant rule to proof
for contradiction. The irrelevant selection of rule results in an explosion of model
candidates.

Ramsay has enhanced the original SATCHMO so as to choose a disjunctive
rule among rules which should contribute some proof for contradiction. Besides
the proof for contradiction is done backward reasoning (SLD resolution on Pro-
log), Ramsay's enhanced SATCHMO checks whether the sub-goals failed in the
SLD proof are uni®able with the heads in disjunctive model generation rules.
This uni®cation is called ``relevance check''. When the enhanced SATCHMO ex-
pands a model candidate, a disjunctive rule applied for the expansion is chosen
among the rules passing relevance check. The relevance check, the rule selection
based on the information given in backward reasoning, has an equivalent e�ect to
our top-down expectation for rule selection to start bottom-up construction of
stable models.

In addition to the relevance check, the magic set technique in Ref. [27] seems to be
related to our procedures in this paper and Ref. [34] as suggested in Ref. [13]. Al-
though our procedure in this paper uses a kind of backward reasoning at
topdown check, the reasoning is only for obtaining clues to start the bottom-up com-
putation and not a complete reasoning because the reasoning does not yield refuta-
tion. By means of the magic set transformation, the magic rules are added to the
original program to simulate backward reasoning in forward reasoning. However,
our procedures both in this paper and Ref. [34] do not simulate backward reasoning
but perform a kind of backward reasoning directly.

7. Conclusion

In this paper, we present a method of calculating abduction in logic program-
ming by translating an abductive framework into a logic program with integrity
constraints and computing stable models for the program. The following three
points are particularly important from the viewpoint of computation. First, it is
enough to consider normal logic programs with integrity constraints in order to
handle abductive frameworks. By our translation, we are able to discuss abductive
logic programming without treating abducibles explicitly. Second, our method is
correct for any abductive logic program because of correctness of the procedure
proposed in this paper. Third, our procedure is designed so as to be suitable
for query evaluation (especially for query for abductive observations), though
the procedure computes models in bottom-up. The comparison between our meth-
od and previous works in computational tractability is needed as the future con-
sideration.
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Appendix A

Proof of Theorem 11. We ®rst prove the following lemma.

Lemma 20. Let hT ;Ai be an abductive framework and T 0 � T [ C�A� and D be a sub-
set of A. Let M�D� be a subset of propositions used in hT ;Ai such that M�D� \ A � D.
Let M 0 be M�D� [ e». Then,

min T 0M
0

� �
� min T [ F �D�� �M�D�

� �
[ e»;

where min�� � means the minimal model of a positive logic program � .

Proof. min T 0M
0ÿ � � min��T [ C�A��M 0 � � min�TM 0 [ C�A�M 0 �. Since T does not con-

tain symbols in e», TM 0 � TM�D�.
And since C�A� contains only symbols in D [ e»; C�A�M 0 � C�A�D [ e» .
For every abducible p 2 A and for every pair of rules in C�A�
if p 2 D then fp  not ~p; ~p not pgD[e» � fp g

else if p 62 D; that is; ~p 2 e»
then fp  not ~p; ~p  not pgD[e» � f~p g:
Therefore, C�A�D[e» � F �D� [ F �e»�, where F �e»� � f~p  j ~p 2 e»g: Thus

min TM 0 [ C�A�M 0
� �

� min TM�D� [ F �D� [ F �e»�� �

� min �T [ F �D��M�D� [ F �e»�� �
since F �D� � �F �D��M�D�

� min �T [ F �D��M�D�
� �

[ e»
since no common symbols in T [ F �D� and e». �

Now we prove Theorem 11.
(1) Assume M�D� � min �T [ F �D��M�D�

� �
and ?62 M�D�.

min T 0M
0

� �
� min �T [ F �D��M�D�

� �
[ e» �by Lemma 20�;

� M�D� [ e» �by the assumption�;
� M 0
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This means that M 0 is a stable model of T 0 because ?62 M 0. Since M�D� � M 0, M 0

also satis®es all of integrity constraints in I.
(2) Assume M 0 � min�T 0M 0 � and ?62 M 0. Let D be M 0 \ A and M�D� be M 0 ÿ e».
By Lemma 20, min�T 0M 0 � � min��T [ F �D��M�D�� [ e».

M 0 � M�D� [ e»;
since M�D� � M 0 ÿ e»:

Therefore, by the assumption, min��T [ F �D��M�D�� [ e» � M�D� [ e».
min �T [ F �D��M�D� \ e»� �

� M�D� \ e» � ; then

min �T [ F �D��M�D�
� �

� M�D�:

This means that M�D� is a stable model of T [ F �D�. Since ?62 M 0 and M�D� � M 0,
?62 M�D�.
Proof of Corollary 13. Suppose M�D� is a generalized stable model for hT ;Ai and
q 2 M�D�. Therefore, M�D� is also a generalized stable model for
hT [ f? not qg;Ai. From Theorem 11, there exists a stable model M 0 for
T [ C�A� [ f? not qg such that M 0 � M�D� [ e». Thus, M 0 \ A � D.

Suppose M 0 is a stable model for T [ C�A� [ f? not qg. Let D be M 0 \ A and
M�D� be M 0 ÿ e». From Theorem 11, M�D� is a generalized stable model for
hT [ f? not qg;Ai. Therefore q 2 M�D� (suppose q 62 M�D�, then ?2 M�D� by
? not q and the de®nition of stable model). �
Proof of Theorem 17.

1. We can show that the sequence of rules by proc O �proc N� can be selected along
iterations of proc S to output M.

2. Let T be a ®nite normal logic program with ®nite integrity constraints. Since the
proof below is common to proc O and proc N before considering subprocedures
select rule and topdown select, we do not explicitly mention proc N until we have
to distinguish between select rule and topdown select. Suppose proc S outputs M
with a sequence R0; . . . ;Rn. We show by induction on the numbers of i of iterations
of the main procedure in proc O and k of iterations of propagate in proc O that the
following conditions hold:
Condition 1. There are two sequences smodified and srest such that
1(a) proc S outputs M with smodified � srest, where � is a concatenation of two se-
quences, and
1(b) we can select rules along smodified in proc O up to i and k.
Condition 2. eMk

i \M � ;
Note that a set of propositions constructed in proc S up to smodified is equal to a set

constructed in proc O up to smodified by Condition 1 and so, the set constructed in
proc O is a subset of M.

If i � 0 and k � 0, let smodified � hi (null sequence) and srest � hR0; . . . :;Rni (the
original sequence).

Then, Condition 1 clearly holds. And since eMk
i � f?g, Condition 2 holds.

Suppose up to i and k, the above conditions hold. We enter an iteration of prop-
agate. We show the above conditions hold for i and k � 1.
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Condition 1(a). This condition should be checked if there is a rule which satis®es
case 1 of propagate. Suppose there is such a rule R, that is, pos�R� � Mk

i and
neg�R� � eMk

i . Then, pos�R� � M and �neg�R� \M� � ; since Mk
i is equal to a set

of propositions constructed by smodified in proc S and � eMk
i \M� � ; by the inductive

hypothesis. Therefore, R can be selected after this point by proc S until head of �R� is
added. Since head of �R� is included in M, there must be a rule R0 in srest such that
head of �R0� � head of �R�. We delete R0 from srest and add R to the tail of smodified

to obtain new srest and new smodified for i and k � 1.
Now, it is su�cient to show that proc S outputs M with smodified � srest. Suppose

proc S does not output M with smodified � srest. There are two possibilities for this sit-
uation.
1. There is some R00 in srest which contains head of �R� in neg�R00�.
2. There is some R00 in srest whose head is contained in neg�R�.

The ®rst case is impossible since if such R00 is equal to R0 or appears before R0 in the
previous srest, R0 cannot be selected in the previous srest, and if such R00 appears after R0

in the previous srest, R00 cannot be selected in the previous srest. The second case is also
impossible since � eMk

i \M� � ; by the inductive hypothesis and head of �R00� 2 M
and neg�R� � eMk

i .
Thus, Condition 1(a) holds for i and k � 1.

Condition 1(b). As shown above, if there is a rule which satis®es case 1 of propa-
gate, we can choose the rule along smodified by proc O.

However, we should also check if there is a rule satisfying case 3 since if there is
such a rule, proc O will fail.

Suppose there is a rule R satisfying case 3. Then, R must be eventually selected by
proc S since � eMk

i \M� � ; by the inductive hypothesis or head of �R� will be added
by some other rule. In either case, head of �R� must be included in M and this leads
to contradiction because head of �R� 2 eMk

i , and � eMk
i \M� � ;. Therefore, there is

no rule satisfying case 3.
Thus, Condition 1(b) holds for i and k � 1.

Condition 2. This condition should be checked if there is a proposition added toeMk�1
i by case 2.
Suppose that there is a proposition p added to eMk�1

i by case 2, that is, p 62 Mk
i and

there is a rule R such that head of �R� 2 eMk
i and p 2 pos�R� and �pos�R� ÿ fpg� � Mk

i
and neg�R� � eMk

i . Then, we show that M does not include p. Suppose M includes p.
R must be eventually selected by proc S since � eMk

i \M� � ; by the inductive hypoth-
esis or head of �R� will be included by some other rule. In either case, head of �R�
must be included in M and this leads to contradiction because head of �R� 2 eMk

i ,
and � eMk

i \M� � ;. Therefore, M does not include p.
Thus, Condition 2 holds for i and k � 1.

If this iteration (i and k � 1) is not the last iteration in propagate, we can also
prove that the above conditions hold for a new iteration (i and k � 2). Otherwise,
we return to the until loop and go to the if sentence. We cannot fail at the if sentence
in the until loop since Mk�1

i � M and � eMk�1
i \M� � ;. Therefore, we can go to

select rule (topdown select) in the until loop.

Case of proc O: In the case that srest � hi, we assume there exists a rule satisfying
the if condition in select rule. This contradicts that proc S outputs an answer with
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smodified � srest. Since select rule returns nil rule in this case, proc O outputs M with
smodified.

We show that select rule returns some rule, if srest 6� h i. In this case, select rule
can return the left-most rule R (head of �R� 62 eMk

i because head of �R� 2 M) in srest.
We then delete the left-most rule in srest and add the rule to the tail of smodified. This
means that we can con®rm Conditions 1 and 2 hold for i� 1 and 0 after select rule
in proc O. As a result, the induction for proc O is proved.

Case of proc N : In the case that srest � hi and the case that srest 6� h i such that
there is no rule satisfying the if conditions in topdown select, we prove the induction
as same as the case of proc O.

Next we consider the other case that there is a rule (or some rules) satisfying the if
conditions in topdown select. At ®rst we show that topdown check returns some rule
R from srest, which is not necessarily the left-most rule in srest. Since, in the next lem-
ma, we see that the topdown check returns a rule in srest, we can con®rm that Condi-
tions 1 and 2 hold for i� 1 and 0 after we delete the returned rule R by
topdown check from srest and add R to the tail of smodified.

Lemma 21. topdown check returns a rule in srest.

Proof. We show the following propositions to show the lemma. Based on the prop-
ositions topdown check eventually terminates (without failure) and returns the rule
selected at the last iteration. That is because th�Rj� > 0 for all j and
th�Rj� > th�Rj�1�. (th�R� � n means R is the nth rule in srest, and j is the number of
iterations of the goto loop in topdown check.)
1. topdown check does not fail and can select Rj from srest at select.
2. If Rj and Rj�1 are in srest, th�Rj� > th�Rj�1�.

1. We show by induction on j. If j � 0, that means Pos � fpg, there must be a rule
in srest whose head is p (the case where there is not such a rule contradicts the fact
that proc S outputs the answer with smodified � srest�.

Suppose up to j, topdown check does not fail. If pos�Rj� ÿM 6� ;, every proposi-
tion pr 2 pos�Rj� ÿM should have a rule Rpr in srest which satis®es
head of �Rpr� � pr and the other three conditions at the if sentence (otherwise Rj can-
not be selected in srest by proc S). So we can select the rule from srest at select in
topdown check.

2. By 1 all Rj can be in srest. Suppose th�Rj� � th�Rj�1�, which means Rj � Rj�1.
Then, for some p 2 pos�Rj� ÿM , head of �Rj�1� � p. This contradicts
head of �Rj� 62 pos�Rj�.

Suppose th�Rj� < th�Rj�1�. There exists p 2 pos�Rj� ÿM s.t. head of �Rj�1� � p.
But this contradicts that proc S outputs the answer with smodified � srest.
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